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The physics of magnetically confined plasmas has had much of its development as part of the program
to develop fusion energy and is an important element in the study of space and astrophysical plasmas.
Closely related areas of physics include Hamiltonian dynamics, kinetic theory, and fluid turbulence. A
number of topics in physics have been developed primarily through research on magnetically confined
plasmas. The physics that underlies the magnetic confinement of plasmas is reviewed here to make it
more accessible to those beginning research on plasma confinement and for interested physicists.
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I. INTRODUCTION

A plasma is a gas in which charged particles are of
sufficient importance for the gas to be a good electrical
conductor. Ordinary matter becomes ionized and forms
a plasma at temperatures above about 5000 K, and most
of the visible matter in the universe is in the plasma
state. The high electrical conductivity implies that cur-
rents can flow in a plasma. These currents can interact
with magnetic fields to produce the forces that are
needed for confinement.

The physics of plasma confinement using magnetic
fields has been driven intellectually by the program to
develop fusion energy. Fusion has provided a focus for
the research, but much of the physics that has been de-
veloped has far broader applications—most obviously to
space and astrophysical plasmas. In addition, the physi-
cal insights and concepts are of intrinsic scientific impor-
tance.

A number of topics in physics have had their primary
development through research on plasma confinement.
These include:

s1d The relation between the field lines of divergence-
free fields and Hamiltonian mechanics.

s2d The constraints of magnetic helicity conservation on
the rapid evolution of magnetic fields.

s3d Collisionless relaxation phenomena.

s4d Simplified kinetic equations that are based on adia-
batic invariants of classical mechanics.

s5d The theory of small-amplitude and short-
wavelength turbulence, called microturbulence.

s6d The experimental observation and theoretical expla-
nation of transport barriers where plasma microtur-
bulence is stabilized by a strong gradient in the
plasma flow.

s7d The demonstration for shear Alfvén waves that con-
tinuum modes are rapidly damped but discrete
modes exist that are weakly damped and can be de-
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stabilized by particles with a speed near the phase
velocity of the waves. Shear Alfvén waves propagate
by twisting the magnetic-field lines that are embed-
ded in a plasma.

One of the goals of this review is to make these and
other topics in the physics of magnetic confinement ac-
cessible to a broader audience.

The physics of magnetic confinement is covered in a
number of books. Probably the most complete is Toka-
maks sWesson, 2004d, which emphasizes the relation be-
tween theory and experiment. Fundamentals of Plasma
Physics and Controlled Fusion sMiyamoto, 1997d gives
the details of many of the classic derivations. The
Theory of Toroidally Confined Plasmas sWhite, 2001d of-
fers insights on a number of fundamental phenomena,
and a standard textbook is Introduction to Plasma Phys-
ics sGoldston and Rutherford, 1995d. The International
Thermonuclear Experimental Reactor sITERd design
team summarized the physics of tokamaks in a series of
articles in the December 1999 issue of the journal
Nuclear Fusion. The first of these articles is an overview
sITER Physics Basis Editors et al., 1999d.

Despite the number of books and articles written on
plasma confinement a review of the fundamental physics
that includes derivations of major results has been lack-
ing up till now. This review is designed to fill that gap
while being accessible to the general physics community.

Several important types of confined plasmas are not
covered in this review. Magnetically confined plasmas
occur in many space and astrophysical situations, and
much of the physics is shared with laboratory plasmas.
However, this review does not provide sufficient context
for understanding the breadth of applications to space
and astrophysical plasmas. Some texts that do provide
such context include Basic Space Plasma Physics by
Baumjohann and Treumann s1996d, Physics of Space
Plasmas by Parks s1991d, and Plasma Astrophysics by
Tajima and Shibata s1997d. Bisnovatyi-Kogan and Love-
lace s2001d have written a major review of the plasma
issues associated with accretion disks, and Ferrari s1998d
has reviewed extragalactic jets. Laboratory plasmas in
which all of the magnetic-field lines in the plasma inter-
sect the chamber walls are also not covered. Plasmas
either flow out of such open systems at a thermal speed
or have a confinement time comparable to a collision
time. The fast Z pinch is an open plasma confinement
system, which has prominence from its use as a driver
for inertial fusion sRyutov et al., 2000d. Open plasma
confinement systems are also important for materials
processing sLieberman and Lichtenberg, 1994d.

Other major plasma topics that are not covered are
waves, which are of particular importance for plasma
heating, and the methods of measuring plasma param-
eters, which is the topic of plasma diagnostics. Standard
books on waves in plasmas are those of Stix s1992d;
Brambilla s1998d; and Swanson s2003d. Plasma diagnos-
tics are based on a broad range of physics principles.
The standard text is Principles of Plasma Diagnostics
sHutchinson, 2003d, and reviews have been written by

Gentle s1995d and the ITER Physics Export Group on
Diagnostics et al. s1999d in the Nuclear Fusion series on
ITER.

What is covered in this review is the physics of the
magnetic confinement of plasmas that are flowing slowly
compared to sonic speeds and at each point in the
plasma are close to thermodynamic equilibrium, which
implies the confinement is long compared to collision
times. Although the fundamental topic is not fusion, an
understanding of the basic features of magnetically con-
fined fusion plasmas is useful for placing research on
plasma confinement in context. These features are ex-
plained in Sec. II.

A review of the physics of magnetically confined plas-
mas contains too much material to be absorbed at a uni-
form level. Therefore, paragraphs marked by bullets are
given near the beginning of most sections. Readers are
encouraged to read just the bulleted sections of the en-
tire review before working through the details of the
sections. The main idea in each section can be deter-
mined by reading the first sentence of each paragraph. A
result is generally given before the derivation, so the
derivations can be skipped. However, the derivations are
sufficiently complete that a reader should be able to re-
construct them using a table of identities of vector cal-
culus. The review is designed to be read at various levels
of detail, and that is the way it should be read.

II. FUSION ENERGY

• The goal of research on fusion energy is a commer-
cially viable source of energy. The primary research
effort is on the fusion of two isotopes of hydrogen,
deuterium and tritium, to form an isotope of helium,
an alpha particle, and a neutron.

• Fundamental considerations imply that in a fusion
power plant the particle distribution functions would
be close to local Maxwellians with a temperature of
about 20 keV and a density of approximately 2
31020 nuclei/m3, and the plasma would have the
shape of a torus with the minor radius of the torus a
few meters in length.

• Technical limits on the magnitude of the magnetic
field that can be used for confining fusion plasmas
make the efficiency of the utilization of the magnetic
field a central issue.

• Most of the freedom in the design of fusion plasmas
is in the plasma shape, which means freedom in the
design of the coils that surround the plasma. About
50 shape parameters can be controlled, though only
about four of these are consistent with an axisym-
metric torus.

Fusion is a potential source of energy, which is essen-
tially unlimited in quantity and produces no greenhouse
gases. The fusion reaction that appears technically easi-
est to harness is between two isotopes of hydrogen, deu-
terium and tritium, with the product being ordinary he-
lium san alpha particled and a neutron. Deuterium
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occurs naturally in water in sufficient abundance as to be
an essentially unlimited resource. Tritium has a half-life
of 12 years and must be produced through an interaction
of the neutron with isotopes of lithium. Consequently,
the fuel for fusion is deuterium and lithium. The waste
products of fusion energy production need not be radio-
active in principle, but in practice some radioactive
products will be produced. The level, lifetime, and na-
ture of the radioactive waste are dependent on the use
of appropriate materials and the cleverness of the de-
sign. The fusion reaction is easily terminated, so a run-
away reaction is not a safety concern. Sheffield s1994d
has written a general review of fusion systems and Baker
et al. s1998d have discussed fusion systems with a focus
on the important issue of the materials that would be
used in fusion power plants.

The development of fusion power is paced by both
physics and engineering considerations. A magnetically
confined plasma with an essentially self-sustaining fusion
burn has not yet been produced, but this is thought to be
essentially an issue of the size of the experiments that
have been undertaken. A number of proposals have
been made for a burning plasma experiment; the most
ambitious currently under consideration is the Interna-
tional Tokamak Experimental Reactor sITER; Aymar,
2000d. Many studies have claimed fusion power could be
economically competitive, but the compatibility of the
physics and the engineering with energy at an acceptable
cost will remain a primary issue until demonstration
power plants are built.

Fundamental considerations imply that toroidal fusion
power systems would have a power output of order a
gigawatt. First, the structure surrounding the plasma
must have a minimum thickness, about 1.5 m, for the
fusion neutrons to convert lithium into tritium and heat
as well as shield the external world from radiation. Sec-
ond, until material limitations arise at a power density of
several megawatts per square meter of chamber wall
area, power becomes cheaper the higher the power den-
sity. These two considerations plus the need for a toroi-
dal plasma, which is discussed in Sec. III, imply that fu-
sion energy is most economical in units of approximately
one gigawatt of electrical power. A larger or smaller unit
size would imply a larger or a smaller aspect ratio of the
toroidal plasma.

The electrostatic repulsion of the deuterium and the
tritium nuclei sets the energy scale at which fusion reac-
tions occur, which is a thermal energy of a few tens of
kilovolts, which is a few hundred million degrees kelvin.
For the plasma to maintain its burning state, the rate of
production of high-energy alpha particles must be suffi-
cient to offset the energy losses of the plasma through
electromagnetic radiation and thermal transport through
diffusion; see Sec. VI. Since neutrons are electrically
neutral they have no significant interaction with the
plasma or the magnetic field. The maximum rate of en-
ergy production, at fixed plasma pressure, occurs at a
temperature of approximately 20 kV, or 2.33108 K. For
a steady burn at a temperature of 20 kV, the number
density of nuclei times the energy confinement time

must equal 231020 snuclei/m3d sec. At that temperature
the deuterium and tritium are completely ionized and,
therefore, form a plasma. These considerations would be
changed if the plasma reaction rate could be substan-
tially increased. Fisch and Herrmann s1994d have pro-
posed a method for increasing the reaction rate by en-
hancing the transfer of energy from the fusion alphas to
the fusing ions.

The required power density on the chamber walls for
economic electric power determines the plasma density,
about 231020 nuclei/m3, and the plasma pressure, about
ten atmospheres.

Plasmas of interest for magnetically confined fusion
are in a paradoxical collisionality regime. The rate for
Coulomb collisions, which relax the particle distribution
functions to Maxwellians, times the energy confinement
time is about 100 for the ions and 10 000 for the elec-
trons. The rapidity of collisions implies the distribution
functions are close to Maxwellian. However, the mean
free path of the thermal particles, about 10 km, is enor-
mous compared to the size of the plasma. This paradoxi-
cal collisionality regime places requirements on the
quality of the collisionless particle trajectories in order
to have adequate confinement; see Sec. VI.E.1.

Three considerations set a minimal level for the
magnetic-field strength, which is a few tesla.

s1d The magnetic-field pressure must be significantly
larger than the plasma pressure to provide a stable
force balance; see Sec. V.

s2d A charged particle moves in a circle about magnetic-
field lines, and the radius of this circle, the gyrora-
dius r, must be sufficiently small that the high-
energy alpha particles remain in the plasma and
heat it; see Sec. VI.E.1.

s3d The thermal transport coefficients, which are re-
duced by an increase in the magnetic-field strength,
must be sufficiently small to obtain the required en-
ergy confinement time; see Sec. VI.F.

Engineering considerations make it desirable to use
the lowest magnetic-field strength that is consistent with
the physics requirements. The technical limitations that
arise for magnetic fields larger than about 10 T make
magnetic confinement fusion more difficult than if
higher fields could be used. If higher fields were avail-
able, power losses from electron cyclotron radiation,
which set an upper limit on the electron temperature,
would be of increasing importance. A discussion of elec-
tron cyclotron losses is given in Sec. VI.A and by Alba-
jar, Bornatici, and Engelmann s2002d.

In addition to fusion using magnetic fields to confine
the plasma, a large research program is being pursued
on inertial confinement fusion. The physics is described
in the book Inertial Confinement Fusion by Lindl s1998d.
Inertial confinement means the plasma is confined for a
time of order a /Cs, with Cs the speed of sound and a the
plasma radius. Confinement is determined by the bal-
ance between the inertial and the pressure forces. Mag-
netically confined plasmas are in essentially a static bal-
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ance between the magnetic and the pressure forces. The
characteristic plasma density during the burn period of
an inertially confined plasma is of order 1032

particles/m3, which is about 12 orders of magnitude
larger than the density of a magnetically confined fusion
plasma. The size of the pellets that are imploded in in-
ertial confinement has a millimeter scale, while magnetic
fusion plasmas have a scale of meters. However, the cen-
tral plasma temperatures are roughly the same in mag-
netically and inertially confined fusion plasmas in order
to obtain an optimal reaction rate.

The focus of much of the research on magnetic fusion
during the last decade has been on understanding and
extrapolating of transport processes in confined plasmas.
Energy transport means the loss of energy by plasma
processes rather than by electromagnetic radiation. Con-
fined plasmas are usually, but not always, in a state in
which microturbulence dominates the transport pro-
cesses. Microturbulence sSec. VI.Fd means the fluctua-
tions have a wave number that is greater than, or of
order of, the inverse of an ion gyroradius ri and an am-
plitude of order the ion gyroradius to system size ri /a
,10−2. The extrapolation of microturbulent transport
from existing to future experiments and to fusion power
plants is essential for the scientific planning of fusion
research and is an issue in the feasibility of fusion power.

The focus of innovation in fusion research is on ways
to obtain more control over fusion plasmas and on im-
proved fusion systems. A plasma equilibrium is deter-
mined by the shape of the plasma, the magnetic-field
strength, and the profiles of the plasma current and pres-
sure; see Sec. V.A. In a power plant, economics dictates
that only about 5% of the fusion power can be used for
control. Consequently, the plasma current and pressure
profiles are largely determined by internal plasma phe-
nomena. The largest element of control that the de-
signer has over the plasma and its performance is on the
plasma shape. Control of the plasma shape is actually
control over the design of the coils that surround the
plasma. As shown in Sec. V.D.1, coil constraints limit the
designer to about 50 shape parameters, of which only
four saspect ratio, ellipticity, triangularity, and square-
nessd are consistent with an axisymmetric torus. The axi-
symmetric tokamak sSec. IVd is the most advanced
plasma confinement configuration and is the configura-
tion of choice for all major designs for experiments with
a fusion burn. Careful consideration of the four axisym-
metric shape parameters is known to be essential for
attractive tokamaks. However, tokamaks set more than
90% of the available shape parameters to zero. The use
of a larger set of shape parameters allows the designer
to sidestep issues in tokamak design, such as current
profile control, and is being studied under the topic of
stellarator research; see Sec. IV. Other elements of
plasma control that may be available include the density
profile, through clever fueling techniques, and the inter-
action between the plasma edge and the surrounding
walls.

III. MAGNETIC-FIELD LINES

• Near-Maxwellian plasmas are in force balance be-

tween the pressure and the magnetic forces, ¹W p

= jW3BW .

• The magnetic-field lines confining a near-Maxwellian
plasma must lie in the surfaces of constant pressure,

BW ·¹W p=0. These surfaces can be spatially bounded
only if they have the topological form of a torus. The
pressure psctd is a function of ct, which is the flux of
the toroidally directed magnetic field that is enclosed
by the pressure surfaces.

In plasmas of fusion interest, the ions and the elec-
trons are in near-Maxwellian distributions, which implies
the plasma has the pressure of an ideal gas, p=nT,
where T is the temperature in energy units and n=ne
+ni is the sum of the number of electrons and ions per
cubic meter. Plasma confinement implies a pressure gra-

dient, and ¹W p is a force per unit volume. This force is
balanced by the electromagnetic force produced by the
cross product of the current density in the plasma and
the magnetic field,

¹W p = jW 3 BW . s1d

Equation s1d gives the force equilibrium of a near-
Maxwellian plasma and places fundamental constraints
on magnetic confinement systems.

A confined near-Maxwellian plasma is constrained to
have the topological form of a torus. Why is this? Equi-

librium implies BW ·¹W p=0; a magnetic-field line must lie in
a constant-pressure surface through its entire length. For
example, a constant-pressure surface cannot be a sphere
and satisfy Eq. s1d. The magnetic-field lines in a
constant-pressure surface resemble strands of hair. The
hair on a topological sphere, such as a person’s head,
always has a crown, a place where the hair spirals out
from a point. A crown is a point at which Eq. s1d cannot
hold. A theorem of topology says a nonsingular vector

field BW sxWd can be everywhere tangent to a spatially
bounded function, namely, psxWd, in only one shape, the
torus.

Since toroidal surfaces are central to the whole theory
of plasma confinement, it is important to have a method
for describing them as a basis for terminology. The sim-
plest description uses sR ,w ,Zd cylindrical coordinates
with spatial positions given by

xWsr,u,wd = Rsr,u,wdR̂swd + Zsr,u,wdẐ . s2d

Expressed in terms of the Cartesian unit vectors, the

radial unit vector of cylindrical coordinates is R̂swd
= x̂ cos w+ ŷ sin w and its derivative dR̂ /dw is the unit
vector ŵ. Simple circular toroidal surfaces are given by
R=Ro+r cossud and Z=−r sinsud. The constant Ro is the
major radius, r is the local minor radius, and e=r /Ro,
which must be less than one, is the local inverse aspect
ratio. A function, such as xWsr ,u ,wd, which determines the
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positions in space that are associated with three quanti-
ties sr ,u ,wd, defines an sr ,u ,wd coordinate system. The
Appendix gives the theory of general coordinates that is
required for understanding this review. The polar angle
of cylindrical coordinates, w, is also the toroidal angle.
The angle u is called the poloidal angle, and r is a radial
coordinate that labels the various toroidal surfaces.

A. Relation to Hamiltonian mechanics

• The field lines of a magnetic, BW sxWd, or any other
divergence-free field are the trajectories of a Hamil-
tonian. sA short tutorial on Hamiltonians is given
below just after the bullets.d If wsxWd is a toroidal

angle, and BW ·¹W wÞ0, then the magnetic-field lines
are given by a one-and-a-half-degree-of-freedom
Hamiltonian, which is the poloidal magnetic flux
cpsct ,u ,wd. The canonical momentum is the toroidal
flux ct, the canonical coordinate is a poloidal angle u,
and the canonical time is the toroidal angle w; see
Fig. 1. The full Hamiltonian system consists of the
Hamiltonian, cpsct ,u ,wd, and the transformation
function, xWsct ,u ,wd, which gives the spatial location
of each canonical coordinate point sct ,u ,wd.

• When the magnetic-field lines lie in toroidal surfaces,
the canonical coordinates can be chosen so that the
poloidal flux is a function of the toroidal flux alone,
cpsctd. The twist of the field lines, which is called the

rotational transform, is i;dcp /dct. When the rota-
tional transform is a rational number i=n /m, the
field lines close on themselves after n poloidal and m
toroidal transits of the torus. The coordinates in
which the poloidal flux is a function of the toroidal
flux alone are called magnetic coordinates and trivi-
alize the solution of the magnetic differential equa-

tion BW ·¹W f=g, which arises frequently in plasma phys-
ics.

• If a magnetic field BW 0sxWd that forms perfect surfaces is

perturbed by a field dBW , then the magnetic surfaces
can split to form islands sFig. 2d, where the rotational
transform is a rational number, i=n /m. If

dBW ·¹W ct /BW 0 ·¹W w=obmn expfisnw−mumdg, the width of
the island that splits the surface i=n /m is propor-
tional to Îubmnu. If islands from different rational sur-
faces si different rational numbersd are sufficiently
wide to overlap, the magnetic-field lines in that re-
gion will come arbitrarily close to every point in a
volume of space rather than lying on surfaces. Such
field-line trajectories are said to be stochastic.
Plasma confinement is destroyed in regions of sto-
chastic field lines.

• The opening of an island is a singular process in a
toroidal plasma. Let p0sxWd be any function that satis-

fies BW 0 ·¹W p0=0. Without an island dp0 /dct is gener-
ally nonzero near the resonant rational surface i
=n /m, but with an arbitrarily small island only the
derivative dp0 /dch can be nonzero, where the helical
flux is defined by dch;si−n /mddct.

The nested toroidal surfaces of magnetic-field lines
are reminiscent of the tori formed by particle trajecto-
ries of an integrable Hamiltonian Hsp ,x , td that is peri-
odic in time with T the period, Hsp ,x , t+Td=Hsp ,x , td.
Such Hamiltonians are said to have one-and-a-half de-
grees of freedom. An excellent reference for the Hamil-
tonian mechanics used in this review is the book Regular

FIG. 1. sColord Magnetic fluxes and currents defined using the
cross-sectional area for the toroidal flux ct and the current I
and using the central hole of the torus for the poloidal flux cp
and the current G. The poloidal angle is u and the toroidal
angle is w. sR ,w ,Zd are ordinary cylindrical coordinates.

FIG. 2. sColord The solution to Eq. s15d plotted for an m=3
magnetic island in the w=0 plane. The surface usu=1 is the
island separatrix, and the limit usu→0 gives the island O point.
The half width of the island is d.
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and Chaotic Dynamics sLichtenberg and Liberman,
1992d.

The Hamiltonian formulation of mechanics follows

from Newton’s equations of motion, dpW /dt=−¹W VsxW , td
and dxW /dt=pW /m. Let HspW ,xW , td=p2 /2m+VsxW , td; then
Newton’s equations of motion are reproduced by the set
of ordinary differential equations dpW /dt=−]H /]xW and
dxW /dt=]H /]pW . Any set of ordinary differential equa-
tions of this form is said to be Hamiltonian with xW the
canonical coordinate, pW the canonical momentum, and t
the canonical time, regardless of the functional form of
the Hamiltonian, HspW ,xW , td. If xi are the components of
the canonical coordinate xW , and pi are the components of
the canonical momentum pW , then Hamilton’s equations
are dxi /dt=]H /]pi and dpi /dt=−]H /]xi. The super-
scripts number the components and are not powers. In
Hamiltonian systems with one-and-a-half degrees of
freedom xW and pW have only one component each.

Magnetic-field lines are the trajectories of a one-and-
a-half-degree-of-freedom Hamiltonian sKerst, 1964;
Whiteman, 1977; Boozer, 1983; Cary and Littlejohn,
1983d. A magnetic-field line moves through 3-space
sx ,y ,zd, so the same number of coordinates are involved
as in the sp ,x , td space of Hamiltonian mechanics. The
only problem is that Cartesian coordinates sx ,y ,zd are
not the canonical coordinates for magnetic-field lines. To
obtain canonical coordinates, one must first write the
magnetic field in what is called the symplectic form
sBoozer, 1983d,

2pBW = ¹W ct 3 ¹W u + ¹W w 3 ¹W cp, s3d

with u and w arbitrary coordinates except BW ·¹W wÞ0. In
practice, ct is generally the magnetic flux of the toroi-
dally directed field, u is a poloidal, and w is a toroidal

angle sFig. 1d. When BW ·¹W wÞ0, points in 3-space can be
described using sct ,u ,wd as coordinates, which means
points in space are given as the function xWsct ,u ,wd. Us-
ing sR ,w ,Zd cylindrical coordinates fEq. s2dg, one de-
fines points in space by giving R and Z as functions of

the sct ,u ,wd coordinates, xWsct ,u ,wd=Rsct ,u ,wdR̂swd
+Zsct ,u ,wdẐ.

The sct ,u ,wd coordinates are the canonical coordi-
nates of the magnetic-field lines. The mathematics of
general coordinate systems is described in the Appen-

dix. When BW ·¹W wÞ0, the Jacobian J of the canonical

coordinates is finite, that is, 1 /J;¹W ct · s¹W u3¹W wd
=2pBW ·¹W w. In these coordinates, magnetic-field lines,

which are the solutions to dxW /dt=BW sxWd, are easily shown
to have the canonical form

dct

dw
= −

]cpsct,u,wd
]u

; s4d

du

dw
=

]cpsct,u,wd
]ct

s5d

using Eqs. sA4d and s3d. The canonical momentum is the

toroidal magnetic flux, ct=eBW ·daWw, which is the mag-
netic field integrated over the cross section of a
constant-ct torus sFig. 1d. The canonical coordinate is a
poloidal angle u, and the canonical time is a toroidal
angle w. The Hamiltonian is the poloidal flux that goes
down through the hole in a constant-cp torus, cp

=−eBW ·daWu sFig. 1d. The field-line Hamiltonian cp can be
a function of clock time t in addition to ct, u, and w sSec.
III.Cd, but clock time is a parameter in the Hamiltonian
description and not one of the canonical variables.

The derivation of the symplectic representation of the
magnetic field, Eq. s3d, clarifies the interpretation. Let
sr ,u ,wd be an arbitrary set of well-behaved coordinates.
For example, let the radial and vertical coordinates of
cylindrical coordinates, Eq. s2d, have the form
Rsr ,u ,wd=Ro+r cos u and Z=−r sin u, which makes r
constant on circular toroidal surfaces. In three dimen-
sions a vector can have only three independent compo-
nents, so any vector can be written in the form

AW = ¹W g + ct¹W S u

2p
D − cp¹W S w

2p
D . s6d

The functions of position, g, ct, and cp, represent the

three components of AW . If AW is interpreted as the vector
potential of the magnetic field, then its curl gives the
symplectic representation of the magnetic field fEq. s3dg.

The theory of one-and-a-half-degree-of-freedom
Hamiltonian systems sLichtenberg and Lieberman,
1992d is the same as that of magnetic-field lines. A
magnetic-field line has three fundamentally different
types of trajectories.

s1d It can close on itself after traversing the torus m
times toroidally, in the w direction, and n times po-
loidally, in the u direction.

s2d A field line can come arbitrarily close to every point
on a toroidal surface as the number of toroidal tra-
versals goes to infinity.

s3d A field line can come arbitrarily close to every point
in a nonzero volume of space as the number of tor-
oidal traversals goes to infinity.

The first of these possibilities is topologically unstable;
an arbitrarily small perturbation can destroy the closure
of a set of field lines. For example, the closure of a pure

toroidal field BW = sm0G /2pRdŵ, with G the current, can
be destroyed by an arbitrarily small field in the vertical

direction BZẐ. The second possibility, each field line
coming arbitrarily close to every point on a toroidal sur-
face, is the one desired for magnetic confinement. The
Kolmagorov-Arnold-Moser theorem sKolmogorov,
1954; Arnold, 1963; Moser, 1967d says this possibility is
topologically stable over most of a volume filled by field
lines if the perturbation is sufficiently small. The state-
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ment that a magnetic field lies in toroidal surfaces means
the second possibility, except on isolated surfaces of zero
measure. The third possibility, magnetic-field lines com-
ing arbitrarily close to every point in a volume, implies
the absence of magnetic confinement in that region. Un-
fortunately, this is the generic situation for a magnetic
field. Consequently, magnetic confinement depends on
the formation of very special magnetic fields, fields that
have lines that lie on nested surfaces through the bulk of
the plasma volume.

In regions of magnetic confinement of a near-

Maxwellian plasma, the constraint BW ·¹W p=0 holds. This
constraint greatly simplifies the field-line trajectories. In
the language of Hamiltonian mechanics the pressure p is
an isolating constant of the motion. Whenever an isolat-
ing constant of the motion exists in a one-and-a-half-
degree-of-freedom Hamiltonian system, the canonical
coordinates can be chosen so the Hamiltonian is a func-
tion of only one canonical variable, the canonical mo-
mentum, rather than three. These canonical coordinates
are called action-angle variables and are central to
Hamiltonian perturbation theory. For magnetic-field
lines, action-angle coordinates are known as magnetic
coordinates sHamada, 1962d. Their existence is easily

demonstrated. Since BW ·¹W p=0, the magnetic field can be

written in arbitrary sp ,u ,wd coordinates as BW =B1¹W p

3¹W u+B2¹W w3¹W p. The constraint that ¹W ·BW =0 implies
]B1 /]w=−]B2 /]u, which means the expansion coeffi-
cients must have the forms 2pB1=ct8spds1+]l /]ud and
2pB2=cp8spd−ct8spd]l /]w. The magnetic field, therefore,
has the form

2pBW = ¹W ct 3 ¹W um + ¹W w 3 ¹W cpsctd , s7d

where the magnetic poloidal angle um;u+l. In mag-
netic coordinates sct ,um ,wd, the field-line Hamiltonian,
which is the poloidal flux cp, is a function of the toroidal
flux ct alone. The rotational transform isctd, the greek
letter iota, and its reciprocal, the safety factor qsctd, are
defined by

i ;
1

q
;

dcp

dct
. s8d

In general, the rotational transform is used in the stel-
larator and the safety factor in the tokamak literature.
We use i to avoid confusion with the use of q for elec-
trical charge.

When magnetic coordinates exist, cpsctd, the field-line
trajectories are said to be integrable and can be given
explicitly in terms of the initial conditions: ct=c0 and
um=u0+ isc0dw. The initial poloidal angle of the field
lines a;u0 /2p can be used as a coordinate in place of
um. If this is done

BW = ¹W ct 3 ¹W a , s9d

which is called the Clebsch representation. The theory of
this representation predates Clebsch s1859d, and in the
mathematics literature ct and a are called Euler poten-

tials. A history has been given by Stern s1970d. The
magnetic-field lines are orthogonal to both the toroidal

flux ct and to a since BW ·¹W ct=0 and BW ·¹W a=0, so both are
constants of the motion of the Hamiltonian. However,
the constancy of a only prevents a field line from coming
arbitrarily close to all points on a ct surface if i is the
ratio of two integers, i=n /m, in other words, a rational
number. When iota is a rational number, the field lines
close on themselves after m toroidal circuits, which
means in the w direction, and n circuits in the poloidal,
which means in the u direction. If i is a rational number,
a is what is called in Hamiltonian mechanics an isolating
invariant because it isolates the trajectory so it can ap-
proach only a fraction of the spatial points it could oth-
erwise reach. However, when i is an irrational number,
the trajectory of a single field line comes arbitrarily close
to every point on a constant-ct surface, and one says a is
a nonisolating invariant.

The Clebsch representation of the magnetic field, Eq.
s9d, exists in any region of space in which all field lines
pass through a plane. Let sr ,ad be any set of coordinates
in that plane, and let the trajectory of a field line that
passes through the point sr ,ad be xWsr ,a ,,d, where , is
the distance along a field line from the plane. By con-
struction both r and a are constant along a field line,

BW ·¹W r=0 and BW ·¹W a=0, so BW = fsr ,a ,,d¹W r3¹W a. Since BW is
divergence free, ]f /],=0. If we define ct so ]ct /]r

= fsr ,ad, then BW =¹W ct3¹W a.
Various choices are commonly made for the third co-

ordinate of Clebsch coordinates. The most common is
the distance along the field lines ,. The dual relations of

general coordinates, Eq. sA7d, imply BW =¹W ct3¹W a
= s1/Jd]xW /],, where J is the Jacobian of sct ,a ,,d coor-
dinates. Since , is the distance along the lines, s]xW /],d2

= sJBd2=1, which implies that the Jacobian of sct ,a ,,d
coordinates is 1 /B. Any vector in three dimensions can

be written in the covariant form, BW = B̃ct
¹W ct+ B̃a¹W a

+ B̃,¹W ,. The orthogonality relation of general coordi-

nates, Eq. sA3d, implies B̃,;BW ·]xW /],=B. That is,

BW = B¹W , + B̃ct
¹W ct + B̃a¹W a . s10d

Another choice for the third coordinate is the magnetic
scalar potential f, which is defined by the indefinite in-
tegral fsct ,a ,,d;eBd, along each field line. Using this
coordinate, an arbitrary magnetic field can be written as

BW = ¹W f + Bct
¹W ct + Ba¹W a . s11d

The Jacobian of sct ,a ,fd coordinates is 1 / s¹W ct

3¹W ad ·¹W f=1/B2.
Magnetic coordinates are central to the theory of

magnetically confined plasmas because they allow a
simple solution to a differential equation that frequently

arises, the magnetic differential equation BW ·¹W f=g
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sKruskal and Kulsrud, 1958; Newcomb, 1959d. In mag-
netic coordinates, Eqs. s7d and s8d, this equation has the
form

S ]

]w
+ isctd

]

]um
Df =

g

BW · ¹W w
, s12d

which can be solved algebraically using the Fourier ex-

pansion of g /BW ·¹W w=ogmneisnw−mumd. The Fourier expan-
sion coefficients of the function f are fmn=−igmn / sn
− imd.

A practical example of the use of the magnetic differ-
ential equation is the effect of a magnetic perturbation

dBW on a field that has perfect surfaces, BW 0. To find the
perturbed magnetic surfaces one solves for a function

p=p0+dp such that sBW 0+dBW d ·¹W p=0. The unperturbed

system has perfect surfaces so BW 0 ·¹W p0=0. Consequently
the first-order result is given by the magnetic differential
equation

BW 0 · ¹W dp = − dBW · ¹W p0. s13d

For simplicity, assume the Fourier expansion

dBW · ¹W ct

BW 0 · ¹W w
= bmn sinsnw − mumd , s14d

where ct is the toroidal flux enclosed by a surface of
constant p0. Then one obtains a finite solution near the
resonant rational surface, ct=cmn, on which iscmnd
=n /m only if the gradient of p0 vanishes there. More
precisely, as ct→cmn, one must let dp0 /dct= sn− imdc0
with c0 a constant. Then dp=c0bmn cossnw−mumd, and
near the rational surface p0sctd=p0scmnd−c0msdi /
dctdsct−cmnd2 /2. The equation for the perturbed sur-
faces is p0sctd+dp=const. Using the identity coss2xd=1
−2 sin2sxd, the equation for the perturbed surfaces near
the resonant rational surface is

ct − cmn =
s

usuÎ 4bmn

m
di

dct

Hs2 − sin2Snw − mum

2
DJ . s15d

The constant s labels the surfaces of constant p, which
are the magnetic surfaces in the perturbed configuration.

Equation s15d for perturbed magnetic surfaces has two
topologically distinct regions, which can be studied by
holding w fixed and varying um sFig. 2d. First, the sur-
faces that have a surface label usuù1 cover the full range
of um. The surfaces with s.1 and s,−1 are different
sets of surfaces, which are distorted by the perturbation
but not fundamentally changed. However, the surfaces
that satisfy 1.s.−1 cover only a limited um range and
are said to form a magnetic island. The two signs of s
= ± usu give two parts of the same surface for 1.s.−1.

Each term bmn in a Fourier expansion of a magnetic
perturbation, Eq. s14d, produces an island if there is a
surface ct=cmn on which iscmnd=n /m, which is called a
resonant rational surface. The half-width of the island in
toroidal flux is

dmn ;Î* 4bmn

m
di

dct
*. s16d

Islands can also be calculated using the Hamiltonian for
the field lines. Equation s3d implies the function b

;dBW ·¹W ct /BW 0 ·¹W w=−]cp /]u. Therefore, if cp= c̄psctd
+ „c̃psctd…mn cossnw−muMd, then bmn=−msc̃pdmn and Eq.
s16d can be rewritten as

dmn ;Î*4sc̃pdmn

di

dct
*. s17d

The Chirikov criterion sChirikov, 1979d says that if the
half-widths of islands from different resonant rational
surfaces become comparable to the separation between
these resonant surfaces, the magnetic-field lines become
stochastic, which means a single field line comes arbi-
trarily close to every point in a finite volume of space.

A qualitative understanding of the formation of is-
lands and the breakdown of magnetic surfaces can be
gained from a study of what is called the standard map
sChirikov, 1979d. Given an initial poloidal angle u0 and
radial position C0, the standard map assumes that after
one toroidal circuit the poloidal angle of a field line be-
comes u1=u0+C0 and the radial coordinate becomes
C1=C0+k sinsu1d. When k=0, the radial coordinate is
2p times rotational transform, C=2pisctd. The param-
eter k is proportional to the perturbation. A trajectory
of the standard map is found by iteration from the origi-
nal position su0 ,C0d. That is, the Nth point along the
trajectory is at uN=uN−1+CN−1 and CN=CN−1
+k sinsuNd. The standard map has the essential property
for modeling the field lines of a divergence-free field,
which is a unit Jacobian ]sCN ,uNd /]sCN−1 ,uN−1d=1. If a
large collection of trajectories are followed that were
initially in a small area sdC0dsdu0d, then the area occu-
pied by the trajectories remains the same forever. For
kÞ0, islands appear at C=2pn /m, where n and m are
integers, with the width of the islands scaling as Îk for
small k. For k,0.9716. . ., Greene s1976d has shown that
trajectories of the standard map can cover only a limited
range of C. However, for larger values of the perturba-
tion k, some trajectories cover an unlimited C range
sFig. 3d. Such trajectories are said to be stochastic. The
breakdown of the C surfaces with increasing k is analo-
gous to the breakdown in the magnetic surfaces with an
increasing perturbation.

In the presence of a perturbation that produces an
arbitrarily small island, any function p0sxWd that satisfies

BW 0 ·¹W p0=0 must have the form dp0 /dct= sn− imdc0. This
constraint on p0 implies that the opening of an island is
a singular process in a toroidal equilibrium. In the ab-
sence of an island, a function such as the pressure can
have a nonzero derivative with respect to the toroidal
flux, dp0 /dct, but an arbitrarily small island means the
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derivatives near the island can only be nonzero using the
helical flux, dp0 /dchÞ0, where the helical flux is defined
by dch;si−n /mddct. The singularities that arise due to
the modification of the pressure gradient by a small
resonant perturbation are known as the Glasser effect
sGlasser et al., 1975d. The resolution of these singulari-
ties is an area of active research and is usually discussed
under the topic of neoclassical tearing modes; see, for
example, Rosenberg et al. s2002d. The singularities asso-
ciated with the gradient in the electric potential can pre-
vent a small island from opening in a rotating plasma;
see Sec. V.B.3.

B. Methods of forming toroidal magnetic surfaces

• A spatial region in which the magnetic-field lines lie
in toroidal surfaces requires either a net toroidal cur-
rent flowing within the region or helical shaping of
the bounding toroidal surface.

To form magnetic surfaces, a tokamak sFig. 4d, uses a
net toroidal current in the plasma, while a stellarator
sFigs. 5–7d uses helical shaping and in some cases a net
toroidal current as well. Both of these plasma confine-
ment systems are discussed in Sec. IV. Ignoring the to-
pologically unstable case of all field lines closing on
themselves, magnetic-field lines form toroidal surfaces
only when there is both a toroidal and a poloidal mag-
netic field. The toroidal magnetic field can be produced
simply by external coils, while the poloidal field is more
difficult.

A pure toroidal magnetic field is produced by a wire
carrying a current G along the z axis of cylindrical coor-
dinates,

BW w =
m0G

2p
¹W w =

m0G

2p

ŵ

R
. s18d

An infinite straight wire is not a practical coil set, but
exactly the same magnetic field is produced by any cur-
rent distribution that surrounds the toroidal region of
interest, runs in a constant-w plane, and is axisymmetric
sno w dependenced. The toroidal field due to external

coils is given by a multivalued scalar potential, BW =¹W f,
that obeys Laplace’s equation, ¹2f=0, which has the so-
lution f=m0Gw /2p. It is impossible to make the toroi-
dal field coils perfectly axisymmetric because that would
preclude any direct access to the plasma. The effect of N
separate toroidal field coils can be approximated by as-
suming the coils have N vertical legs located at an outer
radius Rc with the current returning along the z axis,
that is, R=0. The magnetic potential becomes

f =
m0G

2p
Fw + S R

Rc
DNcos Nw

N
G , s19d

which gives a sinusoidal ripple in the strength of the
toroidal field. In order to make the ripple sufficiently

small, one needs the separation between the toroidal
field coils to be significantly less than the minor radius of
the plasma, which means N must be somewhat larger
than 2p /ec, with ec;a /Rc the inverse aspect ratio of the
toroidal surface that forms the plasma edge at r=a. The
physical reasons that the toroidal ripple must be limited
are discussed in Sec. VI.E on particle trajectories and
transport.

The production of the poloidal, u-directed, magnetic
field is more difficult. Of course a poloidal field can be
produced by a coil that encircles the z axis at a radius Ro

and carries a current I. Close to the coil, r /Ro!1, the
poloidal field is Bu=m0I /2pr, and the poloidal flux obeys
]cp /]r=2pRoBusrd. The toroidal magnetic flux is ap-
proximately ct=pr2Bw, so the rotational transform, i
;dcp /dct, is approximated by

FIG. 3. sColord Iterates of the standard map plotted for sad k
=0.3 and sbd k=1.1. Islands arise near rational values of C /2p
for small values of k, but the trajectory followed by iterating
the map remains bounded in C space. For k.0.9716, trajecto-
ries exist that cover all values of C. The large fuzzy region in
sbd is a single stochastic trajectory found by one set of itera-
tions. The periodicity of the standard map was used to plot all
iterates in the 0øu /2p,1 and 0øC /2p,1 region.
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i <
RoBu

rBw

. s20d

A circular coil produces magnetic surfaces, but this con-
figuration by itself is not suitable for confining fusion
plasmas. Connections are needed between the coil and
the outside world so that the heat produced by the slow-
ing of the fusion neutrons within the coil structure can
be removed. Such connections would have to pass
through the hot fusing plasma and would destroy its con-
finement.

Although a circular coil cannot be used to produce the
poloidal magnetic field, much the same effect can be
produced by a current in the plasma that is parallel to
the magnetic field, which is called the net plasma cur-

rent, jWnet=ksxWdBW /m0. This method was suggested by I.
Tamm and A. Sakharov in the Soviet Union in the early
1950s and is used to form the poloidal field in tokamaks.

If the plasma pressure gradient is negligibly small, the
net current is the total current. Such equilibria are called
force free and obey the equation

¹W 3 BW = ksxWdBW . s21d

Taking the divergence of both sides of this equation, one
finds that ksxWd is constrained to be constant along the
magnetic field,

BW · ¹W k = 0. s22d

This implies that a gradient in k;m0ji /B, with ji

; jW·BW /B, can only occur in regions of good magnetic
surfaces where ksctd is a function of the enclosed toroi-
dal flux. If the magnetic surfaces are essentially circular,
then the rotational transform is given by Eq. s20d with
Bu=m0I /2pr and I the current enclosed by a surface of
radius r. Usually k can be approximated by a constant

FIG. 4. sColord A tokamak showing the axisymmetric plasma
and the coils necessary to support it. Magnetic surfaces exist in
a tokamak only when the toroidal plasma current I is nonzero.

FIG. 5. sColord The coils and some magnetic-field lines of the
Large Helical Device sLHDd. The rotational transform in
LHD is due to the wobble of the magnetic-field lines produced
by the helical coils. A typical plasma has an average major
radius of 3.6 m. Figure courtesy of the National Institute for
Fusion Science, Japan.

FIG. 6. sColord The W7-X stellarator with its helically shaped
plasma and the coils required to support it. Magnetic surfaces
exist in a stellarator even in the absence of a plasma. The
average major radius of a plasma is 5.5 m. Figure courtesy of
the Max-Planck-Institut für Plasmaphysik, Garching, Ger-
many.

FIG. 7. sColord The surface of the proposed National Compact
Stellarator Experiment sNCSXd quasiaxisymmetric stellarator,
shown with three toroidal circuits of a magnetic-field line. The
rotational transform i is just under 2/3, so the line almost
closes. Despite the strong helical shaping, the particle drifts are
similar to those of an axisymmetric tokamak. Much of the ro-
tational transform in NCSX is due to the torsion of the mag-
netic axis. The average major radius of a plasma is 1.44 m.
Figure courtesy of the Princeton Plasma Physics Laboratory,
Princeton, NJ.
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for sufficiently small r. The rotational transform in that
region is i=Rok /2. For radii r larger than the current
channel, the rotational transform is i~1/r2.

Stellarators sSpitzer, 1958d have magnetic surfaces and
a nonzero rotational transform even in the absence of a
plasma. Stellarator magnetic surfaces must have helical
shaping. The existence of magnetic surfaces without any
enclosed currents is demonstrated starting with the axi-
symmetric magnetic surfaces formed by a coil encircling
the z axis at a radius Ro, which is designed so the rota-
tional transform i is an integer Np in the center of the
region of interest. If this system is modified by a mag-
netic perturbation in which bm=1, n=Np

is nonzero, an is-
land is formed fEq. s16dg. Since the magnetic surfaces
inside an island do not cover the full range of theta sFig.
2d, room exists for connections and supports for the coil.
The magnetic surfaces inside the island fill a volume and
have no current on them. The integer Np is the number
of periods of this type of stellarator, which is called a
Heliac sBoozer et al., 1983d.

The poloidal field in a stellarator can be produced in
two ways in the absence of a plasma. The first way uses
helical wobbles of the magnetic-field lines that are
driven by helical currents in coils sSpitzer, 1958d. The
rotational transform in the Large Helical Device sYa-
mada et al., 2001d is produced entirely by the field-line
wobble produced by helical coils sFig. 5d. The magnetic
field that is produced by the helical wobbles acts, when
averaged over the wobbles, as if there were a force-free
current that filled the space around the coils and that
became exponentially small with increasing distance
from the coils. To understand this, consider a weak he-
lical perturbation to a spatially constant magnetic field,

BW /B0= ẑ+¹W f, with fsx ,y ,zd=Dsxdcosskzz−kyyd in Car-
tesian coordinates. Since ¹2f must be zero, the distance
Dsxd~expskxd with k2=ky

2+kz
2. The magnetic-field lines

are given by dx /dz=Bx /Bz.kD coss¯d or x.x0
+ skD /kzdsins¯d, and dy /dz=By /Bz. That is, dy /dz
=kyD sins¯d / h1−kzD sins¯dj, which when expanded
to keep the important second-order terms in D is
dy /dz.kyD sins¯d+ hskyk2 /kzd+ skykzdjD2 sin2s¯d. The
magnetic-field lines have an oscillation in the ŷ direction,
dy= sky /kzdD sins¯d, but also a systematic drift in that
direction, which is equivalent to a y-directed magnetic
field,

kByl
B0

=
1
2

ky

kz
S1 +

kz
2

k2DskDd2. s23d

The second-order terms in the dx /dz equation give no
systematic drift. Consequently, field lines wobble in and
out of a constant-x surface but have a drift in the y di-
rection. The rotational transform per period in the y and
x directions is ip;sky /kzdkByl /Bz, or

ip =
1
2
Sky

kz
D2S1 +

kz
2

k2DskDd2. s24d

There is an upper limit on the transform per period
since kD must be small compared to 1. The effective

force-free current that fills the space around the helical
coil is m0jWeff=2kkBylẑ.

The second way to produce a poloidal field without a
plasma is through torsion in the magnetic axis. The mag-
netic axis is the field line at ct=0 and is the axis of the
poloidal angle. The torsion t of a curve measures the
extent to which the curve fails to lie flat on a plane. The
rotational transform due to torsion is

i = ktl
L

2p
, s25d

with ktl the torsion of the magnetic axis averaged along
its length L. Torsion was used in the early 1950s to pro-
duce the poloidal field in Spitzer’s Figure-8 stellarators
sSpitzer, 1958d. The optimization of the particle trajecto-
ries in a stellarator sSec. VI.E.1d requires the use of tor-
sion. Indeed, torsion gives a major part of the rotational
transform in both the Wendelstein-7X sW7-Xd sFig. 6;
Beidler et al., 1990d, and the National Compact Stellar-
ator Experiment sNCSXd sFig. 7; Zarnstorff et al. 2001d
stellarator designs. The derivation of the relation be-
tween the torsion and the rotational transform uses the
Frenet formulas sMathews and Walker, 1964d to analyze
the behavior of field lines near the magnetic axis, with ,
the distance along the axis. The magnetic axis, xW0s,d, is
the closed curve about which the field lines wind. The

derivative of a curve is its tangent, b̂0;dxW0 /d,, which is
a unit vector along the magnetic-field line that forms the

axis. The derivative of the tangent is db̂0 /d,=kk̂, with
kk̂ the curvature of the axis. The derivative of the cur-

vature unit vector is dk̂ /d,=−skb̂0+tt̂d, with tt̂ the tor-
sion. The derivative of the torsion unit vector is dt̂ /d,
=tk̂. The Frenet unit vectors are mutually orthogonal

and satisfy b̂03k̂= t̂. Mercier s1964d used the Frenet unit
vectors to establish a coordinate system near an arbi-
trary magnetic axis. We shall simplify his analysis by
making the magnetic surfaces circular near the axis,
which excludes the rotational transform from helical
wobbles. That is, we choose coordinates xWsr ,u ,,d
=xW0s,d+r cosuk̂+r sin ut̂. Using the methods of gen-
eral coordinates given in the Appendix, one finds

¹W r=cosuk̂+sin ut̂, ¹W u= s−sin uk̂+cosut̂d /r+tb̂0 / s1
−kr cosud, and ¹W ,= b̂0 / s1−kr cosud. The magnetic field

in the absence of plasma currents has the form BW

= sm0G /2pd¹W wp, with G a constant. The potential wp,
which can be interpreted as a toroidal angle, obeys

¹2wp;¹W ·¹W wp=0. If the magnetic strength is constant
along the magnetic axis, then for r→0 the toroidal angle
wp=2ps,+ktr3 sin u+ ¯ d /L, with L the length of the
axis. For r→0, the magnetic-field-line equations

are du /dwp=BW ·¹W u /BW ·¹W wp=tL /2p, and dr /dwp

=BW ·¹W r /BW ·¹W wp=0. Consequently, the rotational trans-
form near the axis is i= ktlL /2p, with the axis average of
the torsion ktl; rtd, / rd,.

The magnetic configuration due to the coils alone is
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called the vacuum configuration. It is in principle easy to
design vacuum configurations that have magnetic sur-
faces of any desired shape, but unless the surfaces have
helical shaping the rotational transform will be zero. To
design a vacuum configuration, first assume there is an

axisymmetric toroidal field, BW w=m0Gŵ /2pR, which pro-
duces the toroidal magnetic flux. One then defines the
desired shape of an outermost magnetic surface using

sR ,w ,Zd cylindrical coordinates, xWs=Rssu ,wdR̂swd
+Zssu ,wdẐ, by giving the appropriate Fourier-series rep-
resentation of Rs and Zs. The unit normal to this surface
is n̂~ s]xWs /]uds]xWs /]wd. Coils just outside the plasma can
in principle produce any desired normal magnetic field
on the surface xWs. If the coils are designed so that they
produce a normal field equal but opposite in sign to

n̂ ·BW w, then the surface xWs will be a magnetic surface,

since the magnetic-field lines do not cross it, n̂ ·BW =0.
When vacuum magnetic fields produce one magnetic
surface, the volume enclosed by that surface is generally
dominated by regions of good surfaces rather than is-
lands and stochastic regions. Practical limitations on the
design of magnetic-field configurations are discussed in
Sec. V.D.

C. Evolution of magnetic-field lines

• Clock time is a parameter in the Hamiltonian de-
scription of evolving magnetic-field lines. For an
evolving magnetic field, the Hamiltonian,
cpsct ,u ,w , td, as well as the coordinate transforma-
tion function, xWsct ,u ,w , td, depend on time as well as
the canonical coordinates. A magnetic field evolves
ideally swithout a topology changed if the field-line
Hamiltonian can be made time independent by an
appropriate choice of the coordinate transformation
function xWsct ,u ,w , td.

• The mathematical condition for an ideal evolution of

BW sxW , td is that a function FBsxW , td exist such that

BW ·¹W FB=−EW ·BW , where the electric field is determined

by Faraday’s law, ]BW /]t=−¹W 3EW . Magnetic-field lines
evolve ideally under more general conditions than
the tying together of the plasma and the field, and a
generic magnetic field always evolves ideally in a suf-
ficiently localized spatial region.

• The self-entanglement of magnetic-field lines is mea-

sured by the magnetic helicity K;eAW ·BW d3x. A spiky
current profile causes a rapid dissipation of energy
relative to magnetic helicity. If the evolution of a
magnetic field is rapid, then it must be at constant
helicity.

Ideally a fusion plasma would be in a steady state, but
the theory of the evolution of the magnetic field is im-
portant for finding the conditions for s1d establishing the
field configuration, s2d maintaining the magnetic field,
and s3d finding the conditions under which rapid changes
in the magnetic field can occur. The evolution of the

magnetic field means the evolution of the magnetic-field
lines. The equations for the evolution of magnetic-field
lines are also of interest for the evolution of other intrin-
sically divergence-free fields such as the vorticity field of
fluid mechanics.

The evolution of a magnetic field BW sxW , td is called ideal
if it is consistent with the field’s being embedded in an
ideal, zero-resistivity fluid moving with a velocity uW sxW , td,
which can be interpreted as the velocity of the magnetic-
field lines. An ideal evolution does not change the topol-
ogy of the magnetic-field lines. The conditions for an
ideal evolution are obtained by noting that the electric

field EW sxW , td associated with an evolving magnetic field

BW sxW , td is given by Faraday’s law to within an arbitrary
additive gradient of a potential. Mathematics implies

that an arbitrary vector EW sxW , td, and hence the electric
field, can be written as

EW + uW 3 BW = − ¹W FB + V¹W S w

2p
D s26d

in any region of space in which BW ·¹W w is nonzero. The
function V, called the loop voltage, is constant along
each magnetic-field line and is given by

V ; lim
L→`

E
−L

L

EW · d,W

E
−L

L

¹W S w

2p
D · d,W

, s27d

where d,W is the differential distance along BW . The com-

ponent of EW parallel to BW is balanced by F and V, and

the components of EW perpendicular to BW are balanced by
uW . If the loop voltage V is zero, the evolution is ideal.

The relation between the conservation of topological
properties and the vanishing of the loop voltage V will
be shown in this paragraph, which can be skipped on a
first reading. The topological properties of the magnetic-
field lines are independent of time if the canonical coor-
dinates sct ,u ,wd can evolve in such a way that the field-
line Hamiltonian does not change, s]cp /]tdc=0. The
subscript c means the partial derivative is performed at a
fixed point in canonical coordinates. This conclusion fol-
lows from two statements. First, the trajectories of
magnetic-field lines in canonical coordinates are deter-
mined by the field-line Hamiltonian cpsct ,u ,w , td alone
fEqs. s4d and s5dg. Second, topological properties are un-
changed by a continuous temporal variation in a coordi-
nate transformation function, xWsct ,u ,w , td. Consequently
the topological properties of field lines are determined
by the field-line Hamiltonian alone, and these properties
cannot change unless the field-line Hamiltonian changes.
The evolution equation for the magnetic-field-line
Hamiltonian is obtained from the evolution of the vec-
tor potential in canonical coordinates. Using only the
theory of general coordinates sAppendixd, one can write
sBoozer, 1992d the time derivative of an arbitrary vector
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AW =ct¹W su /2pd−cp¹W sw /2pd+¹W g in a coordinate system
defined by the function xWsct ,u ,w , td fEq. sA19dg as

S ]AW

]t
D

xW
= − S ]cp

]t
D

c
¹W

w

2p
+ uW 3 BW + ¹W s , s28d

where we have let BW ;¹W 3AW and introduced the velocity
of a fixed point in canonical coordinates,

uW ;
]xWsct,u,w,td

]t
. s29d

The subscript xW means a fixed spatial point, and the sub-
script c means a fixed point in the canonical sct ,u ,wd
coordinates. The function s= s]g /]tdc−AW ·uW , Eq. sA20d, is
the generating function for infinitesimal canonical trans-
formations of Hamiltonian mechanics. Even when the

vector potential is independent of time, s]AW /]tdxW =0, the
canonical coordinates can change, uW Þ0, using the free-
dom of infinitesimal canonical transformations s. The re-
lation between Eqs. s26d and s28d can be demonstrated

using EW =−]AW /]t−¹W F. The two equations have the same
content with the identification

HS ]cp

]t
D

c
− VJ¹W

w

2p
= ¹W hs − sFB − Fdj . s30d

If V=0, then cpsct ,u ,w , td can be made independent of
time by the choice of infinitesimal generating function
s=FB−F. In a system with magnetic surfaces cpsct , td,
the loop voltage is the change in the poloidal flux out-
side a given toroidal flux surface,

V =
]cpsct,td

]t
. s31d

Remarkably, the evolution of a magnetic field is ge-
nerically ideal in a sufficiently small spatial region even
when the field is embedded in a resistive fluid or is in a
vacuum. This follows from the observation that locally

EW +uW 3BW =−¹W FB; a nonzero loop voltage V is needed
only if the field lines sad are followed an infinite distance,
sbd close on themselves, or scd intercept surfaces on
which the potential FB must obey fixed boundary con-
ditions. The evolution is locally ideal sBoozer, 1992d
even near a null field, BW =0, provided the matrix of first
derivatives Bij;]Bi /]xj has a nonzero determinant,
which is the generic situation at a magnetic-field null. In
other words, an arbitrarily small perturbation can make
a zero determinant of Bij nonzero at a null.

The simplest model of a nonideal evolution treats the
plasma as a moving conductor. A Lorentz transforma-
tion in the nonrelativistic limit implies the electric field

in a conductor moving with velocity vWsxW , td is EW mov=EW

+vW 3BW . In a simple conductor EW mov=hJ · jW, with hJ the re-
sistivity tensor, and Ohm’s law becomes

EW + vW 3 BW = hJ · jW. s32d

In plasmas the resistivity tensor is diagonal but with dis-
tinct values along, hi, and across, h', the magnetic field.
In a quiescent plasma, h' is about twice hi, but the mi-
croturbulence that is present in most confined plasmas
enhances h' by several orders of magnitude while leav-
ing hi essentially unchanged ssee Sec. VI.Fd. Substituting
Ohm’s law into the general expression for the electric
field, Eq. s26d, one finds that

V¹W S w

2p
D + svW − uW d 3 BW = hJ · jW + ¹W FB. s33d

The loop voltage, V=ehijid, /e¹W sw /2pd ·d,W , vanishes if
the parallel resistivity is zero. If the resistivity tensor is
zero, the magnetic field and the plasma move together,

uW =vW , with the choices FB=0 and uW ·BW =vW ·BW .
The evolution of a magnetic field that is embedded in

a conducting fluid obeys two distinct conservation laws
when the resistivity vanishes, hJ=0: s1d the ideal evolu-

tion of BW , and s2d the tying of the magnetic-field lines to
the fluid, uW =vW . A distinction between these two laws is
rarely made in the literature, but the first holds under
more general conditions. The breaking of the ideal evo-

lution of BW , which changes the magnetic-field-line topol-
ogy, is determined by the parallel resistivity hi alone.
The flow of the plasma relative to the magnetic-field
lines, vW −uW , depends on the perpendicular resistivity h'

and in general on the parallel resistivity as well.
The distinction between the two conservation laws for

magnetic evolution is especially clear in a type-II super-
conductor with a melted flux lattice sHuebener, 1979d.
The technically important superconductors are type-II,
which means the magnetic field can penetrate into the
material, which lowers the magnetic-field energy, but the
magnetic-field lines must lie in narrow flux tubes. These
flux tubes can form a lattice, which holds the tubes in
place, and in the technically important superconductors
the flux lattice is rigid. When the lattice is rigid, the su-
perconductor has zero resistivity. However, the flux lat-
tice can melt, which allows the flux tubes to move
through the superconductor with a velocity, uW −vW , pro-
portional to the applied force. This motion is equivalent
to a perpendicular resistivity h'. Therefore a type-II su-
perconductor with a melted flux lattice has a tensor re-
sistivity with hi =0 but h' nonzero. The first conserva-

tion law, the ideal evolution of BW , holds rigorously in a
superconductor since hi =0. However, if the flux lattice
of a superconductor melts, the perpendicular resistivity
becomes large, and the second conservation law, the ty-
ing of the field lines to the superconductor, is not even
approximately valid.

On rational magnetic surfaces the rotational trans-
form is a rational number, i=n /m, and magnetic-field
lines close on themselves. On these surfaces the loop
voltage V can have a different value on each magnetic-
field line. When this occurs, the field-line Hamiltonian
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cp will develop a term that goes as eisnw−mud, and the
rational surface will split to form islands. In a highly
conducting fluid, this is associated with the important
phenomenon of fast reconnection. The currents that
arise in a highly conducting fluid, h→0, to preserve the
topology are surface currents, which means they are
delta functions—nonzero only on the rational surface
but infinite there. Such currents lead to rapid dissipa-
tion, so perturbations can open islands on a very short
time scale compared to the global resistive time, th

;sm0 /hda2, of a plasma of radius a. The actual time scale
in a plasma is a subtle question, a question on which
recent progress has been made. See Rogers et al. s2001d
and reviews by Bhattacharjee et al. s2001d and by Priest
and Forbes s2000d.

In astrophysical and space plasmas, the magnetic-field
lines often enter and leave the volume of interest. In
such systems nonideal effects in the magnetic field, such
as reconnection, are far more subtle than in systems with
two periodic directions, where reconnection is focused
onto the rational surfaces sBoozer, 2002d. A nonzero
loop voltage V may be required by boundary conditions.
Nonideal effects can also arise if neighboring magnetic-
field lines separate from each other exponentially with
distance along the lines. In this case, a solution FBsxW , td
to EW ·BW =−BW ·¹W FB may exist but have poor analytic prop-
erties due to exponentially large gradients across the
field lines. Except when magnetic-field lines lie on sur-
faces, the exponential separation of neighboring lines is
a generic property. Neighboring field lines satisfy

dxW /dt=BW sxWd and dsxW +dWd /dt=BW sxW +dWd with dW →0. Letting
Bij;]Bi /]xj and Dijs,d;esBij /Bdd,, one finds the sepa-
ration between the lines at distance , down either line is

dWs,d=expsDJd ·dW0. Unless the magnitudes of all of the ei-

genvalues of DJs,d are exponentially small for large ,,
neighboring field lines separate exponentially.

Similar equations to the magnetic evolution equations

can be derived for the vorticity, vW ;¹W 3vW , of a fluid. The
equivalent of Ohm’s law for the vorticity is the Navier-
Stokes equation,

]vW

]t
+ vW · ¹W vW = − ¹W wspd − n¹W 3 vW . s34d

This form of the equation assumes the density r is a
function of the pressure alone with dwspd;dp /rspd.
The kinematic viscosity is n. The term vW ·¹W vW =−vW 3v

+¹W sv2 /2d, so the Navier-Stokes equation can be written

in a form analogous to Ohm’s law with EW replaced by

]AW /]t,

]vW

]t
= vW 3 vW − ¹W Sw +

1
2

v2D − n¹W 3 vW . s35d

The Hamiltonian of the vorticity field lines can be made
time independent if the viscosity vanishes, n=0.

The rapidity of the evolution of magnetic fields is lim-

ited by the properties of magnetic helicity sWoltjer,
1958d. Magnetic helicity is defined as

Kstd ; E AW · BW d3x . s36d

In a system with perfect magnetic surfaces, the helicity is
Ksct , td=escti−cpddct with isct , td;]cp /]ct the rota-
tional transform. The helicity is a measure of the topo-
logical entanglement of the magnetic-field lines.

The importance of magnetic helicity comes from its

rate of dissipation, 2eBW ·EW d3x. If the current density in a
plasma has a large spatial variation, as it does in turbu-
lent situations, the rate of loss of magnetic energy,

ejW·EW d3x, is rapid in comparison to the rate of helicity
dissipation. It is relatively easy to change the magnetic
energy quickly compared to the resistive time scale, th

;sm0 /hda2, of a plasma of radius a. However, if the mag-
netic energy changes rapidly compared to th, the change
must be at an essentially constant helicity.

The time derivative of the helicity can be put in a

convenient form using EW =−]AW /]t−¹W F,

dK

dt
= − 2E BW · EW d3x + Ses + Sin. s37d

The volumetric term, −sdK /dtdd;2eBW ·EW d3x, is the he-
licity dissipation. The two surface terms are the external
sources of helicity: the electrostatic source

Ses ; − 2R FBW · daW s38d

and the inductive source

Sin ; − R AW 3
]AW

]t
· daW . s39d

If the bounding surface is a perfect conductor, the exter-
nal sources of helicity vanish. When the bounding sur-
face is a magnetic surface, the inductive source is Sin
=ctdcp /dt−cpdct /dt. The poloidal and toroidal loop

voltages are defined as Vp; rEW · s]xW /]umddum and Vt

; rEW · s]xW /]wddw, so Sin=Vtct+Vpcp, the loop voltages
times the fluxes. The toroidal loop voltage is equal to the
loop voltage V if the poloidal loop voltage, Vp=−]ct /]t,
is zero.

The magnetic energy, WB=esB2 /2m0dd3x, has the time

derivative dWB /dt=−ejW·EW d3x. When the standard
Ohm’s law, Eq. s32d, is used, with hJ having distinct par-
allel and perpendicular components, −dWB /dt is the
sum of two terms: the dissipative loss of energy
sdWB /dtdd=eshiji

2+h'j'
2 dd3x and a nondissipative trans-

fer of energy between the magnetic field and the fluid in

which it is embedded, evW · sjW3BW dd3x. Retaining only the
dissipative term, −sdWB /dtddùehiji

2d3x. In contrast, the

volumetric dissipation of helicity is 2eBW ·EW d3x

=2ehijW·BW d3x.
The relative rates of dissipation of energy and helicity,
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− SdWB

dt
D

d
ù

1

E hiB2d3x
S1

2
dK

dt
D

d

2

, s40d

can be demonstrated sBerger, 1984d using the Schwarz
inequality. This inequality says the average of the square
of a function is at least as large as the square of the
average of the function. The appropriate average for the
relative dissipation rates is the h average, which is de-
fined as kflh;eshiB2fd3xd /eshiB2d3xd. The rate of mag-
netic energy dissipation satisfies −sdWB /dtdd
ù sehiB2d3xdksji /Bd2lh, while the rate of helicity dissipa-
tion satisfies sdK /dtdd=2sehiB2d3xdkji /Blh. The Schwarz
inequality, ksji /Bd2lhù kji /Blh

2 , then implies Eq. s40d. The
greater the spatial variation in ji /B, the stronger the
Schwarz inequality becomes. In Sec. V.B.1, we shall find
that unstable, or turbulent, plasmas develop very spiky,
Dirac delta-function-like, spatial distributions of ji /B. In
such situations, the dissipation of the magnetic energy is
extremely rapid in comparison to the dissipation of he-
licity.

Magnetic energy can be dissipated rapidly compared
to helicity, so highly unstable plasmas evolve to mini-
mize their energy for fixed helicity. As Woltjer s1958d
showed, this evolution relaxes the current density to the

form jW= sk /m0dBW , where k is a spatial constant. This
property of the state of minimum energy with fixed he-

licity is demonstrated by varying AW in esB2 /m0

−kAW ·BW dd3x. The constant k, which is called a Lagrange
multiplier, is chosen to make the helicity after minimiza-

tion equal to its initial value. The terms involving dBW

=¹W 3dAW are integrated by parts, and the boundary

terms rBW 3dAW ·daW can be ignored if the boundary is a

perfect conductor. One finds ¹W 3BW =kBW .
The physical importance of helicity conservation was

demonstrated by Taylor s1974d. He showed that turbu-
lent periods in the reversed-field pinch plasma confine-
ment device sPrager, 1999d lead to flattened current pro-
files with a more quiescent plasma. Since Taylor’s
important work, the relaxation of the current profile to
form a more quiescent plasma has been known as a Tay-
lor relaxation. Taylor’s work demonstrated that helicity
conservation should be a central element of any theory
of rapidly evolving magnetic fields.

A plasma can transition between two states with mag-
netic surfaces but with different helicity distributions,
Ksctd, in a time short compared to the resistive time th.
However, when this occurs helicity conservation implies
that the magnetic surfaces must have broken in the in-
termediate state.

Spiky current profiles cause a rapid loss of magnetic

energy, ejW·EW d3x. On the time scale of energy dissipation,
the magnetic helicity can be transported but not dissi-

pated. The absence of helicity dissipation implies 2EW ·BW

must be the divergence of a flux, the helicity flux FW h with

2EW ·BW =¹W ·FW h. Energy dissipation, which in the Schwarz

inequality argument takes place through the parallel cur-

rent esji /BdBW ·EW d3x, implies −eFW h ·¹W sji /Bdd3x must be

positive. This condition is satisfied if FW h=−lh¹W sji /Bd
sBoozer, 1986d. The positive coefficient lh is called the
hyper-resistivity. The gradient of ji /B is a source of free
energy, which can drive instabilities much as the pres-
sure gradient can; see Sec. V.B.1.

If a system has a large source of free energy other

than the magnetic-field energy, the helicity flux FW h can
have terms that add energy to the magnetic field. Such
terms are needed in a magnetic dynamo, where mag-
netic fields are generated by taking energy from another
source, such as a fluid flow. Taylor relaxation in the
reversed-field pinch demonstrates the existence of a dis-

sipative term in the helicity flux, such as −lh¹W sji /Bd, but
not a term that can add energy to the magnetic field,
which is needed for a dynamo. The role of helicity and
its conservation in limiting the forms of magnetic dy-
namo theories remains controversial.

The external sources of helicity, the electrostatic Ses
and the inductive Sin, are important for creating the
plasma currents needed for magnetic surfaces in axisym-
metric devices. The inductive source is usually a toroidal
loop voltage Vt supplied by varying the magnetic flux in
a solenoid that goes through the central hole of the torus
while an essentially constant toroidal flux is supplied by
toroidal field coils. If the loop voltage Vt is small, the
plasma is relatively quiescent, and this is the mode of
operation of the tokamak. In the reversed-field pinch,
the loop voltage is made sufficiently large that the
plasma has periods of turbulence, which relax the cur-
rent profile to form transiently quiescent states. Electro-
static helicity injection Ses requires magnetic-field lines
that penetrate conducting plates, or electrodes. A given
magnetic-field line goes from a plate held at one voltage
to a plate held at a different voltage with the voltage
difference Fh driving a current along the magnetic-field
line. If Fh is small, the magnetic-field structure is af-
fected only slightly by the presence of the voltage. When
Fh is large, the currents driven by the electric potential
difference produce a field that is large compared to the
field Bh that penetrates the plates. When Fh is large,
unstable plasma states can be created that undergo a
Taylor relaxation to plasmas that can have closed mag-
netic surfaces sJarboe et al., 1983; Raman et al., 2003;
Tang and Boozer, 2004d.

IV. CONFINEMENT SYSTEMS

• The two most prominent magnetic configurations for
confining plasmas are tokamaks and stellarators. An
ideal tokamak is axisymmetric and uses a net toroi-
dal current to produce magnetic surfaces. The toka-
mak has the most extensive database of all magnetic
confinement systems and has been the basis for a
number of proposals for experiments in which deu-
terium and tritium are burned under conditions simi-
lar to those of a fusion power plant. Stellarators use
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helical shaping to produce at least part of the rota-
tional transform.

• The primary control a machine designer has over the
performance of a confinement system is the shape of
the outermost plasma surface. About 50 properties
of the plasma shape can be controlled but only about
four of these are consistent with axisymmetry: aspect
ratio, ellipticity, triangularity, and squareness.

In the world research effort on magnetically confined
plasmas, the tokamak, Fig. 4, and the stellarator, Figs.
5–7, are by far the largest programs. Tokamak plasmas
are axisymmetric and carry a net toroidal current in or-
der to form the magnetic surfaces. Stellarator plasmas
have the form of a torus with helical shaping, which pro-
duces some or all of the rotational transform i. Of the
two, the tokamak has been studied more and more data
have been amassed concerning it. It has been the basis
for a number of proposals for experiments in which deu-
terium and tritium are burned under conditions similar
to those of a fusion power plant. In addition, the toka-
mak has a variant, the spherical torus or spherical toka-
mak sST; Fig. 8d. The ST is like a tokamak at a very tight
aspect ratio, ea;a /Ro, much closer to unity, which has
physics advantages sPeng, 2000; Sykes, 2001d as well as a
smaller unit size for fusion systems. For tokamaks a tight

aspect ratio gives the most desirable physics properties
but for stellarators the larger the aspect ratio Ro /a, the
easier it is to design desirable physics properties. The
helical shaping of the stellarator allows one to design
around certain issues of the tokamak and ST. Many of
these issues are associated with the maintenance and
stability of the net plasma current, issues that can be
avoided in the stellarator.

In addition to the tokamak and stellarator, many
other magnetic configurations are being actively pursued
in the world fusion program. Sheffield s1994d has re-
viewed many of these configurations. The most promi-
nent are the reversed-field pinch sOrtolani and Schnack,
1993; Prager, 1999d, the spheromak sBellan, 2000d, and
the magnetic dipole sGarnier, Kesner, and Mauel, 1999;
Kesner et al., 2001d.

The largest tokamaks have been the Joint European
Torus sJETd, which is at Culham, England sKeilhacker et
al., 1999, 2001d; the Tokamak Fusion Test Reactor
sTFTRd, which was at Princeton, NJ sHawryluk et al.,
1998d; and the Japanese Tokamak JT-60U sKamada et
al., 1999d. The largest tokamak that is operating in the
U.S. is the DIII-D tokamak at General Atomics, Fig. 9,
where an investigation is underway to make tokamak
plasmas that are better suited for high-pressure, steady-
state operation sChan et al., 2000; Petty et al., 2000d.
Both the JET and the TFTR tokamaks produced power
above the 10-megawatt level by fusing deuterium and
tritium sHawryluk, 1998d. However, as expected from
the time of their design in the early 1970s, both toka-
maks required a high level of externally injected power,
comparable to or greater than fusion power, in order to
maintain the required plasma temperature, and neither
was, therefore, what is meant by a burning plasma ex-
periment.

The largest stellarator sYamada et al., 2001d is the
Japanese Large Helical Device sLHD; Fig. 5d. A stellar-
ator of comparable scale, Wendelstein-7X sW7-Xd, is be-
ing constructed in Greifswald, Germany sBeidler et al.,
1990d. The W7-X stellarator, Fig. 6, has essentially no
net current and an unusually small current flowing par-
allel to the magnetic-field lines. This implies that the
shape of the magnetic surfaces is similar with and with-
out plasma. The W7-X design has many innovative fea-
tures of engineering and physics, which have been stud-
ied in the smaller W7-AS stellarator sMcCormick et al.,
2003d at Garching, Germany. The National Compact
Stellarator Experiment sNCSXd, Fig. 7, which is under
construction at the Princeton Plasma Physics Laboratory
sZarnstorff et al., 2001d, is quasiaxisymmetric; see Sec.
VI.E.1. Quasiaxisymmetry implies that the particle or-
bits closely resemble those of a tokamak even though a
large fraction of the rotational transform comes from
helical shaping. Quasiaxisymmetric stellarators have the
feature that they can be designed with an arbitrarily
small level of helical shaping, so there is a continuous
connection between quasiaxisymmetric stellarator de-
signs and tokamaks. The potential importance is that
quasisymmetry allows a minimal modification of the to-
kamak while giving the freedom to design around phys-

FIG. 8. sColord The cross section of the NSTX spherical torus
sST; Peng, 2000d. All modern tokamaks sFig. 9d and ST devices
have a similar plasma cross section. The field lines that go from
the bottom of the plasma to the wall form a divertor; see Sec.
VII. Figure courtesy of the Princeton Plasma Physics Labora-
tory, Princeton, NJ.
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ics issues that could potentially affect the use of the to-
kamak for practical fusion power.

The primary control that a machine designer has over
the plasma properties is the shape of the plasma. As
shown in Sec. V.A, a plasma equilibrium is specified
sBauer, Betancourt, and Garabedian, 1984d by giving its
toroidal flux content, which is the ct enclosed by the
plasma surface; the rotational transform profile isctd; the
pressure profile psctd; and the plasma shape xWs

=Rssu ,wdR̂swd+Zssu ,wdẐ. The optimal shape for the
plasma surface in both tokamaks and stellarators is far
from a simple torus with a circular cross section, Rs

=Ro+a cos u and Zs=−a sin u. Since a tokamak design is
by definition axisymmetric, both Rs and Zs can depend
only on u. A frequently used expression for the shape of
a tokamak plasma is Rssud=Ro+a cossu+D sin ud and
Zssud=−ka sin u. The parameter k is the elongation or
ellipticity, and D is the triangularity. Stellarators have a
much larger design space since Rs and Zs can depend on
both the poloidal angle u and the toroidal angle w.

The number of plasma shape parameters that can be

controlled by coils at a sufficient distance from the
plasma for a fusion power system is limited to about
four for a tokamak and about ten times that number for
a stellarator ssee Sec. V.D.1d. The number of free shape
parameters for the tokamak is sufficiently small that
they all have names: aspect ratio, ellipticity, triangularity,
and squareness, though squareness is not defined by an
agreed-upon shape function. The performance of toka-
maks is markedly improved by a careful choice of these
parameters relative to a circular cross section. The num-
ber of free parameters that are available to stellarator
designers is so large that extensive runs with optimiza-
tion codes are needed to choose design points. Many of
these optimization codes and techniques were devel-
oped by Jürgen Nührenberg and co-workers as part of
the W7-X design effort sNührenberg et al., 1995d.

V. EFFICIENCY OF MAGNETIC CONFINEMENT

• The cost of fusion power depends on the efficiency
with which the magnetic field can be utilized and on
the fraction of the power output that must be used to
maintain the plasma and the magnetic field, which is
called the recirculating power fraction.

• The efficiency of magnetic-field utilization depends
on s1d the ratio of the pressure of the plasma to that
of the magnetic field, b;2m0p /B2, and s2d the ratio
of the magnetic field at the plasma to that at the
coils. The plasma pressure, or b, can be limited by
equilibrium, stability, or transport issues.

• The power required to maintain the net current of a
tokamak places significant constraints on the design.

The cost of fusion power depends on the efficiency of
the confinement. Engineers tend to emphasize the ratio
of the power output of a fusion system to its mass. But
more physics-oriented efficiency measures are s1d the
field strength on the coils needed to confine a given
plasma and s2d the ratio of the power output to the
power required to sustain the current in the plasma and
coils, or more generally, the recirculating power fraction.
The power required to sustain the plasma current is dis-
cussed in Sec. VI.E.3.

The magnetic field at the coils that is needed to con-
fine a given plasma depends on two numbers. The first is
the plasma beta, which is the ratio of the plasma pres-
sure to the magnetic-field pressure,

b ;
2m0p

B2 , s41d

and the second is the ratio of the magnetic-field strength
on the coils to that in the plasma. The limits on the
plasma beta due to equilibrium considerations are dis-
cussed in Sec. V.A, and limits from the existence of un-
stable perturbations of large spatial scale are discussed
in Secs. V.B and V.C. The considerations that set the
ratio of the magnetic-field strength on the plasma to that
on the coils are discussed in Sec. V.D. Section VI will
consider limitations on plasma beta, and hence the
magnetic-field strength, due to transport.

FIG. 9. sColord Cross section of the DIII-D tokamak. The
distance from the machine center line to the plasma center is
approximately 1.7 m. The plasma cross section of all modern
tokamaks is similar to that of DIII-D. The field lines that go
from the top of the plasma to the wall form a divertor; see Sec.
VII. Figure courtesy of Edward Lazarus, from Lazarus et al.,
1990.
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A. Equilibrium limits

• A plasma equilibrium is determined by the shape of
the outermost plasma surface, the toroidal flux en-
closed by that surface, and the profiles of the plasma
pressure, psctd, and rotational transform, isctd
;dcp /dct. The rotational transform of a magnetic
field is the average number of poloidal transits of the
torus a field line makes per toroidal transit. In toka-
maks, i is generally less than unity.

• The plasma b;2m0p /B2 is limited by the distortions
to the plasma shape caused by the current density ji

parallel to the magnetic field that arises to make

¹W · jW=0. That is, BW ·¹W sji /Bd=−¹W · jW', with jW' given by

the force exerted by the plasma, ¹W p= jW3BW . These
distortions can be important when beta is just a few
percent, though much higher betas can be achieved
by careful plasma design. In asymmetric plasmas,
these distortions of the plasma shape can cause the
breakup of the magnetic surfaces that are needed for
plasma confinement.

• A magnetic field that lies in surfaces, BW ·¹W p=0, has a
simple contravariant representation, Eq. s7d, which
means a representation that uses cross products of
pairs of coordinate gradients. A magnetic field asso-
ciated with a plasma equilibrium simultaneously has
a simple covariant representation, Eq. s57d or Eq.
s58d, which means a representation that uses coordi-
nate gradients. Coordinates in which the magnetic
field has both a simple contravariant and a simple
covariant representation simplify the analysis of
plasmas.

If at each point in a stationary plasma the plasma is
close to thermodynamic equilibrium, then the force ex-
erted by a stationary plasma is accurately approximated

by its pressure gradient −¹W p. The equilibrium between

the pressure and electromagnetic forces is ¹W p= jW3BW ,
which is known as the equilibrium equation for a
plasma.

A toroidal plasma equilibrium is specified by giving
s1d the shape of the magnetic surface that bounds the
plasma, xWssu ,wd, with u and w arbitrary poloidal and to-
roidal angles, s2d the total toroidal magnetic flux in the
plasma, s3d the pressure profile psctd, and s4d the rota-
tional transform profile isctd sBauer, Betancourt, and
Garabedian, 1984d. This result is proven by showing that
equilibria are extrema of the energy in a toroidal region
bounded by a fixed surface xWssu ,wd when the ideal,
which means dissipationless, plasma constraints are ob-
served. The energy of the plasma plus the magnetic field
is

W = E
plasma

S B2

2m0
+

p

g − 1
Dd3x , s42d

where g is the adiabatic index. The variation that is car-
ried out is in the shape of the magnetic surfaces
xWsct ,u ,wd with the shape of the outermost plasma sur-

face xWssu ,wd held fixed. That is, xWsct ,u ,wd→xWsct ,u ,wd
+jW, where jW is the displacement of the surfaces with the

displacement jW zero on the plasma surface.
Using the expressions that are derived below for the

variation in magnetic-field energy and the variation in
the pressure in response to a small plasma displacement

jW, one finds that

dW = E
plasma

s¹W p − jW 3 BW d · jWd3x , s43d

which means W has equilibria, ¹W p= jW3BW as its extrema.
The minimization of the energy W gives the shape
xWsct ,u ,wd of all of the magnetic surfaces in the plasma.
The best-known code for finding equilibria by minimiz-
ing the energy is called VMEC sHirshman, van Rij, and
Merkel, 1986d. It should be noted that the adiabatic in-
dex g does not appear in the equilibrium equation, so g
can be chosen arbitrarily. The choice g=0 is frequently
made because with this choice dp /dt=0. When dp /dt
=0, the pressure profile psctd is unchanged by variations

jW in the shape of the surfaces.
This paragraph gives the derivations of the variation

in magnetic field and the plasma pressure in response to

a small plasma displacement jW and can be skipped on a
first reading. These derivations have four parts:

s1d First, the relation between the total and the partial
time derivative must be explained. In fluid mechan-
ics the total time derivative dg /dt gives the rate of
change of any function gsxW , td in the frame of refer-
ence of the moving fluid, while the partial time de-
rivative s]g /]tdxW gives the time derivative at a fixed
spatial point. The partial derivative s]g /]tdxW is usu-
ally written as ]g /]t. The rate of change of the po-
sition vector xW is the flow velocity of the fluid, vW
;dxW /dt. The chain rule implies dg /dt=]g /]t

+ sdxW /dtd ·¹W g, so the total time derivative is

dg

dt
;

]g

]t
+ vW · ¹W g . s44d

s2d Second, the total time derivative of the canonical
coordinates must be shown to be zero in an ideal
fluid. The total time derivative is zero because the
coordinates are carried with the fluid, though the
partial time derivatives are nonzero if the fluid is
moving. This result is proven using the theory of
general coordinates sAppendixd, which implies that
each canonical coordinate of the transformation
function xWsct ,u ,w , td obeys

dct

dt
= svW − uW d · ¹W ct, s45d

with uW ;s]xW /]tdc fEq. s29dg. In an ideal plasma, uW
=vW , so the canonical coordinates satisfy dct /dt=0.
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s3d Third, the variation in the magnetic field, dBW , in an
ideal plasma must be found for a small plasma dis-

placement jW. The variation is

dBW = ¹W 3 sjW 3 BW d . s46d

This equation follows from Ohm’s law, Eq. s32d,
with zero resistivity, EW +vW 3BW =0, plus Faraday’s

law, ]BW /]t=−¹W 3EW , and vW =]jW /]t. Actually vW

;dxW /dt=]jW /]t+vW ·¹W jW, but for a sufficiently small

displacement, jW→0, one has vW =]jW /]t. The variation
in the magnetic energy is determined using a vector

identity to write BW ·dBW = sjW 3BW d ·¹W 3BW +¹W · hsjW 3BW d
3BW j. The divergence term makes no contribution
because the plasma surface has a fixed shape, which

means jW =0 on the bounding surface. As shown in
Sec. III.C, the rotational transform retains its initial
profile, isctd, through all variations in the plasma
shape when the resistivity is zero.

s4d Fourth, the pressure variation and the displacement
must be related. A pressure variation in an ideal
plasma conserves the entropy per particle, which im-
plies sd ln p /dtd / sd ln n /dtd=g. The plasma number
density obeys the continuity equation, ]n /]t

+¹W · snvWd=0, so dp /dt=−gp¹W ·vW . This means the
change in the pressure at a fixed point in space, dp
;s]p /]tdxWdt, is

dp = − jW · ¹W p − gp¹W · jW . s47d

The variation in the pressure can be rewritten in a form
that makes that part of the energy variation obvious

dp= sg−1djW ·¹W p−¹W · sgpjWd. The sg−1d term in dp cancels
the similar factor in W and the divergence term in dp
makes no contribution to the change in the energy since

the change in the shape jW is zero on the plasma bound-
ary.

An important theorem of equilibrium theory is that
given an arbitrary set of magnetic surfaces, xWsct ,u ,wd,
and an arbitrary rotational transform profile isctd, the

magnetic force fWB; jW3BW can always be written as fWB

= fct
¹W ct with fct

sct ,u ,wd a known function. The angles u
and w are arbitrary poloidal and toroidal angles, but ct is
the toroidal magnetic flux enclosed by a magnetic sur-
face. If xWsct ,u ,wd and isctd are consistent with an equi-
librium, the function fct

depends on ct alone, and the
equilibrium pressure profile psctd is given by dp /dct

= fct
. To prove this theorem, note that if ¹W ct3 fWB

;sBW ·¹W ctdjW− sjW·¹W ctdBW is zero, then fWB= fct¹W ct. Since

BW ·¹W ct=0 by the definition of magnetic surfaces, the re-

sult is proven if the equilibrium constraint jW·¹W ct=0 can
be imposed. The most general divergence-free field,

¹W ·BW =0, that has the required surfaces, BW ·¹W ct=0, and
rotational transform profile, isctd, is

BW = S1 +
]l

]u
D¹W ct 3 ¹W u

2p
+ Si −

]l

]w
D¹W w 3 ¹W ct

2p
, s48d

which is proven using the argument that led to Eq. s7d.
The constraint m0jW·¹W ct= s¹W 3BW d ·¹W ct=¹W · sBW 3¹W ctd=0
determines l as the solution to a Poisson-like equation
that has derivatives only in the u and w coordinates. Pe-
riodicity in u and w implies that l has a definite expres-
sion, which can be determined magnetic surface by mag-
netic surface. The function l is the difference between
the arbitrary and the magnetic poloidal angles, um=u
+l, and determines how the field lines wind through the
magnetic surfaces. Once l is determined, one has a defi-

nite expression for BW , which gives the magnetic force fWB.
The calculation of the curl of the magnetic field is com-
plicated but is explained in the Appendix.

The equilibrium with profiles isctd and psctd has been
shown to be an extremum of W=ehsB2 /2m0d−psctdjd3x.
The extremum can also be obtained by allowing arbi-
trary variations in both the l function of Eq. s48d and
the shape of nested magnetic surfaces xWsct ,u ,wd with the
outermost plasma surface held fixed. These variations,
unlike the variation in shape that led to Eq. s43d, are
unconstrained and do not use Eqs. s46d or s47d. This
alternate method of extremizing the energy follows from
the magnetic field’s obeying the ideal constraints if isctd
is conserved and if the ct surfaces of xWsct ,u ,wd remain
nested. The same Poisson-like equation for l is obtained
when eB2d3x is minimized with respect to l.

One can always minimize the energy W over any set
of shape functions xWsct ,u ,wd, so it may at first appear
that equilibria always exist. This is not true for two rea-
sons. First, the set of shape functions that are considered
may not be rich enough to find an extremum in which fct
is a function of ct alone, as is required for equilibrium.
Second, if one considers an arbitrarily rich set of shape
functions, the parallel component of the current, ji

; jW·BW /B, may become singular at the rational surfaces.
Rational magnetic surfaces are defined by the rotational
transform’s being the ratio of two integers, i=n /m.
These are surfaces on which the magnetic-field lines
close on themselves after m toroidal and n poloidal cir-
cuits of the torus.

The parallel current determines much of the theory of
force balance of a plasma embedded in a magnetic field.

The parallel current is given by ¹W · jW=BW ·¹W sji /Bd+¹W · jW'

=0, with the perpendicular current determined by the

force the magnetic field exerts on the plasma, fWB; jW3BW .
The equation for variation of the parallel current along
the field lines is

BW · ¹W
ji

B
= ¹W · S fWB 3 BW

B2 D , s49d

which is a magnetic differential equation, Eq. s12d, for

the parallel current. In an equilibrium plasma, fWB=¹W p.
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The subtlety of the parallel current in a plasma equi-
librium is clarified by the equation for ji /B in sct ,a ,fd
Clebsch coordinates,

]

]f
S ji

B
D = − S dp

dct
D ]

]a

1

B2 . s50d

On closed magnetic-field lines u; rdf /B2= rd, /B
must be independent of a for a single-valued ji /B to
exist. To have a nonzero pressure gradient on a rational
surface, u must have the same value on every field line

of that surface. In sct ,a ,fd coordinates, BW =¹W f

+Bct
¹W ct+Ba¹W a, Eq. s11d, which can be simplified in an

equilibrium plasma to BW =¹W f+Bct
¹W ct since ¹W 3BW ·¹W ct

=0. The divergence of the perpendicular current is

¹W · hsBW 3¹W pd /B2j = sdp /dctdh¹W f · s¹W ct3¹W adj]s1/B2d /]a,

so ¹W · j'=B2sdp /dctd]s1/B2d /]a. The divergence of the

parallel current is BW ·¹W sji /Bd=B2]sji /Bd /]f. The con-

straint that ¹W · j=0 gives Eq. s50d.
A solution of Eq. s49d for ji /B is the sum of s1d a

special solution, which varies over the magnetic surface
and is given by any solution to the magnetic differential
equation, and s2d a homogeneous solution in which ji /B

is constant along field lines, BW ·¹W sji /Bdh=0. Both the spe-
cial and the homogeneous solution can be singular at
rational surfaces. A singularity of the special solution,
sji /Bds= jPS /B, where jPS is the Pfirsch-Schlüter current
sPfirsch and Schlüter, 1962d, can arise if the pressure gra-
dient dp /dct is nonzero at a rational surface on which
rd, /B varies. This singularity is discussed more exten-
sively below. The homogeneous solution, sji /Bdh= jnet /B,
where jnet is the net current, has the form

m0
jnet

B
= ksctd + o

m,n
kmneisnw−mumddsct − cmnd , s51d

with cmn defined by iscmnd=n /m and dsct−cmnd, the
Dirac delta function. Each nonzero constant kmn implies
a surface current on a rational surface, which produces a
normal magnetic field that cancels the resonant part of
the normal field due to external perturbations and pre-
vents the formation of an island.

A more complete exploration of the special solution
for ji /B of Eq. s49d, the Pfrisch-Schlüter current, re-

quires a covariant representation, Eq. s56d, of BW in gen-
eral magnetic coordinates. Magnetic coordinates are de-

fined by BW having the contravariant representation,

2pBW = ¹W ct 3 ¹W um + isctd¹W w 3 ¹W ct, s52d

which follows from Eq. s7d and i;dcp /dct. The general
covariant representation can be obtained from the cova-

riant expression in Clebsch coordinates, BW =¹W f+Bct
¹W ct,

that was used in the derivation of Eq. s50d for
]sji /Bd /]f. However, the derivation is almost as simple
starting from fundamental principles.

The covariant representation of the magnetic field,
Eq. s56d, follows from the contravariant representation

of the current, jW=¹W 3BW /m0, Eq. s53d. The derivation of
the contravariant representation of the magnetic field,

Eq. s7d, depended on two conditions: s1d ¹W ·BW =0 and s2d
that a nonconstant function ct exist with BW ·¹W ct=0.
These two conditions also hold for the current associ-
ated with a plasma equilibrium, since it is divergence-

free and in equilibrium satisfies jW·¹W ct=0, so the current
associated with an equilibrium must have the contravari-
ant representation

jW = −
]Gtot

]ct

¹W w 3 ¹W ct

2p
+

]Itot

]ct

¹W ct 3 ¹W um

2p
, s53d

where the radial derivatives of the total poloidal and
total toroidal current are

]Gtot

]ct
=

dGsctd
dct

+
]nsct,um,wd

]w
s54d

and

]Itot

]ct
=

dIsctd
dct

+
]nsct,um,wd

]um
. s55d

The function Gsctd=ejW·daWum
is the poloidal current in

the region exterior to a constant-ct surface, which is the
current through the hole in the torus, Fig. 1, while
Isctd=ejW·daWw is the toroidal current in the region interior
to a constant-ct surface, which is the current through a
cross section of the torus sFig. 1d. The contravariant rep-
resentation of the current implies the magnetic field has
the covariant repesentation

BW =
m0

2p
hGsctd¹W w + Isctd¹W um − n¹W ct + ¹W Fj . s56d

We shall find that the function nsxWd is determined by the
equilibrium equation. The function FsxWd is determined

by the constraint that ¹W ·BW =0 and the boundary condi-
tions on the magnetic field.

The contravariant representation of the magnetic
field, Eq. s52d, is unchanged if one defines new poloidal
and toroidal angles by um=un+ iv and w=wn+v, where
v is any well-behaved function of position. If these
forms are substituted into the covariant representation
of the magnetic field, Eq. s56d, one obtains an equation
of the same form but with n replaced by nn;n
+ sdG /dct+ idI /dctdv and with F replaced by Fn;F
+ sG+ iIdv. There are two obvious choices for v. The
first makes nn=0, and the resulting coordinates are
called Hamada coordinates sct ,uH ,wH; Hamada, 1962d,
in which

BW =
m0

2p
hGsctd¹W wH + Isctd¹W uH + ¹W Fj . s57d

The second makes Fn=0, and the resulting coordinates
are called Boozer coordinates sct ,uB ,wB; Boozer, 1981d,
in which
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BW =
m0

2p
hGsctd¹W wB + Isctd¹W uB + b*¹W ctj . s58d

The cross product between the contravariant repre-
sentation of the current, Eq. s53d, and of the magnetic
field, Eq. s52d, must equal the pressure gradient. This
equality gives an equation for n, Eq. s63d, and an equa-
tion for the average equilibrium on a magnetic surface,
Eq. s62d. Using arbitrary magnetic coordinates
sct ,um ,wd,

jW 3 BW = −
BW · ¹W w

2p
S ]Gtot

]ct
+ i

]Itot

]ct
D¹W ct. s59d

Since ¹W p= sdp /dctd¹W ct,

]Gtot

]ct
+ i

]Itot

]ct
= −

2p

BW · ¹W w

dp

dct
. s60d

The contravariant form for the magnetic field, Eq. s52d,
implies that the Jacobian of magnetic coordinates, 1 /J
= s¹W ct3¹W umd ·¹W w, is

J =
1

2pBW · ¹W w
, s61d

with the volume enclosed by the magnetic surfaces
Vsctd=eJdctdumdw. If Eq. s60d is averaged over the po-
loidal and toroidal angles, one obtains the average equi-
librium equation sKruskal and Kulsrud, 1958d,

dG

dct
+ i

dI

dct
= −

dV

dct

dp

dct
, s62d

which is a coordinate-independent equation. The func-
tion n satisfies a magnetic differential equation,

S ]

]w
+ i

]

]um
Dn = S dV

dct
− s2pd2JD dp

dct
. s63d

The function n and hence the current are singular at a
rational surface i=n /m unless either the resonant Fou-

rier term of 2pJ=1/BW ·¹W w is zero or the pressure gradi-
ent dp /dct is zero.

Since Eq. s63d for n holds in any set of magnetic coor-
dinates, it must hold in Hamada coordinates, in which
n=0. This means the Jacobian of Hamada coordinates is
independent of the angles, s2pd2JH=dV /dct, but also
that the coordinate transformation to Hamada coordi-
nates is singular if the function n is singular when one
uses the cylindrical angle w as the toroidal angle.

The Jacobian of Boozer coordinates can be obtained
by dotting the covariant and contravariant representa-

tions of BW together, JB=m0sG+ iId / s2pBd2. The parallel
current is particularly simple in these coordinates,

ji

B
=

G
dI

dct
− I

dG

dct

G + iI
+

G
]n

]uB
− I

]n

]wB

G + iI
. s64d

The first term on the right-hand side is jnet /B=ksctd /m0
with jnet the net current, and the second term is jPS /B
with jPS the Pfirsch-Schlüter current. Equation s64d for
ji /B is obtained from the dot product of Eqs. s53d and
s58d.

In axisymmetric equilibria the expression for the
Pfirsch-Schlüter current can be simplified to

jPS

B
=

1

i

G

G + iIS dV

dct
−

2p

BW · ¹W w
D dp

dct
, s65d

with dV /dct= rdum /BW ·¹W w. This equation for jPS follows
from Eq. s64d with ]n /]wB=0 and Eq. s63d, which gives
an expression for ]n /]uB. Equation s65d is written in a
form that is valid in any coordinates in which w is the
toroidal angle and ct is the toroidal flux.

Even in simple axisymmetric equilibria, the Pfirsch-
Schlüter current jPS provides a significant limitation on
the plasma pressure. At large aspect ratio, Ro /r@1, the
vacuum toroidal field is dominant, that is, G@iI, and

1/BW ·¹W w<R2 / sRoBod. The Pfirsch-Schlüter current, Eq.
s65d, is in the toroidal direction and approximated by

jPS < −
2sR − Rod

iBo

1

r

dp

dr
, s66d

with R−Ro=r cos u. If the pressure is assumed to de-
pend on the minor radius r as p=p0s1−r2 /a2d, one finds
the Pfirsch-Schlüter current produces a magnetic field in

the vertical or Ẑ direction, ]dBZ /]R=−m0jPS, which at
the plasma edge, sR−Rod2=a2, is dBZ<−2m0p0 / siBod.
This vertical field opposes the poloidal field due to the
plasma current, Bu<eaiBo, on the inboard side with ea
;a /Ro. When the vertical field becomes sufficiently
strong to cancel the poloidal field on the inboard side,
the equilibrium has reached its pressure limit. In other
words, equilibria must have a volume-averaged beta,
kbl;2m0kpl /Bo

2 with kpl=p0 /2, which satisfies

kbl &
1
2

eai2. s67d

Stability limits the average rotational transform in a to-
kamak to i<1/2 and the inverse aspect ratio is ea
<1/3, so kbl&4% when the magnetic surfaces are cir-
cular. Actual tokamaks with additional shaping have
achieved kbl greater than 10%, and ST plasmas have
achieved kbl approaching 50%. However, the poor scal-
ing of the beta limit with aspect ratio limits tokamaks to
having a tight aspect ratio. The weakening of the poloi-
dal field on the inboard side and the strengthening on
the outboard side cause the magnetic surfaces to shift
outward, a phenomenon called the Shafranov shift, so
the same flux passes between the plasma axis and the
inboard and outboard edges.
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The equilibrium of an axisymmetric plasma can also
be found using the Grad-Shafranov equation sLüst and
Schlüter, 1957; Shafranov, 1958; Grad and Rubin, 1959d.
Using sR ,w ,Zd cylindrical coordinates, an arbitrary axi-
symmetric, divergence-free field can be written in a

mixed covariant-contravariant representation as 2pBW

=m0G¹W w+¹W w3¹W cp, which follows from ¹W · s¹W wd=0 in
cylindrical coordinates. The curl of this mixed represen-

tation gives 2pjW=¹W G3¹W w+ ŵsD*cpd / sm0Rd, where

D * cp ; R
]

]R
S 1

R

]cp

]R
D +

]2cp

]Z2 s68d

is called the Grad-Shafranov operator and ŵ is a unit

vector of cylindrical coordinates. From jW3BW

= sdp /dcpd¹W cp one finds G is a function of cp alone and

D * cp = − m0
2G

dG

dcp
− m0s2pRd2 dp

dcp
, s69d

which is the Grad-Shafranov equation.
Equation s49d for the variation in the parallel current

also has important implications for nontoroidal plasmas
embedded in magnetic fields. For example, the photo-
sphere of the sun becomes sufficiently tenuous with alti-
tude that the forces exerted by the magnetic field on the

plasma must be small, fWB; jW3BW →0. In this situation,
which is called a force-free equilibrium, the parallel cur-
rent satisfies the conservation law that ji /B be constant
along magnetic-field lines. The constancy of ji /B implies
that stars, like the sun, with outer convective zones and
a magnetic field, must have a corona, a region in the
upper solar atmosphere of very-high-energy electrons
compared to the energy that would be expected from
thermal diffusion sBoozer, 1999d. The reason is that the
current j=envs is the product of the electron charge,
number density, and streaming velocity vs of the elec-
trons relative to the ions. If the streaming velocity ex-
ceeds the electron thermal velocity ve;ÎTe /me, the
electrons will break away from a Maxwellian distribu-
tion and reach whatever energy is necessary to carry the
current. This is the phenomenon of runaway electrons
sDreicer, 1960; Connor and Hastie, 1975d, which arises
from the collision frequency’s dropping as one over the
speed of a particle cubed, Eq. s134d, when the speed is
larger than the thermal velocity. In the absence of a
corona in a star like the sun, the density of the atmo-
sphere drops exponentially with height, nszd
~exps−z /hd, due to gravitational force balance, ¹W p=rgW ,
with a scale height h<100 km. Although the fractional
ionization increases with altitude, the total number of
electrons that are potentially available to carry the cur-
rent rapidly drops. The magnetic field above the sun has
structures with a scale of 104 km, spanning a range of
atmospheric densities of e100. Since ji /B is approximately
constant due to the rapid drop in the atmospheric pres-
sure, the streaming parameter vs /ve would increase by a
factor of roughly e100<1043 without a corona. This is of
course impossible without the streaming parameter be-

coming greater than one and the electrons running away.
At the bottom of the photosphere, magnetic fields are
observed to have variations of 0.1 T over 103 km, so lo-
cal current densities have to be greater than j
<102 A/m2. The current that could be carried by the
full electron density sneutral plus ionizedd moving at the
electron thermal speed is of order 1010 A/m2, which is
only eight orders of magnitude larger. Actually, the local
current density on magnetic-field lines emerging from
the sun should have a value orders of magnitude larger
than the observed current density of 102 A/m2, which by
the observation process involves a spatial average. The
reason a large current density should be expected is that
when field lines are churned around in a conducting
fluid, as they are in the outer solar convective zone, they
develop strong parallel currents with very short correla-
tion distances sThiffeault and Boozer, 2003d. These cur-
rents flow all along the field lines, Eq. s49d, relaxing to
their equilibrium values via shear Alfvén waves; see Sec.
VI.H. Runaway electrons are not generally considered
as an explanation for the actual solar corona. Whether
the currents along the magnetic-field lines that penetrate
the solar surface have sufficient strength and shortness
of correlation length to cause the actual solar corona are
questions that are not easily answered observationally.

B. Stability limits

• A magnetically confined plasma cannot be in ther-
modynamic equilibrium, so a potential for instability
always exists. Instabilities can be driven by the pres-
sure gradient or the net current in the plasma.

• The pressure gradient is destabilizing when the cen-
ter of curvature of the magnetic-field lines, kW

; b̂ ·¹W b̂ with b̂;BW /B, is in the direction of higher
pressure sbad curvatured and stabilizing when the
curvature has the opposite sign sgood curvatured.

• Stability calculations can be done by preserving the
constraints of an ideal, dissipationless, plasma evolu-
tion, which prevent islands from opening but give
singular currents, or by keeping smooth current dis-
tributions, which allow islands to open. Through lin-
ear order in the perturbation theory, there is no dis-
tinction in these two types of analyses except near
rational surfaces i=n /m. However, the ideal analysis
always predicts greater stability.

A magnetically confined plasma always has the ther-
modynamic free energy that is required for instability.
The maximum entropy state of the charged particles
that form a plasma is a Gibbs distribution, exps−H /Td,
but the particle energy H= 1

2mv2+qF is independent of

the magnetic field BW sxWd. A plasma that is carrying a cur-
rent cannot be in a Gibbs distribution and therefore al-
ways has thermodynamic free energy. The stability of
current-carrying plasmas depends on the existence of
constraints on the plasma motion that prevent the re-
duction in the free energy.
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The free energy that is available for instabilities al-
lows toroidal plasmas to spontaneously break their sym-
metry by kinking. This kinking is driven by the gradients
in the parallel current distribution, k;m0ji /B, and in the
pressure. Both drives limit the achievable plasma beta
sITER Physics Expert Group on Disruptions, Plasma
Control, and MHD et al., 1999d. Books by Bateman
s1978d and Freidberg s1987d discuss plasma stability un-
der the assumptions of ideal magnetohydrodynamics
sMHDd, which means in the absence of dissipative ef-
fects.

Instabilities driven by the gradient in the parallel cur-
rent distribution, dsji /Bd /dct, limit the magnitude of the
poloidal magnetic field or more precisely the rotational
transform, and both equilibrium and stability limits in-
volve the strength of the poloidal magnetic field.

The pressure limit due to plasma stability for a toka-
mak plasma is approximated with remarkable success,
even for highly shaped plasmas, by the Troyon limit
sTroyon and Gruber, 1985d. The volume-averaged b
;2m0p /B2 can be no greater than

kbl =
bn

10
m0

4p

I

aB
, s70d

where I is the net toroidal current and a is the half-width
of the plasma in the Z=0 plane. The Troyon coefficient,
also called beta normal, is a number which is bn<3 in
somewhat optimized plasmas but can be a factor of 2
larger. The results of tokamak experiments are often ex-
pressed by giving the bn that was achieved.

The stability of a plasma to a pressure gradient is
largely determined by the relative orientation of the

pressure gradient ¹W p and the curvature of the magnetic

field lines, kW ; b̂ ·¹W b̂, where b̂;BW /B is a unit vector
along the magnetic field. For example, the curvature of a

circular line b̂= ŵswd of sR ,w ,Zd cylindrical coordinates

is kW =−R̂ /R. The pressure gradient directly enters the

energy change due to a displacement jW of an equilibrium

plasma through −esjW ·¹W pdsjW ·kW dd3x fEq. s92dg. Good cur-

vature means kW ·¹W p,0 and bad curvature means kW ·¹W p
.0. Good curvature is stabilizing because that geometry
compresses plasma motion down the pressure gradient.
Unfortunately, topology implies the field-line curvature
must be bad somewhere on a toroidal magnetic surface,
and pressure-driven instabilities localize in these places.
Localization is stabilizing because it implies a bending of
the magnetic field. If the bad curvature regions are suf-
ficiently localized, the pressure gradient does not desta-
bilize the equilibrium.

If the plasma is assumed to be ideal, which means zero
resistivity, then the evolution equations for the magnetic
field imply the rotational transform i is a time-
independent function of ct. In the presence of a pertur-
bation, this assumption generally leads to a singular net

plasma current, m0jWnet=kBW with BW ·¹W k=0. One can avoid
a singular net current by assuming that the distribution

of net current ksctd is independent of time instead of
isctd. The assumption of a fixed net current is a resistive
stability analysis.

Remarkably, linear perturbation theory makes no dis-
tinction between an ideal analysis, isctd independent of
time, and a resistive analysis, ksctd independent of time,
except at resonant rational surfaces, i=n /m. In an ideal
analysis a singular current arises at resonant rational sur-
faces and in a resistive analysis an island opens. Away
from resonant rational surfaces, the change in the rota-
tional transform scales as the amplitude of the magnetic
perturbation squared and, therefore, cannot enter a lin-
ear stability analysis. To see this consider the perturbed

field-line Hamiltonian cp= c̄psctd+c1 cossnw−mud. One
can solve for the magnetic-field lines to second order in
the perturbation c1 and find that the rotational trans-
form is changed by an amount

Disctd =
m

4
H d

dct
S 1

n − im

dc1
2

dct
D +

mi9c1
2

sn − imd2J , s71d

where i9;d2i /dct
2. The perturbation c1 is linear in the

perturbation amplitude for a sufficiently small perturba-
tion, so Di is quadratic in the perturbation amplitude
where n− im is nonzero.

1. Current-driven instabilities

• The strongest effect of the net plasma current on
stability is near the rational surfaces, i=n /m. Defin-
ing a helical flux by dch;si−n /mddct, a gradient in
the net current is stabilizing if dsji /Bd /dch is positive
and destabilizing if dsji /Bd /dch is negative.

• Only perturbations with low poloidal mode number
m can be driven unstable by the net plasma current.
These instabilities are called kinks.

• A current density proportional to a Dirac delta func-
tion generally arises on the rational surfaces, i
=n /m, in the presence of perturbations that conserve
the constraints of an ideal, dissipationless, plasma.
The amplitude of these delta-function currents is
proportional to the jump in the resonant Fourier
term of the radial displacement of the plasma,

fjW ·¹W ctgmn.

The stability properties of a force-free equilibrium,

¹W 3BW =ksctdBW , illustrates the effect of the distribution of
net plasma current ksctd on plasma stability. The funda-
mental results are that the net current affects stability
primarily through the gradient dk /dct. Near a rational
surface i=n /m the gradient of the net current distribu-
tion enters through the quantity

m

n − im

dk

dct
, s72d

which is destabilizing when positive and stabilizing when
negative. In other words, plasma stability is extremely
sensitive to the gradient in the current distribution k
;m0ji /B near rational surfaces, but the effect on stabil-
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ity of the gradient is opposite on the two sides of the
rational surface. For example, in a tokamak, a low-order
rational surface just outside the plasma is very destabi-
lizing because dk /dct is negative near the plasma edge
while i is positive but becoming smaller, di /dct,0. The
destabilizing effect of the current gradient is obtained on
the plasma side of the rational surface, but there is no
current to provide a stabilizing effect on the opposite
side of the rational surface. This instability, which is
called an external kink, is particularly pronounced when
q=1/ i is just above an integer at the plasma edge.

The stability of force-free equilibria is very sensitive
to the gradient of the current distribution k due to the

properties of the magnetic differential equation BW ·¹W k
=0, which must hold for both the perturbed and the un-
perturbed equilibrium. In the perturbed equilibrium, k

=k0sctd+dk and sBW 0+dBW d ·¹W k=0. The unperturbed equi-

librium is ¹W 3BW 0=k0sctdBW 0, and the magnetic perturba-

tion is given by ¹W 3dBW =BW 0dk+k0dBW , where BW ·¹W dk

=−dBW ·¹W k0. That is, dk is given by a magnetic differential
equation and is proportional to dk0 /dct. The perturbed
current distribution dk can become very large near a
resonant rational surface, ~1/ sn− imd, because of the
properties of the magnetic differential equation. The
largeness of dk is what allows unstable perturbations to
exist.

Instabilities due to the gradient in the net current are
driven by the parallel part of the perturbed vector po-

tential, dAW i ;sb̂ ·dAW db̂ with b̂;BW /B. This is proven by
noting that the three independent components of any
vector, including the perturbed vector potential, can be

written at each spatial point as dAW = sdAB /BdBW

+dAc¹W ct+¹W dg. If one chooses a gauge in which

BW ·¹W dg=0, then dAB=dAi and dBW ·¹W k0sctd= s¹W

3dAW id ·¹W k0. This representation of dAW must be used
with care. Given a change in the poloidal flux, dcp

=−rdAW · s]xW /]wddw, the change in the toroidal flux, dct

= rdAW · s]xW /]uddu, is constrained if dg is a single-valued
function of u and w. One can satisfy the constraint

BW ·¹W dg=0 and have arbitrary changes in the poloidal and
toroidal fluxes if dg has the form dg= su− iwdDsctd.

The stability of force-free equilibria can be studied
with greater simplicity when the aspect ratio is very
large, Ro /r→`. In a large-aspect-ratio torus with circu-
lar magnetic surfaces, one can let w=z /Ro replace the
unit vector ŵ by ẑ, and describe the magnetic field using

sr ,u ,zd cylindrical coordinates, BW =B0fẑ+ isrdsr /Rodûg,
where the rotational transform i is assumed to be of
order unity. The toroidal flux is ct=pB0r2. The impor-
tant part of the perturbed vector potential is the parallel

component, dAW =dAiẑ, so dBW =¹W dAi 3 ẑ. If the parallel
component of the vector potential is written as dAi

=Ãisr , tdsinsnf−mud, then

dk =
Ro

rB0

m

n − im

dk0

dr
dAi , s73d

and the equation ¹W 3dBW =dkBW 0 is

1

r

d

dr
Sr

dÃi

dr
D −

m2Ãi

r2 = −
Ro

r

m

n − im

dk0

dr
Ãi . s74d

The rotational transform and the current distribution
are related by

1

r

dr2si − ivd
dr

= Rok0srd , s75d

where ivsrd is the rotational transform of the vacuum, or
current-free, magnetic field. In a tokamak, iv is zero, but
it is nonzero in a stellarator.

Externally driven currents are required to perturb the
plasma, but it is mathematically simpler to view these as
lying just outside the plasma. To understand the need for
externally driven currents, note that solutions to Eq. s74d
should be well behaved as r→0, which leaves only one
free boundary condition. The solution to Eq. s74d out-

side of the plasma, r.a, is Ãi ~1/rm with the assumption
that there are no perturbing currents away from the
plasma boundary. The matching condition at the plasma

boundary at r=a is that Ãi be continuous. However, the

radial derivative of Ãi cannot also be made continuous,
for that would be a second boundary condition. The

jump in the derivative, which is denoted by f]Ãi /]rg,
gives the current that must be externally driven at the
edge of the plasma to produce the magnetic perturba-
tion.

The stability of a magnetic perturbation to a plasma is
determined by the sign of the power that is needed to
drive the current on the plasma surface that supports the
perturbation. Positive power means stability and nega-
tive power instability. The surface current that is re-
quired to support the perturbation is

djW = − dsr − ad
ẑ

m0
F ]dAi

]r
G , s76d

where it is assumed that there are no currents outside of
the plasma surface, dAi ~ sa /rdm for r.a. This follows
from Ampère’s law, ¹2dAi =−m0djz. The power per unit
length in z that is needed to drive the magnetic pertur-
bation is

pd = −
pa

m0

]Ãi

]t
F ]Ãi

]r
G , s77d

where the quantities are to be evaluated at r=a. To
prove this, note that the power per unit volume going

into the electromagnetic fields is −EW ·djW. The electric

field associated with the magnetic perturbation dBW =¹W

3 sdAiẑd is obtained using Faraday’s law, EW =−ẑ]dAi /]t,

which implies Eq. s77d. In the absence of a plasma, Ãi

=Astdsr /adm for r,a and Ãi =Astdsa /rdm for r.a, which
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requires a power pd= smp /m0ddA2 /dt per unit length,
which is positive as one would expect. To make the
power pd negative and obtain an instability,

s]2Ãi /]r2d /Ãi must be negative in some part of the

plasma. The condition that s]2Ãi /]r2d /Ãi be negative im-
plies the stability properties of the current-driven modes
given in the discussion of Eq. s72d and that only pertur-
bations with low values of m can be unstable.

The restriction of current-driven modes to low mode
numbers comes from the stabilizing effect of the term

m2Ãi /rm in Eq. s74d, which tends to make s]2Ãi /]r2d /Ãi

positive. Although current-driven instabilities must be
low m, pressure-driven perturbations have comparable
stability properties at all m. The dominant drive for
pressure-driven instabilities is the Pfirsch-Schlüter cur-
rent that arises in the perturbed plasma state. The desta-
bilization of short-wavelength perturbations by the pres-
sure gradient is discussed in Sec. V.C.2 on ballooning
modes.

In a tokamak the vacuum transform iv vanishes, and a
very simple solution to Eqs. s74d and s75d exists for any
k0srd when m=1. This solution is dAi = fisrd
−ngrA sinsnf−ud where A is a constant. Define rn by
isrnd=n. In an ideal stability analysis, the general m=1
solution for r,rn can be matched to an external solution

Ãi =0 for r.rn. The matching gives a strong surface cur-

rent, m0j̃z=ndsr−rndsd ln i /d ln rdrn
A. This m=1 pertur-

bation is called a sawtooth instability, which in a simple
analysis has zero growth rate without plasma dissipation
and an infinite growth rate with dissipation. The rota-
tional transform in the center of a tokamak whose cur-
rent is maintained by a loop voltage tends to rise until it
exceeds unity. After the central transform exceeds unity,
strong m=1, n=1 kinklike relaxation oscillations occur
that maintain the central transform just above, but close
to, unity. These relaxation oscillations are called saw-
teeth due their appearance on electron temperature di-
agnostics where they were first observed. Reviews on
the m=1 mode have been written by Migliuolo s1993d
and Hastie s1997d.

The location of the resonant rational surface, isrmnd
=n /m, is a special radial position in the differential

equation for Ãi fEq. s74dg. In ideal theory an island must

be avoided, which means dBW · r̂=−sm /rdÃi cossnw−mud
must vanish there. The surface current that arises on the
resonant surface in an ideal analysis to prevent an island
from opening is given by Eq. s76d with a replaced by rmn.
The relaxation of this current dissipates energy and al-
lows an island to open.

A jump in the resonant component of a radial dis-

placement, jW ·¹W ct, is the signature of a singular surface
current on a rational surface i=n /m in an ideal pertur-
bation analysis. The demonstration is easiest in a large-
aspect-ratio torus. The perturbed parallel component of
the vector potential dAi can be replaced by the radial
component of the displacement,

jr = −
Ro

rB0

m

n − im
dAi . s78d

The radial component means jW · r̂, where r̂;¹W r. The re-

lation between jr and dAi is proven using dBr=BW 0 ·¹W jr,

which follows from dBW =¹W 3 sjW 3BW 0d, Eq. s46d, and dBr

= û ·¹W dAi, which follows from dBW =¹W dAi 3 ẑ. The current
flowing on a rational surface, r=rmn, Eq. s76d, can then
be written in terms of the jump in the radial displace-
ment,

djW = −
ẑ

m0

di

dr

rB0

Ro
dsr − rmndfjrg . s79d

Much of the theory of instabilities in a cylinder, in-
cluding the existence of jumps in the radial displace-
ment, was developed by Newcomb s1960d. Alan Glasser
in unpublished work during the 1990s extended New-
comb’s results to general axisymmetric equilibria. Glass-
er’s work can be easily generalized so it applies to
plasma equilibria with arbitrary scalar pressure
sNührenberg and Boozer, 2003d.

2. Resistive stability

• The stability of a plasma with nonzero resisitivity can
be tested by considering the perturbation driven by a
delta-function current on a rational surface. If this

current increases when power is removed, ejW·EW d3x
.0, then the plasma is unstable to the formation of
an island with a width that increases linearly in time.
Such instabilities are called tearing modes.

• The stability of a plasma to perturbations that are
sufficiently slow for all current perturbations to relax
can be tested by making the distribution of the force-
free current a time-independent function of the tor-
oidal magnetic flux ct.

In the presence of a perturbation, a resonant surface
current naturally arises on each resonant surface, which
means a current density that is proportional to dsi
−n /mdcossnw−mud. The relaxation of this singular cur-
rent density due to plasma resistivity leads to an island
and potentially to a resistive instability. The paper that
sparked research on resisitive instabilities is that of
Furth, Killeen, and Rosenbluth s1963d.

Magnetic islands are produced by the resonant part of
the perturbed parallel component of the vector poten-
tial. That is,

dBW · ¹W ct

BW · ¹W w
= m0Gsctd

]dAi/B

]u
− m0Isctd

]dAi/B

]w
, s80d

with sct ,u ,wd magnetic coordinates in which BW has a
simple covariant representation fEq. s58dg. A resonant

Fourier term in dBW ·¹W ct /BW ·¹W w, Eq. s14d, is related to the
half-width of an island by Eq. s16d. The derivation of Eq.
s80d is straightforward, using the representation for the

perturbed vector potential dAW = sdAB /BdBW +dAc¹W ct
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+¹W dg with the gauge dg chosen so dAi =dAB and using

Eq. s58d for BW in dAW i = sdAi /BdBW . One can easily show
that a change in the gauge does not affect the resonant
components of Eq. s80d.

The rate of growth of an island can be calculated us-
ing a Rutherford s1973d analysis. The component of
Ohm’s law along the resonant magnetic-field line, i
=n /m, is Ei =−]dAi /]t=hdji. As the island grows the
force-free current near the rational surface flows on the
magnetic surfaces of the island, so the width of the cur-
rent channel dR is proportional to the width of the mag-
netic island. For a slowly growing island, one can find
the correct current distribution by solving the induction
equation sBoozer, 1984ad. Ampère’s law, m0dji =−¹2dAi,
implies that the width dR of a narrow current channel
can be defined by dji =−2D8dAi / sm0dRd, with

D8 ;
1

Ãi

F ]Ãi

]r
G . s81d

The width of the island and the current channel are pro-

portional to ÎuÃiu, so dR
2 ~ uÃiu, and

ddR

dt
=

h

m0
D8. s82d

If D8.0, the width of the island grows until the current
singularity disappears, that is, D8→0.

In the limit of a resistive analysis with no singular

currents, both Ãi and ]Ãi /]r must be continuous. The
singularity of the right-hand side of the differential

equation for Ãi, Eq. s74d, is sufficiently weak that one
can integrate straight through, even numerically, without

real difficulty, which makes both Ãi and ]Ãi /]r continu-
ous. Said more precisely, the solution to f9= fx / sx2+d2d is
well behaved in the limit as d→0. Because the relax-
ation of the singular currents that arise in an ideal analy-
sis always takes energy from the field, a perturbation
always takes more energy to drive, and is therefore
more stable, in an ideal than in a resistive analysis.

3. Robustness of magnetic surfaces

• Plasma rotation prevents an arbitrarily small exter-
nal perturbation from opening a magnetic island in-
side a plasma.

• The pressure-driven net parallel current, which is
called the bootstrap current, can make an otherwise
stable plasma unstable to the opening of an island.
This instability is called the neoclassical tearing
mode.

An arbitrarily small external magnetic perturbation
cannot force an island to open in a rotating plasma sFitz-
patrick and Hender, 1991d. To understand why, we must
first understand the equations for plasma rotation. The

force balance equation of an ion species is minivW ·¹W vW

+¹W pi=qnisEW +vW 3BW d. If the plasma is rotating slowly
compared to the thermal speed, ÎT /mi, but rapidly com-

pared to the ion diamagnetic speed, u¹W pi /qniBu, ion force

balance is approximated by EW +vW 3BW =0 with the electric

field given by a potential, EW =−¹W F. The magnitude of

the diamagnetic speed is u¹W pi /qnBu<sri /adÎT /mi. The
ion gyroradius is ri= smi /qBdÎT /mi with ri /a<1/500

under fusion conditions. The equation vW 3BW =¹W F, plus
the requirement that a steady flow be divergence-free,

lead to two magnetic differential equations, BW ·¹W F=0

and BW ·¹W svi /Bd=¹W · s¹W F3BW /B2d. These equations act as
constraints on the two independent directions of plasma
rotation, poloidal and toroidal. Plasma rotation is deter-
mined by two functions that depend on only ct. These
functions are Fsctd and the solution to the homogeneous

equation BW ·¹W svi /Bd=0. The equation BW ·¹W F=0 holds
under very general conditions because of the ease with
which electrons flow along the magnetic-field lines. If
the magnetic surfaces are good and the rotation is slow
compared to the ion thermal speed, the electric potential
is accurately given by a function of the toroidal flux
alone, Fsctd.

Even a small stationary island forces one component
of the plasma rotation to be zero; only rotation parallel
to the resonant field lines is allowed. On the outermost
surface of an island, the separatrix, Fig. 2, the magnetic

differential equation BW ·¹W F=0 forces dF /dct to be zero.
This follows from the general result discussed at the end
of Sec. III.A that in the vicinity of an arbitrarily small

island any function F that satisfies BW ·¹W F=0 can only
have a nonzero derivative relative to the helical flux,
which is defined by dch;si−n /mddct. Without the is-
land F can be an arbitrary function of ct.

The zeroing of a component of rotation on a surface,
which is required if an island is to exist, requires a
torque. If an external magnetic perturbation is not
strong enough to transport this torque to the current

that produces the perturbation, dBW x, then an island can-
not open. The z component of that torque, Tz, is associ-
ated with toroidal rotation. From the plasma perspec-
tive, any external magnetic perturbation in a tokamak
can be viewed as being created by a surface current that
flows in a thin axisymmetric surface that surrounds the
plasma. Torque balance between the plasma and the
perturbing external current allows an exact calculation

of the total electromagnetic torque, exW 3 sjW3BW dd3x, that
the perturbation exerts within the plasma, by carrying
out an integral over the external current-carrying sur-
face. The z component of the torque is

Tz =
1

m0
R

surf
RfdBW xg · ŵdBW i · daW . s83d

Here dBW i is the field produced by currents internal to the

plasma. dBW x is the external magnetic perturbation, and

fdBW xg is its jump across the current-carrying layer that

represents the external current that produces dBW x. Equa-
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tion s83d is derived by noting that the surface current

that flows in the current-carrying layer is dJWs= n̂

3 fdBW xg /m0, where n̂ is the normal to the surface, and the

force per unit area in the torodial direction is sdJWs

3dBW id · ŵ. The torque that can be exerted by the current-

carrying layer has an upper limit. Since dBW i for a stable

plasma is proportional to the external perturbation dBW x

sSec. V.D.2d, the maximum torque scales as sdBxd2. If the
torque that is required to introduce an island is greater
than this limit, then the island cannot open. Equation
s83d also contains the essence of the phenomenon of the
torque on a plasma due to a magnetic-field error becom-
ing much larger as a plasma approaches marginal stabil-
ity. This is because the ratio dBi /dBx becomes large as
marginal stability is approached sSec. V.D.2d.

How does the torque that an island induces prevent
the island from opening? For simplicity assume the

plasma pressure is zero; then the force balance is fWvis

=djW3BW , where fWvis is the viscous force exerted by the

plasma. The parallel current obeys BW ·¹W sdji /Bd=−¹W · sBW

3 fWvis /B2d. To prevent an external magnetic perturbation,
such as that of Eq. s14d, from opening an island, the
parallel current must have the form dji /B
=krsctdcossnw−mumd so it can cancel the perturbing field
on the rational surface. Without the viscous force this
current can only flow on the rational surface i=n /m,
which means krsctd must be a delta function. With a vis-
cous force, sn− imdkrsctd is given by the resonant Fou-

rier component of ¹W · sBW 3 fWvis /B2d. Since sn− imd van-
ishes at the rational surface, even a small viscous force
can spread out and also maintain the current that is re-
quired to prevent an island from opening.

If a plasma is initially confined on perfect magnetic
surfaces, then it is a complicated question whether sur-
faces will split forming islands due to either instabilities
or small external perturbations. Rotational shielding of
islands, which we discussed earlier, is only one example
of several important effects. In the modern literature,
these effects are primarily discussed under the topic of
neoclassical tearing modes; see, for example, Rosenberg
et al. s2002d.

A neoclassical tearing mode causes a magnetic island
to open through the formation of a strong gradient in
the net plasma current near a rational surface. An island
removes the pressure gradient near its resonant rational
surface sSec. III.Ad, and zeros the bootstrap current,
which is a net parallel current due to the pressure gradi-
ent fEq. s220dg. The zeroing of the bootstrap current in
the vicinity of the rational surface produces a large gra-
dient dsji /Bd /dch, which is of the same sign on both
sides of the rational surface, where dch;si−n /mddct.
Depending on the relative signs of the bootstrap current
and di /dct, this effect either strongly favors, or mitigates
against, the formation of an island sSec. V.B.1d. In a to-
kamak with i peaked on axis, the formation of an island
is favored.

Magnetic surface quality does seem to have some hys-
teresis: good surfaces tend to stay good and surfaces
split by islands tend to stay split by islands. The preser-
vation of magnetic surfaces is an important design and
operational consideration in both tokamaks and stellara-
tors.

In tokamaks instability can lead to a catastrophic loss
of surfaces, which is called a disruption sITER Physics
Expert Group on Disruptions, …, 1999d. Disruption
avoidance is critical to the success of magnetic fusion.
Stellarators are far more immune to disruptions. There
are two reasons for this. First, the free energy in a stel-
larator equilibrium tends to be smaller because of the
contribution of the vacuum magnetic field to the rota-
tional transform. Second, the vacuum field in a stellar-
ator strongly centers the plasma in its surrounding
chamber. In a tokamak the plasma is centered in its
chamber by a vertical, z-directed, magnetic field. The
toroidal current that provides the poloidal field in a to-

kamak produces a self-force in the R̂ direction, which is
called the hoop stress. This must be balanced by the
force of interaction with a vertical field. Changes in the
plasma equilibrium cause a change in the plasma posi-
tion, which may result in the plasma’s striking the cham-
ber walls, with a rapid loss of the plasma energy and
current. Such an event in a power plant could cause se-
vere damage to the walls.

C. Stability analyses

• Instability of an equilibrium can be demonstrated by

finding a plasma displacement jWsxWd that reduces the
energy W of the magnetic field and the plasma fEq.
s42dg.

• The two components of the plasma displacement
that lie in a magnetic surface can be expressed in

terms of the radial displacement, jc;jW ·¹W ct, for dis-
placements that minimize the energy W.

• The change in the energy dW produced by a plasma
displacement is a quadratic operator on jc for per-
turbations that minimize the energy W.

The theory of long-wavelength plasma stability is
closely related to the theory of equilibria. Equilibria can
be found by minimizing the energy, Eq. s43d, while im-
posing either torodial symmetry for tokamaks or period-
icity for stellarators, xWsct ,u ,w+2p /Npd=xWsct ,u ,wd,
where Np is the number of periods. These equilibria are
unstable if the energy can be lowered by a more general
shape function xWsct ,u ,wd. Mathematically, equilibria are
extrema and stable equilibria are minima of the energy
sLundquist, 1951; Bernstein et al., 1958d. The long-
wavelength instabilities found by minimizing the energy
are called magnetohydrodynamic sMHDd instabilities as
distinct from the microinstabilities that have a wave-
length comparable to an ion gyroradius.
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1. Expressions for dW

If xWesct ,u ,wd gives the shape of the magnetic surfaces
in an equilibrium plasma, the stability of that equilib-
rium can be tested by considering the shape function

xWsct ,u ,wd=xWesct ,u ,wd+jW with jW a small perturbing dis-
placement. The displacement causes a change in the
magnetic field, Eq. s46d, and a change in the pressure,
Eq. s47d. The change in the energy, Eq. s42d, due to a
small change from equilibrium, Eq. s43d, is quadratic in
the displacement and given by

dW =
1
2Eplasma

s¹W dp − djW 3 BW − jW 3 dBW d · jWd3x , s84d

with djW;¹W 3dBW /m0. The integral is over the volume oc-
cupied by the plasma, for outside the plasma dp, djW, and
jW are zero. The factor of 2 arises from the force operator

FW fjWg;¹W dp−djW3BW − jW3dBW being linearly dependent on

the displacement jW. Partial integrations demonstrate that
the force operator has the important property of being

self-adjoint, ejW1 ·FW fj2gd3x=ejW2 ·FW fj1gd3x, where jW1 and jW2
are two arbitrary displacements sBernstein et al., 1958;
Bernstein, 1983d. This implies that if the displacement is

expanded in a set of vectors, jW =ocjuW j, then dW
=oci

*Wijcj where Wij is a Hermitian matrix.
As shown below, Eq. s84d for dW can be written as the

sum of a vacuum energy and a plasma energy sBernstein
et al., 1958d,

dW = dWv + dWp. s85d

The vacuum energy is

Wv ; E
ext

sdBd2

2m0
d3x , s86d

with the integral performed over the region exterior to
the plasma. The plasma contribution is

dWp = E
plasma

Swj'
+

1
2

gps¹W · jWd2Dd3x , s87d

where

wj'
;

sdBW d2

2m0
+

1
2

s¹W · jW'dsjW' · ¹W pd −
1
2

jW' · sjW 3 dBW d

s88d

has no dependence on the parallel part of the displace-

ment, jWi ;sb̂ ·jWdb̂, where b̂;BW /B. Equation s87d implies
that to minimize dW one should choose the parallel

component of the displacement so that ¹W ·jW =0.
The derivation of Eqs. s85d–s88d is given in this para-

graph, which can be skipped. The derivation follows

from noting that the term sdjW3BW d ·jW in dW can be inte-
grated over all of space since djW=0 outside of the

plasma. One finds that esdjW3BW d ·jWd3x=−esdBd2d3x /m0,
where the last volume integral is over all of space. Using
Eq. s47d,

jW · ¹W dp = − jW · ¹W sjW · ¹W pd − ¹W · sgpjW¹W · jWd + gps¹W · jWd2.

s89d

Using Eq. s46d one can easily show dBW ·¹W p=BW ·¹W sjW ·¹W pd,
which implies jWi · sjW3dBW d=−jWi ·¹W sjW ·¹W pd. The integral
over the plasma volume of a pure divergence vanishes
because the plasma pressure and pressure gradient van-
ish at the plasma edge.

Equation s88d for wj'
can be rewritten sFurth et al.,

1965d as

wj'
= w+ + w±, s90d

where

w+ ;
sdB'd2

2m0
+

B2

2m0
s¹W · jW' + 2jW' · kW d2 s91d

is always positive but the term

w± ; −
1
2

ji

B
sjW' 3 BW d · dBW ' − sjW' · kW dsjW' · ¹W pd s92d

has an indefinite sign. The curvature of the magnetic-
field lines is

kW ; b̂ · ¹W b̂ , s93d

where b̂;BW /B.
The derivation of Eqs. s90d–s92d, which is given in this

paragraph and can be skipped, follows from an expres-
sion for the parallel component of the perturbed mag-
netic field,

BW · dBW = − s¹W · jW' + 2jW' · kW dB2 + m0jW' · ¹W p . s94d

The derivation of this identity uses the vector identity

BW ·¹W 3 sjW'3BW d=−jW' · hs¹W 3BW d3BW j−¹W · sB2jW'd plus Am-

père’s law, ¹W 3BW =m0jW, and force balance ¹W p= jW3BW .

Force balance plus Ampère’s law imply ¹W 'sB2+2m0pd
=2B2kW . Combining results one obtains Eq. s94d. The
identity of Eq. s94d can be written in a second form,
which is

sdBW id2

2m0
= D2 B2

2m0
+ dBi

jW' · ¹W p

2B
−

1
2

sjW' · ¹W pdD , s95d

where

D ; ¹W · jW' + 2jW' · kW . s96d

The last term in Eq. s88d for wj'
can be rewritten using

the fact that the vector triple product in three dimen-
sions is nonzero only when one of the vectors comes
from each of the three independent directions. Conse-

quently jW' · sjW3dBW d=jW' · sjWi 3dBW 'd+jW' · sjW'3dBW id, which

can be rewritten as jW' · sjW3dBW d= sji /BddBW ' · sjW'3BW d
+ sdBi /BdjW' ·¹W p.
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A minimization of dW is really a minimization of a

quadratic functional of jc;jW ·¹W ct that involves radial
derivatives only up to the first order. If the perturbing
displacement is written as

jW = jc ]xW

]c
+ h

]xW

]u
+ mBW , s97d

then the only place the coefficient msc ,u ,wd enters dW is

in the positive definite term involving s¹W ·jWd2. A minimi-

zation of dW makes ¹W ·jW =0, which is a magnetic differ-
ential equation for m in terms of the h and jc coeffi-
cients.

The h coefficient of jW can be expressed in terms of jc

for perturbations that minimize dW. A perturbation that
minimizes dW must give a perturbed equilibrium, and in

a perturbed equilbrium the current, jW+¹W 3dBW /m0, must
be orthogonal to the toroidal flux. At a given spatial
point the perturbation causes the toroidal flux to go

from ct to ct−jW' ·¹W ct, which follows from dct /dt

=]ct /]t+ s]jW /]td ·¹W ct and the constraint that dct /dt=0 in
an ideal plasma. See the discussion of Eq. s45d. There-
fore dW minimizing perturbations obey the constraint

djW·¹W ct= jW·¹W sjW' ·¹W ctd, where djW;¹W 3dBW /m0. Now

jW·¹W sjW' ·¹W ctd=¹W · fsjW' ·¹W ctdjWg. The normal to the surface is

n̂;¹W ct / u¹W ctu, so one can write jW= n̂3 sjW3 n̂d and

sj' ·¹W ctdjW=¹W ct3 fsjW3 n̂djW' · n̂g. This implies jW·¹W sjW' ·¹W ctd
=−¹W ct ·¹W 3 fsjW3 n̂djW' · n̂g. Letting

CW ; dBW + sjW' · n̂dsm0jW 3 n̂d s98d

one finds that

s¹W 3 CW d · ¹W ct = ¹W · sCW 3 ¹W ctd = 0 s99d

is the condition for the current in the perturbed equilib-
rium to lie in the perturbed flux surfaces. This constraint
can be imposed ct surface by ct surface, since the only
derivatives that arise are in u and w. The two constraints

¹W ·jW =0 and Eq. s99d determine both msct ,u ,wd and
hsct ,u ,wd in terms of jcsct ,u ,wd.

The constraint that s¹W 3CW d ·¹W ct=0 must vanish for a
dW minimizing perturbation can be obtained directly
from the energy principle if wj'

is written as

wj'
=

CW 2

2m0
− wd, s100d

where wd;sjW · n̂d2sjW3 n̂d · sBW · ¹ dn̂ sBernstein et al., 1958;
Bernstein, 1983d. For a divergence-free perturbation the
only place the coefficient h enters the energy is through

CW , and there it enters only through dBW . The contravari-
ant representation of the magnetic field in magnetic co-
ordinates, Eq. s52d, plus the dual relations imply

s]xW /]ud3BW =¹W ct /2p. Consequently the part of CW that

depends on h is CW h=¹W 3 sh¹W ctd /2p. The minimization of

eC2d3x through the variation dh gives 2ehCW ·¹W

3 sdh¹W ctd /2pjd3x. An integration by parts then gives
the desired result.

2. Pressure-driven ballooning modes

• Perturbations of arbitrarily large wave number can
be destabilized by a pressure gradient that is in the
same direction as the field-line curvature. These in-
stabilities are called ballooning modes since they bal-
loon out, that is, they have their largest amplitude at
the least stable place on a constant-pressure surface.

• Plasma instabilities that have a high wave number
have a short wavelength in the constant-pressure sur-
faces across the magnetic-field lines but a long wave-
length along the magnetic-field lines. For ballooning
modes this anisotropy arises to minimize the stabiliz-
ing effect of field-line bending. For microinstabilities
sSec. VI.Fd, the anisotropy arises to avoid stabiliza-
tion by Landau damping sSec. VI.Cd.

The expression for dW is greatly simplified when the
perturbations that are considered have a short wave-
length across the magnetic-field lines. Such instabilities
are called ballooning modes sTodd et al., 1977; Connor,
Hastie, and Taylor, 1978d. Despite their short wave-
length across the magnetic-field lines, the least stable
perturbations of this type have a long wavelength along
the magnetic field. These disparate scales can be effi-
ciently represented using a concept from geometric op-

tics, the eikonal Ssad, which satisfies BW ·¹W S=0. Let

jW' = JW cos„Ssad… , s101d

where a is a Clebsch coordinate fEq. s9dg. For
ballooning-mode calculations it is conventional to

choose the Clebsch coordinates so BW =¹W a3¹W cp, where
cp is the poloidal magnetic flux and

2pa = w − qscpdhum − u0scpdj , s102d

with qscpd;1/ iscpd;dct /dcp the safety factor. The ei-
konal S could be a function of both a and cp, but this
provides no generality beyond that in the function
u0scpd. The eikonal can be written as

S = 2pNa , s103d

where N is the toroidal mode number of the perturba-
tion. The short-wavelength limit means N→`. The ex-
pression that one obtains is

dW

s2pNd2 =E Hs¹W ad2

2m0
SBW · ¹W F

B
D2

− k̃
dp

dcp
F2Jd3x ,

s104d

where the relevant component of the field-line curvature
is
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k̃ ;
kW · BW 3 ¹W a

B2 . s105d

The perpendicular displacement of an unstable pertur-
bation must have the form of Eq. s108d, which defines
the function F.

The derivation of the short-wavelength form for dW is
given in this paragraph and can be skipped for those not
interested in the mathematical details. Using Eq. s101d
for the perpendicular displacement, derivatives of the
displacement enter dW, Eqs. s90d–s92d, through

¹W · jW' = cossSd¹W · JW − sinsSdJW · ¹W S s106d

and

dB' = cossSdh¹W 3 sJ 3 BW dj'. s107d

Note that dB=cossSd¹W 3 sJ3BW d−sinsSdh¹W S3 sjW'3BW dj,
but the term h¹W S3 sjW'3BW dj=−sjW' ·¹W SdBW does not con-
tribute to the magnetic perturbation perpendicular to
the field lines. When these expressions are inserted into

Eqs. s90d–s92d, the terms proportional to ¹W S and hence
N appear only in a positive definite term that is propor-

tional to s¹W ·jW'+2jW ·kd2. Consequently instability is pos-

sible in the limit as N→` only if one chooses jW' ·¹W S

=0. By choosing a 1/N correction to jW' appropriately,

one can eliminate the positive definite term s¹W ·jW'

+jW ·kd2 from dW altogether, since no other term is af-
fected in the lowest nontrivial order by the 1/N correc-
tion. The perpendicular displacement for unstable short-
wavelength modes must have the form

jW' =
BW 3 ¹W S

B2 F s108d

since it must be perpendicular to both the magnetic field

and ¹W S. One then finds jW'3BW =F¹W S and dBW =¹W F3¹W S.
The parallel current term in Eq. s92d vanishes because

sjW'3BW d ·dBW '=F¹W S · s¹W F3¹W Sd=0. As discussed earlier,
the parallel current cannot be a source of instability for
short-wavelength perturbations. The perpendicular part

of the magnetic perturbation is dBW '= sb̂ ·¹W Fdsb̂3¹W Sd
with b̂;BW /B. Putting the pieces together one obtains
Eq. s104d.

The form for dW for short-wavelength perturbations
implies that unstable modes must have a long wave-
length along the magnetic-field lines in order to mini-

mize the sBW ·¹W Fd2 term. If one can choose u0 in a so
k̃dp /dct is positive, then dW predicts instability if the
variation of F along the field lines is not taken into ac-

count. The sBW ·¹W Fd2 term can stabilize the mode in
places where k̃dp /dct is positive, but the mode ampli-
tude is naturally larger there. That is, the plasma dis-
placement balloons out at the locations where k̃dp /dct
is positive.

If the ballooning expression for dW is extremized, one
obtains the differential equation

]

]u
Hs¹W ad2

m0

BW · ¹W u

B2

]F

]u
J +

2k̃

BW · ¹W u

dp

dcp
F = 0, s109d

where BW ·¹W = sBW ·¹W ud] /]u and the Jacobian of scp ,u ,ad
coordinates is 1 /BW ·¹W u for any poloidal angle u. Equa-
tion s109d predicts instability if a solution F crosses F
=0 twice. To understand why this prescription works,
note that if one of the F’s in the F2 term of Eq. s104d is
replaced by the F from Eq. s109d, one finds after an
integration by parts that dW=0. Now add a term
eDsF

2dcpduda /2 to both sides of the ballooning expres-
sion for dW / s2pNd2, Eq. s104d, with Ds a constant. Tak-
ing dWm / s2pNd2;dW / s2pNd2+eDsF

2dcpduda /2 to its
extreme, one finds that Eq. s109d is modified by the zero
on the right-hand side becoming DsF. One solves this
modified equation. If the solution has two places where
F=0 when Ds.0, one replaces an F in the modified
equation, dWm / s2pNd2, with the F from the differential
equation. One then finds dWm / s2pNd2=0, so
dW / s2pNd2=−eDsF

2dcpduda /2, which is negative. That
is, one has found a perturbation that reduces the energy,
so instability is predicted.

3. Minimization of dW

Given any positive definite normalization of the dis-
placement, ij2i, a plasma is unstable if one can find a
displacement such that

l ;
dW

ij2i
s110d

is negative. The sign of l is independent of the normal-
ization. However, different normalizations provide dif-
ferent types of information. Three normalizations will
be discussed, the kinetic-energy norm, the jc norm, and
the surface norm.

The conventional normalization of the displacement is
the kinetic-energy norm, ij2ik;erj2d3x /2, which makes
Îs−ld the growth rate of the instability. This norm is
poorly behaved when the plasma is stable because then
a minimization of l can mean a maximization of ij2ik.
As we have seen, the coefficient m of the displacement,
Eq. s97d, is determined by a magnetic differential equa-
tion, which means the Fourier component of m that reso-
nates with a rational surface can be made arbitrarily
large in that neighborhood with little change in dW.
That is, one can always find a continuum of modes that
makes l→0 for an essentially fixed dW. The existence
of this continuum sGrad, 1973; Goedbloed, 1998d makes
it difficult to find the points of marginal stability. Even in
the unstable region, the displacement that minimizes dW
is usually not the perturbation that minimizes l. Conse-
quently a minimization of l using displacements that are

divergence-free and satisfy s¹W 3CW d ·¹W ct=0 does not give
the correct growth rate for unstable modes.
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The singularity of the displacement jW near rational
surfaces is particularly important for the theory of per-
turbations that are rotating relative to the plasma. A
singular plasma displacement rotating through a plasma
gives an infinite correction to the energy. This singularity
can be resolved sBetti and Freidberg, 1995d, but at the
cost of an imaginary contribution to the energy, which
represents the torque between the perturbation and the
plasma. Though not noted by Betti and Freidberg
s1995d, the resolution of the singularity also changes the
real part of the energy sBoozer, 2003d, which implies that
the critical value of the plasma parameters required for
the stability of the perturbation are very sensitive to ro-
tation.

A second choice for the normalization of the displace-
ment is similar to the kinetic energy except only the
component jc is retained, ij2ic;ersjcd2d3x /2. The
quantity l has no special interpretation, but the con-
tinuum problem in finding points of marginal stability is
eliminated.

A third choice of normalization uses jc but only its
value on the plasma surface, ij2is= rsjcd2wdudw, with
wsu ,wd.0 an arbitrary weight function. This normaliza-
tion has pathological features for internal plasma modes,
which have a displacement that reduces the energy while
keeping the plasma boundary fixed. For these modes l
→−`. However, if the minimizing l is bounded, the dis-
placements jc of the plasma surface that are associated
with a spectrum of l’s give the modified equilibria of the
plasma in the presence of external perturbations.

An instability with a negative but bounded l with a
fixed perturbation of the surface shape, the ij2is norm, is
called an external mode. External modes would be sta-
bilized if a perfect conductor were close enough to the
plasma surface. A magnetic perturbation cannot pen-
etrate a perfect conductor, so the component of the

magnetic-field line displacement jW that is normal to the
conductor must vanish. Actual plasmas are surrounded
by chamber walls, which are conductors. An instability
that would be stabilized if these conducting structures
were perfectly conducting is called a wall mode. Wall
modes can grow on the resistive time scale of the con-
ducting structures, which is many orders of magnitude
slower than the growth rate determined by plasma iner-
tia. Due to their slow growth, resistive wall modes can
be stabilized by plasma rotation and by feedback sSec.
V.D.2d. The stabilization of wall modes is considered an
important topic for tokamak and ST plasmas that have
the profile of net current that is required for steady-state
operation.

When one uses a fixed perturbation of the boundary,
the ij2is norm, the Fourier coefficient of jc in magnetic
coordinates can jump at each resonant rational surface,
i=n /m, and the magnitude of the jump gives the magni-
tude of the surface current on the rational surface. Once
the expansion coefficients h and m of the displacement,
Eq. s97d, have been eliminated from dW in favor of jc,
radial derivatives of the displacement arise only in the
form ]b /]ct where

b ;
dBW · ¹W ct

BW · ¹W w
. s111d

Equation s46d, dBW =¹W 3 sjW 3BW 0d, implies that b= s] /]w
+ i] /]umdjc. If one allows the resonant Fourier coeffi-
cient of jmn

c to change by a fixed amount over a distance
dct about a rational surface i=n /m, the resonant Fou-
rier coefficient of ]b /]ct has a well-defined limit on each
side of the rational surface as dct→0. One can show that
the jump in the resonant coefficient of jc or in ]b /]ct is
proportional to the surface current on the rational sur-
face sNührenberg and Boozer, 2003d. For a large-aspect-
ratio torus, this was shown in the derivation of Eq. s79d.
The amplitude of the jumps in jc at rational surfaces
gives a measure of the width of the islands that would
open in the absence of a singular current. For a large-
aspect-ratio torus with circular surfaces, ct~r2 with r the
minor radius, one can easily show that the half width of
the island that would arise in the absence of the singular
current is

sdrdmn =ÎU2rmn

m
fsjrdmngU . s112d

One can use an ideal dW method to assess and improve
the quality of equilibria and to find the required pertur-
bations to the plasma surface to remove islands
sNührenberg and Boozer, 2003d.

D. Interaction of plasmas with coils

• Between the plasma and the surrounding coils, the

magnetic field has the form BW =¹W f. Since ¹W ·BW =0,
the interaction of a plasma with currents outside the
plasma must be through solutions to Laplace’s equa-
tion, ¹2f=0, which greatly constrains the form of the
interaction.

• Practical coils can control only a certain number Nf
of features of the plasma shape. For axisymmetric
systems Nf<4, but for stellarators Nf<50.

• Important long-wavelength instabilities of tokamaks
would be stabilized if the surrounding chamber walls
were perfectly conducting. Such instabilities are
called resistive wall modes since the instabilities can
grow on a time scale determined by the resistivity of
the chamber walls. Their slow growth permits feed-
back stabilization. The interaction of the plasma with
the perturbing currents in walls and in feedback coils
can be calculated by coupled circuit equations. The
plasma circuit elements have a determinate response
to changes in the other circuit elements.

The external coils that are required for the magnetic
confinement of a plasma have two distinct functions.
First, they provide the required toroidal magnetic flux

ct. Second, they ensure BW · n̂ is zero on the plasma sur-
face. These two functions are separated in tokamak coil
design: the toroidal field coils provide the flux and the
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poloidal field coils ensure BW · n̂=0 sFig. 4d. However, in
stellarators these functions are often coupled in a single
coil set sFig. 6d. Nevertheless, in discussions of the effi-
ciency and practicality of stellarator coils, it is often use-
ful to separate the two functions.

Critical issues in coil design are the ratio of the mag-
netic field at the coils to that on the plasma, the com-
plexity and the forces associated with the required coil
currents, and the production of a field with the required
symmetry while providing for ports, for plasma access,
and for discrete coils.

A point that is often emphasized in the magnetic fu-
sion literature is that, if all else is equal, the power pro-
duced by a fusion plant scales as the square of b
;2m0p /B2. A point less frequently made is that, under
the same assumptions as those that give the b2 scaling,
the power production scales as the fourth power of the
ratio of the magnetic field on the plasma to that on the
coils. If the plasma b is limited, then the optimal plasma
temperature is the one that maximizes the fusion power
production at a fixed plasma pressure p=nT. The power
from the fusion of deuterium and tritium scales as pDT
=n2fDTsTd, with n the plasma number density and fDT a
function of the plasma temperature. The maximum of
pDT at fixed pressure occurs at dsfDT /T2d /dT=0. This
condition implies that near the optimal temperature,
which is about 20 keV, the fusion power density pDT is
proportional to the pressure squared, or equivalently, to
b2.

Between the coils and the plasma, the magnetic field
is curl-free,

BW = ¹W f , s113d

as well as divergence-free, so

¹2f = 0. s114d

The interactions of the coils with the plasma must occur
through solutions to Laplace’s equation, which places
strong constraints on the form of this interaction. Much
of the theory of coil design, such as the work of Merkel
s1987, 1988d on the coil design for the W7-X stellarator,
is an application of the theory of Laplace’s equation.

1. Freedom of coil design

The choice of plasma shape is the major determinant
of the quality of a confined plasma. Unfortunately, the
theory of Laplacians says that a general plasma shape
cannot be supported by distant coils. What can be done,
through the design of coils, is to enforce a certain num-
ber of conditions on the plasma shape. This number,
which is the number of degrees of freedom in the coil
design Nf, is in practice about four for tokamaks and
about 50 for stellarators.

The theory of Laplace’s equation implies that it is
mathematically impossible for a distant coil set to pro-

vide a generic normal magnetic field BW · n̂ on the plasma

surface, even when BW · n̂ is a smooth analytic function.
This statement is proven by giving a generic normal field

that cannot be produced by distant coils. Consider the
cylindrical problem in which the radial magnetic field
that must be produced by coils, Brsud=oBm cossmud, is
given on the surface r=a. Between the coils and the
plasma the magnetic field obeys Eqs. s113d and s114d, so
f=osaBm /mdsr /adm cossmud. In general, a maximum
value of r /a exists for which this Fourier series con-
verges, which means there is a maximum value of r /a for
which a solution exists. To find this maximum, consider
the convergence properties of the Fourier coefficients
Bm=eBrsudcossmuddu /p. If Br is an analytic function of
u this integral can be performed using the method of
residues of complex analysis. If up is the distance of the
nearest pole of Brsud from the real axis, then as m→`
the Fourier coefficients have the form Bm
=Bc exps−mupd. In other words, the Fourier coefficients
of a generic function Brsud decay exponentially as
m→`. Now consider the coefficients Bmsr /adm. As
m→` these coefficients are proportional to
exphmflnsr /ad−upgj, which means they diverge exponen-
tially with m if r /a.expsupd.

Even when distant coils can in principle produce the
required magnetic field on the plasma surface, practical
coils may not exist. Laplace’s equation implies that the
intrinsic difficulty of distant coils is exponentially depen-
dent on the wave number k of the distribution of the
normal magnetic field that they are producing on the
plasma surface. The number of independent distribu-
tions of magnetic field that can be produced by practical
coils is comparable to the number of Fourier compo-
nents of the magnetic potential f, Eq. s113d, that have a
wave number smaller than some critical value km. In a
large-aspect-ratio circular tokamak, k=m /a and the ra-
tio of magnetic field on the coils at r=b to that on the
plasma at r=a is sb /adsm−1d. For a practical separation
between the coils and the plasma in a fusion power
plant, b /a<1.7, the ratio of the field at the coil to that
on the plasma is five to one for m=4. Practical tokamak
coils can control about four properties of the plasma,
corresponding crudely to the poloidal Fourier harmonics
up to Mm=4, so tokamak coil designs have four degrees
of freedom, Nf=4. For stellarators the wave number of a
magnetic-field distribution is k.Îsm /ad2+ sn /Rod2,
where a is the minor and Ro is the major radius of the
torus. To preserve the Np-fold periodicity of the stellar-
ator, the toroidal mode number of a field distribution
must satisfy n=nhNp, where nh is an integer. Summing
over the possible combinations of m and nh that satisfy
køMm /a, one finds that the number of degrees of free-
dom of stellarator coils is

Nf < 1.8
Mm

2

ep
, s115d

where the inverse aspect ratio per period of the stellar-
ator ep;Npa /Ro. Typically ep<1/2, so with Mm=4, stel-
larator coils have about 50 degrees of freedom.

Efficient coils for stellarators should exist, since the
number of degrees of freedom in stellarator coil design,
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Nf<50, is larger than the number of shape parameters
Ns that are needed to achieve reasonably optimized
plasma shapes. The COILOPT code sStrickler, Berry, and
Hirshman, 2002d tackles this problem directly by varying
parameters that define the coils until a combined opti-
mum is found for the coils and the plasma. However, the
large number of degrees of freedom and the nonlinear-
ity of the optimization process means the design of stel-
larator coils for optimal plasmas is extremely subtle, and
it is important to understand the choices that are made
during this optimization.

The fundamental choices in the optimization of a stel-
larator are those of the plasma shape and the coils. The
optimized plasma shapes, xWssu ,wd, are found using a set
of Ns parameters sNührenberg et al., 1995; Neilson et al.,
2000d. For example, the shape parameters could be the
Fourier coefficients of Rssu ,wd and Zssu ,wd of a repre-
sentation of the surface in sR ,w ,Zd cylindrical coordi-
nates. The optimization process for the plasma shape
determines Ns shape parameters, so plasma optimization
can only determine Ns constraints on the coils. Practical
limits exist on the number of shape parameters that can
be determined. These limits arise not only from the in-
creasing difficulty of optimization with additional pa-
rameters, but also from the numerical accuracy of the
codes that determine the physics properties associated
with a given plasma shape. The constraints on the coils
should be chosen to ensure the Ns known shape param-
eters have their desired values but with no constraints
imposed for fitting unknown shape parameters. This can
be done by studying the relation between changes in the
plasma shape and small changes in the fields due to the
coils, which is discussed in Sec. V.D.2.

2. Plasma response to coil changes

The relation between perturbations to the plasma
shape and small changes in the magnetic field due to the
coils is important for stellarator coil design, the elimina-
tion of islands due to magnetic-field errors, and the de-
sign of feedback systems for resistive wall modes in to-
kamaks.

A small change in the plasma shape is equivalent to a

normal displacement jW · n̂ of the plasma surface and has a
simple and unique relation to the normal component of
the perturbed magnetic field on the original plasma sur-

face dBW · n̂. To prove this, we first note that a tangential

displacement, which means jW · n̂=0 but jW Þ0 with

xWssu ,wd→xWssu ,wd+jWsu ,wd, does not change the plasma
shape but does change the su ,wd coordinate system that

describes that shape. In an ideal plasma dBW =¹W sjW 3BW d,
Eq. s46d, and dBW ·¹W ct=BW ·¹W sjW ·¹W ctd, which relates jW · n̂

and dBW · n̂ since the normal to the plasma surface is n̂

=¹W ct / u¹W ctu. Actually the equation dBW =¹W 3 sjW 3BW d holds
whether or not the magnetic field is embedded in a per-
fectly conducting plasma, provided the rotational trans-
form on the surface is an irrational number. The reason

is dBW =¹W 3dAW . But any vector, including the perturbed

vector potential, can be written in the form dAW =jW 3BW

+¹W dg provided a function dgsxWd exists that satisfies the

magnetic differential equation BW ·¹W dg=BW ·dAW . This
equation for dg is solvable when the rotational trans-
form i is an irrational number and the perturbation does
not include a loop voltage. A loop voltage was consid-
ered by Lüst and Martensen s1960d; also see the discus-

sion of Eq. s26d. The general validity of dBW =¹W 3 sjW 3BW d
on irrational surfaces is another way of stating that the
rotational transform is not changed in linear order by a

perturbation jW except near a rational surface fEq. s17dg.
Functions of u and w, such as the magnetic-field per-

turbation normal to the original plasma surface dBW · n̂,
are conveniently expressed using orthonormal functions.
A set of dimensionless functions fisu ,wd on the plasma
surface are orthonormal if

R fifj
*wda = dij, s116d

where w.0 is an arbitrary weight function and da is the
area element of the plasma surface. The normal compo-
nent of the magnetic perturbation on the original plasma
surface is expanded in the fi’s in the form

dBW · n̂ = w o Fjfj
*. s117d

The expansion coefficients have units of flux

Fi = R fidBW · n̂da . s118d

The derivation of the Ns constraints on stellarator
coils that are required to fit Ns parameters in the plasma
shape illustrates a response analysis. A small change in
each of the Ns shape parameters produces a small
change in the plasma shape, which is a normal displace-

ment jWs · n̂ of the plasma surface, and determines a small

change in the normal magnetic field dBW s · n̂. The Ns func-

tions bssu ,wd;dBW s · n̂ can be transformed into a set of
not more than Ns orthonormal functions fssu ,wd by a

Gram-Schmidt process such that any of the dBW s · n̂ can be
expanded in terms of the fs’s fEq. s117dg. The constraints

on the coils, rfsBW · n̂da=0, then ensure that through lin-
ear order in the field error the Ns plasma shape param-
eters are reproduced but with no constraints on the coils
from unknown shape parameters. Good stellarator coils
exist if the Ns field distributions that are needed are in
the solution space of the Nf field distributions that effi-
cient stellarator coils can produce.

In a number of problems involving coils, it is neces-
sary to know the change in the normal magnetic field on

the plasma surface due to the coils, dBW x · n̂, that is re-
quired to produce a given normal magnetic field on the

plasma surface, dBW · n̂. The difference between dBW · n̂ and

dBW x · n̂ is the normal field produced by the perturbed
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plasma current dBW i · n̂. The decomposition of dBW · n̂ into a
part produced by coil currents and a part produced by
internal plasma currents can be carried out if there is
enough information to solve Laplace’s equation for the
magnetic potential f between the plasma and the con-
ducting structures. Two boundary conditions are re-
quired. In a cylinder, a solution to Laplace’s equation
has the form f= hfisa /rdm+fxsr /admjcossmud and
boundary conditions must determine both fi, which
gives the effect of currents inside the plasma, and fx,
which gives the effect of currents outside the plasma.

The response of the plasma to perturbations deter-
mines the relation between the perturbed normal field

due to external current, dBW x · n̂, and the normal field due

to the internal perturbed plasma currents, dBW i · n̂. Since
only two boundary conditions are required to determine
a unique solution to Laplace’s equation, any two inde-
pendent pieces of information will suffice. One example
is the relation between the perturbed normal and tan-
gential magnetic-field components. This information is

contained in dBW at the location of the unperturbed

plasma surface. Since dBW is continuous at the plasma

surface, but dBW =¹W f outside the plasma, the vector dBW

gives two functions of information on the plasma sur-

face, f and n̂ ·¹W f= n̂ ·dBW , and not three as one might first
assume.

Given a plasma model, a linear relation exists at the
location of the orginal plasma surface between a small
change in the normal component of the magnetic field

produced by external currents dBW x · n̂ and the perturbed

normal field dBW · n̂. This linear relation is conveniently
expressed using matrices. The fluxes that are the expan-
sion coefficients of the perturbed normal field on the

plasma surface form a matrix vector FW ; r fWsdBW · n̂dda.

The matrix vector fW has the same functions fisu ,wd as its
components. Analogously, the fluxes that are the expan-
sion coefficients of the normal field on the plasma sur-
face due to perturbed coil currents form a matrix vector

FW x. The linear relation between dBW x · n̂ and dBW · n̂ deter-
mines the permeability matrix,

FW = PJ · FW x. s119d

The permeability matrix PJ is a property of the plasma
and for an ideal plasma can be determined using a dW

stability code. Once PJ is known, it is straightforward to
uniquely relate any small perturbation in the plasma
shape to the change in the normal magnetic field on
plasma surface that is produced by the coils.

Tokamak and stellarator plasmas are particularly sen-
sitive to magnetic perturbations that resonate with low-
order rational surfaces and cause islands to open. The
coils can be modified to eliminate the islands in one
plasma state sHudson et al., 2002d, though error correc-
tion or trim coils may be needed to eliminate islands
over a broad range of plasma states. The issue of islands

would not exist in a tokamak with perfect axisymmetry,
but it does exist even for an ideal stellarator if the num-
ber of periods is small, Np&6. As the plasma equilib-
rium changes, a magnetic field that was nonresonant can
develop resonant components. However, there are a
relatively small number Nr of low-order rational sur-
faces that are consistent with the periodicity of a stellar-
ator. This means that any set of trim coils that obeys the
periodicity of the stellarator and has Nr sets of leads can
control the islands provided the matrix between the
fields produced by the trim coils and the resonant fields
is nonsingular. In practice, tokamaks are not precisely
axisymmetric and stellarators are not precisely periodic,
so additional coils may be needed to correct field errors
that break these symmetries.

The information required to determine whether a
given set of trim coils can control the islands of a plasma
equilibrium can be found using an ideal dW stability
code. As discussed in Sec. V.C.3, perturbations at the

edge of an ideal plasma, jW · n̂, can cause a jump in jW ·¹W ct
at the rational surfaces. These jumps imply islands
would open in a resistive plasma with the island width
proportional to the square root of the jump. If there are
Nr sets of integers n /m that give the rational numbers
associated with these jumps, then there are Nr specific

forms for jW · n̂ on the plasma surface that are propor-
tional to the jumps but otherwise have the smallest pos-

sible amplitude, rsjW · n̂d2wda. All other small displace-
ments of the plasma edge cause no jumps and, therefore,

no islands. These Nr specific forms for jW · n̂ on the plasma
surface give Nr distributions of normal magnetic field,

dBW r · n̂= n̂ ·¹W fr, and have Nr associated perturbed tan-
gential fields on the plasma surface, which give the mag-
netic scalar potentials fr there. From the fr and the

n̂ ·¹W fr, one can construct the Nr orthonormal functions
frsu ,wd that give the externally produced fluxes

rfrdBW x · n̂da that control the islands. These fluxes are lin-
early related to the currents in the trim coils. If there are
Nt independent sets of trim coils, which means indepen-
dent currents It, then the fluxes required for island con-

trol obey rfrdBW x · n̂da=otMrtIt with the mutual induc-
tance matrix Mrt an Nr3Nt matrix. If this matrix has Nr
nonzero eigenvalues, the trim coils can control the
island-causing resonances, though practicality requires
that none of the Nr eigenvalues be excessively small.

In tokamaks, important kinklike instabilities, the re-
sistive wall modes, can be stabilized by conducting struc-
tures, such as the chamber wall that surrounds the
plasma; see Sec. V.C.3. These instabilities grow on the
resistive time scale of the wall and can be feedback sta-

bilized using external coils. The permeability matrix PJ

contains all of the plasma information that is needed for
calculating the stability and the feedback of wall modes.
The circuit representation of the plasma that is associ-
ated with the permeability matrix has been used to de-
sign and interpret feedback systems for a number of ma-
jor tokamak experiments sBialek et al., 2001d. Prior to
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the development of the circuit representation of resistive
wall modes, Lazarus, Lister, and Neilson s1990d devel-
oped a closely related theory for the feedback of the
vertical instability of tokamaks. The vertical instability

causes a Ẑ motion of the plasma and limits the degree to
which tokamak plasmas can be shaped to achieve higher
beta operation. A number of groups have developed
methods for studying feedback of resistive wall modes,
starting with the early work of Bishop s1989d. Recent
discussions of feedback techniques have been given by
Fitzpatrick s2001d, Bondeson et al. s2002d, Chance et al.
s2002d, and Boozer s2003d.

The energy that is required to drive resistive wall
modes comes from the plasma, so a representation of
the effects of the perturbed plasma current on the exter-
nal circuits is critical. Since these effects must be propa-
gated through a solution to Laplace’s equation, the ef-
fects can be represented by the magnetic field normal to
the plasma surface that is produced by the perturbed

currents inside the plasma, dBW i · n̂. This means the effects
of the perturbed plasma current can be represented by a
surface current flowing on the plasma surface that pro-
duces the same normal field at the location of the unper-
turbed plasma surface as the perturbed plasma current.

A surface current can be represented as a matrix vec-
tor with elements that are discrete currents Ji. The nor-
mal field on the surface due to these currents is linear, so
it can be represented using Eq. s118d as a magnetic-flux

matrix vector FW J=LJp ·JW. The matrix LJp is called the
plasma inductance and depends only on the geometric
shape and the size of the surface. The surface current
that gives the same normal field on the unperturbed
plasma surface as the perturbed plasma current is

IWp = LJp
−1 · sPJ − 1Jd · FW x. s120d

The representation of a surface current by a matrix vec-

tor JW is demonstrated by noting that the current flowing
on a surface ct=cs has the form

jWs = dsct − csd¹W k 3 ¹W ct. s121d

This is the most general vector that is divergence-free,

lies in the surface jWs ·¹W ct=0, and is zero except in the
surface ct=cs. The current potential ksu ,wd can be ex-
panded in the orthogonal functions, k=oJi

*fisu ,wd. Each

element Ji of the matrix vector JW has units of amperes
and can be viewed as a current in a circuit. Actually, the
general expression for the current potential ksu ,wd is the
sum of the single-valued current potential oJi

*fi plus two
non-single-valued terms. One of these terms is
−uIs / s2pd, which gives the net toroidal current Is in the
surface, and the other is wGs / s2pd, which gives the net
poloidal current Gs in the surface. The currents Is and
Gs are not usually retained in analyses of wall modes.

When the plasma is ideal, the permeability matrix PJ

has real eigenvalues that are customarily written as −1/si
sBoozer, 2003d. The stability coefficients si are propor-
tional to the energy required to drive the perturbation

with a positive si implying a negative energy. An un-

stable wall mode arises if the matrix PJ has a negative
eigenvalue, which means a positive si. The relation be-

tween PJ and the energy is demonstrated by considering

the power required to drive a perturbing current JW on a
surface infinitesimally outside of the plasma. That power

is Pd=−ejWs ·dEW d3x. Using Eq. s121d, Pd=−rks¹W

3dEW d ·daW . Since ]dBW /]t=−¹W 3dEW , the power is Pd

=JW† ·dFW /dt. The flux and the current are proportional to

each other, FW =PJ ·LJp ·JW, so the energy dW required to
drive the perturbation, Pd=ddW /dt, has the explicitly

real form dW= 1
4 sJW† ·FW +FW † ·JWd. Since the inductance ma-

trix LJp is a positive Hermitian matrix, the energy dW is

negative only if the permeability PJ has a negative eigen-
value.

The circuit equations for wall modes are particularly
simple in the case of primary importance, a single mode
passing through marginal stability, which means one sta-
bility coefficient s passing through zero. Because of the
singularity of the permeability matrix at s=0, only the
marginal mode is important, so the matrix vectors can
be approximated by a single matrix element, the ele-
ment that represents the marginally stable perturbation.
For this problem, F=−Fx /s, Fx=MpwIw, Fw=LwIw
+MwpIp, and dFw /dt=−RwIw. Fw is the magnetic flux
that penetrates the wall, Iw is the current in the wall, Lw
is the wall inductance, Mpw=Mwp is the mutual induc-
tance between the wall and the plasma, and Rw is the
wall resistivity. Simple algebra demonstrates that the
flux through the wall is

Fw = LwH1 −
1 + s

s

MpwMwp

LwLp
JIw. s122d

When the effective inductance of the wall, Fw /Iw, is
negative, the wall mode grows at a rate proportional to
Rw. By adding sensors and actively driven coils to the
circuit equations, one can stabilize the wall mode by
feedback.

In a rotating tokamak plasma, the eigenvalues of the
permeability matrix sBoozer, 2003d are complex num-
bers 1/ s−si+ iaid. The quantity ai gives the toroidal
torque between the plasma and the mode i. The toroidal
torque exerted by an axisymmetric surface that carries a

surface current jWs is given by tw=−esjWs3dBW d · s]xW /]wdd3x,

which implies tw= isN /2dsJW† ·FW −FW † ·JWd when the w de-
pendence of fi is written as exps−iNwd. When an exter-
nal perturbation is applied to a rotating tokamak
plasma, the perturbation on the plasma surface can be
amplified and can have a toroidal phase shift. The am-
plification and the phase shift are given by si and ai
sBoozer, 2003d. Plasma rotation can stabilize the resis-
tive wall mode by dragging the mode toroidally at too
rapid a rate for it to penetrate the wall.
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VI. RADIATION AND TRANSPORT

• A fusion burn of deuterium and tritium requires that
the characteristic time for loss of energy from the
plasma satisfy tE<431021/niT, where tE is in sec-
onds, ni is the number of deuterium-tritium ions per
cubic meter, and T is the plasma temperature in ki-
lovolts. The characteristic energy confinement time
of a plasma with few impurities and a temperature of
about 20 keV is predominately due to thermal en-
ergy transport by plasma processes, not electromag-
netic radiation.

• Energy transport determines the minimum size and
hence the cost of an experiment to study plasmas
that burn deuterium and tritium. For a power plant,
the level of transport must be consistent with the
required system parameters; see Sec. II.

• The energy confinement time tE of proposed experi-
ments is estimated using empirical power-law scal-
ings, which have the fundamental assumption that no
critical values are crossed of the parameters that en-
ter the power law.

The scaling of the energy confinement time of toroi-
dally confined plasmas is a primary issue in the feasibil-
ity and cost of a burning plasma experiment sITER
Physics Expert Group on Confinement …, 1999d. By
definition a burning plasma experiment burns deuterium
and tritium while requiring little external power. The
loss of energy from a fusing plasma at 20 keV with few
impurities is dominated by plasma processes, called en-
ergy transport, not electromagnetic radiation. The focus
on proposals for burning plasma experiments has meant
that energy transport has been a major topic for plasma
research.

Energy transport is also an issue for the feasibility of
fusion power, but differences exist between the transport
issues for fusion power and those for a burning plasma
experiment. The size of a burning plasma experiment is
essentially determined by the magnitude of the energy
transport: the smaller the transport, the smaller and
cheaper the required experiment. However, the basic
size of a power plant is determined by issues that have
little to do with plasma transport coefficients. The criti-
cal issues in a power plant are whether the energy trans-
port is consistent with what is required to maintain a
steady burn—neither too large nor too small—and
whether the particle transport is sufficiently large to re-
move alpha-particle ash. In addition, the feasibility of
steady-state tokamak power plants is dependent upon
the natural profiles that the temperature, density, and
current take in a fusion plasma. The performance of
stellarator power plants is far less dependent on the is-
sue of profiles.

Energy transport can provide an upper limit on the
plasma beta, b;2m0p /B2, because transport for given
plasma conditions is generally larger, the smaller the
magnetic field.

Predictions of the energy confinement times of experi-
ments are usually based on empirical scaling relations

sITER Physics Expert Group on Confinement …, 1999d.
Empirical scaling relations generally assume the math-
ematical form of a power law,

tEsx1,x2, . . . d = a0x1
a1x2

a2
¯ , s123d

so each parameter of the set sx1 ,x2 , . . . d enters multipli-
catively. The constants sa0 ,a1 , . . . d are chosen to obtain
the best fit to the data. Mathematics implies that power-
law scaling is a precise description if and only if the
parameters sx1 ,x2 , . . . d have no characteristic values or
scale. A function is independent of the scale s if fsx /sd
= fs1/sdfsxd, which implies fsxd~xa. All other functions
have a scale, and the properties of the function depend
on the size of x relative to s. For example, the scale of
sin x is 2p. The constants of a power law sa0a1 , . . . d are
easily fit to data by a linear regression of the logarithm
of tE against the logarithms of the parameters.

The most commonly used scaling relations are power
laws based on experimental parameters such as input
power, plasma current, and plasma size. Less used but
more scientifically appealing scaling relations are based
on dimensionless parameters sConnor, 1984d. The di-
mensionless energy confinement time is the confinement
time times the cyclotron frequency of deuterium, V
;eB /md. Important dimensionless parameters are sad
the gyroradius of deuterium, r;sÎTmdd / seBd, divided
by the plasma radius, which is called r*; sbd the number
of bounces between collisions a deuterium ion makes
when trapped in the variation in the magnetic-field
strength on a magnetic surface, a ratio called 1/n*; and
scd b= k2m0p /B2l. In terms of these parameters,

VtE = a0r*
arn*

anbab. s124d

A. Electromagnetic radiation

• Although electromagnetic radiation is usually a sub-
dominant energy-loss mechanism for deuterium-
tritium sDTd fusion systems, electromagnetic radia-
tion limits the feasibility of non-DT fusion fuels and
the tolerable level of impurities in all fusion systems.

• The most important types of radiative losses from
magnetically confined plasmas are bremsstrahlung,
cyclotron, and atomic.

Electromagnetic radiation is a subdominant energy-
loss mechanism in a deuterium-tritium sDTd fusion
plasma operating at 20 keV with a low level of impuri-
ties. However, electromagnetic radiation limits the toler-
able level of impurities, the range of temperatures, and
the types of fuel sNevins, 1998d for which fusion energy
is feasible. Three types of radiative losses are important:
bremsstrahlung, cyclotron, and atomic.

Electromagnetic radiation arises when the current
density jW has both a nonzero curl and a time derivative.
The time derivative of the current density of a single

particle is jẆsxWd=qaWdsxW −xWpd, where xWpstd is the position of
the particle, aW =d2xWp /dt2 is its acceleration, and ds¯d is
the Dirac delta function. The rate at which a nonrelativ-
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istic particle of charge q loses energy H through electro-
magnetic radiation is given by the Larmor formula,

dH

dt
= −

q2a2

6pe0c3 , s125d

which is derived in the standard electrodynamics texts.
Bremsstrahlung, which in German means radiation

due to deceleration, arises from the electrostatic scatter-
ing of one charged particle by another. The power loss
due to bremsstrahlung is dominated by the scattering of
electrons by ions. The power loss per unit volume due to
scattering by ions of charge Ze with a number density nz

is proportional to Z2nzne
ÎTe. The typical photon emit-

ted in bremsstrahlung has an energy equal to the elec-
tron temperature. In plasmas of fusion interest there is
negligible reabsorption of bremsstrahlung radiation be-
cause the total radiated power is far below the black-
body level. An accurate derivation of bremsstrahlung is
given by Karzas and Latter s1961d.

The basic dependences and power loss of bremsstrah-
lung can be understood starting with the expression for
the acceleration of one charged particle by another, aW1

= sq1q2 /4pe0m1dsxW1−xW2d / uxW1−xW2u3. The maximum accel-
eration occurs at the point of closest approach of the
two particles, b;minsuxW1−xW2ud. The characteristic fre-
quency of the bremsstrahlung radiation is v=v /b, where
v is the particle velocity, which implies the characteristic
wave number satisfies kb=v /c. For nonrelativistic par-
ticles, v /c!1, the wavelength of the radiation is long
compared to the distance between the radiating par-
ticles. The time derivative of the current density of two

particles is jẆsxWd=q1aW1dsxW −xW1d+q2aW2dsxW −xW2d. Since the
wavelength of the radiation is long compared to the dis-
tance between the radiating particles, one can ignore

that distance and let jẆsxWd= sq1 /m1−q2 /m2dm1aW1dsxW −xW1d
using Newton’s third law to write m2aW2=−m1aW1. The ex-
pression for jW implies that radiation from electron-
electron scattering vanishes in the nonrelativistic limit
and that bremsstrahlung is primarily a result of electron-
ion scattering.

The change in energy of an electron with speed v that
passes by an ion that has a charge Ze at a distance b is
dH<sdH /dtdsb /vd, where dH /dt is given by the Larmor
formula, Eq. s125d, with the acceleration a
<sZe2 /4pe0med /b2. The bremsstrahlung power pb emit-
ted per unit volume is given by the number of electrons
per unit volume times the number of ions the electrons
pass per unit time. The number of ions of charge Z that
the electrons pass per unit time at a range between b
and b+db is nzv2pbdb, so pb<nzneedHv2pbdb. This
integral is proportional to 1/bmin with bmin the distance
of closest possible approach. In classical mechanics the
distance of closest possible approach is given by
sZe2 /4pe0d /bmin=mev

2 /2, but for electrons that have en-
ergies of importance for fusion systems this distance is
much smaller than the limit set by quantum mechanics,
which is bminmev<". Quantum effects determine the

closest possible approach when v /c.2Za, where the
fine-structure constant a;e2 / s4pe0c"d<1/137. The
typical energy of an emitted photon is "v<"v /bmin
<mev

2<T. The basic dependences of the emitted
power, Z2nzne

ÎTe, are obtained by combining the re-
sults.

Cyclotron radiation results from the acceleration of
electrons with velocity vW by the magnetic field, aW

=−se /medvW 3BW . The characteristic frequency of the asso-
ciated motion is the electron cyclotron frequency Ve
;eB /me, and this is the frequency at which cyclotron
radiation is emitted by an electron. A straightforward
application of the Larmor formula, Eq. s125d, gives the
power emitted per unit volume due to the cyclotron mo-
tion of Maxwellian electrons, pc=vpe

2 Ve
2T / s3pc3d. Since

kmv'
2 /2l is the energy in two independent components

of velocity, and the energy in three independent compo-
nents is 3

2T, one has kmv'
2 /2 / l=T. The plasma frequency

is vpe=Îe2ne / smee0d, which is the frequency with which
the electrons would oscillate if displaced en masse from
the ions. Thermodynamics implies that the emission of
electromagnetic waves due to the cyclotron motion can-
not exceed the energy flux leaving a blackbody in the
relevant frequency range. The energy flux leaving a
blackbody at frequencies less than v is Fbb
=v3T / s12p2c2d provided the energy per photon is far
less than the temperature, "v!T. This is the Rayleigh-
Jeans limit, which is the relevant limit when v,Ve. To
be consistent with thermodynamics, the plasma must re-
absorb the radiated power within a distance La
;4pFbb /pc= sVe /vpedsc /vped, which is a fraction of a
millimeter in a fusion plasma. Due to relativistic effects,
electrons also emit radiation at harmonics of the cyclo-
tron frequency with the emission at each higher har-
monic reduced by a factor T / smec

2d compared to the
previous harmonic. The power emitted by a region is
comparable to the blackbody flux Fbb up to a frequency
v that is set by the first cyclotron harmonic for which the
power can leave the plasma without strong reabsorption.
Accurate calculations of the power losses due to cyclo-
tron emission are complicated. Albajar, Bornatici, and
Engelmann s2002d give recent results and historical ref-
erences.

Atomic radiation arises from electrons switching
atomic levels and from the capture of free electrons into
bound states. Significant atomic radiation only arises if
the electron temperature is low enough for the atom or
ion to have bound electrons. The atomic radiation from
an element with a number density nz has the form pz
=nenzRzsTd, with RzsTd a function that is large at elec-
tron temperatures at which ionization occurs. The func-
tion RzsTd for a single element can have large variations
with multiple peaks. Under fusion conditions RzsTd is
negligible except for elements with high atomic num-
bers, such as iron. Functions RzsTd have been given by
Post et al. s1977d.

At a given impurity level, the power losses due to
bremsstrahlung and atomic radiation depend quadrati-
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cally on the plasma density, as does the nuclear power
input, so the nuclear power input minus the radiative
losses due to bremsstrahlung and atomic radiation can
be viewed as an effective power input, peff=n2feffsTd.
The power loss due to cyclotron emission and absorp-
tion is more complicated and in some features resembles
a diffusive transport process.

Fusion power is feasible only at low impurity levels. In
addition to the enhancement of electromagnetic radia-
tion, the ionization of impurities adds many electrons to
the plasma. These electrons exert a pressure and trans-
port energy but are unrelated to the production of fu-
sion power.

B. Kinetic theory

• Kinetic theory is needed to calculate transport coef-
ficients such as particle diffusivities, thermal conduc-
tivities, and bootstrap currents.

• Collisions in plasmas change the trajectories of par-
ticles diffusively. This is in contrast to collisions in
ordinary gases, which produce large abrupt changes
in the particle trajectories.

• Plasma confinement forces the distribution functions
of the particles to deviate from local Maxwellians.
The rate of entropy production that is required to
hold the distribution functions away from local Max-
wellians allows a simple calculation of transport co-
efficients in the low-collisionality limit.

Transport calculations are carried out using kinetic
theory. The fundamental quantity in kinetic theory is the
distribution function fsxW ,pW , td, which describes the evolu-
tion of a large group of identical particles. In a plasma,
there is a distribution function for the electrons and for
each of the ion species. The distribution function is the
density of particles in phase or momentum space sxW ,pW d.
In other words, the number of particles in a region of
momentum pW and ordinary space xW is the integral of the
distribution function over that region, efd3pd3x. A more
detailed treatment of kinetic theory than that given here
can be found in Helander and Sigmar s2002d and in most
plasma textbooks.

The evolution of the distribution function is given by
the kinetic equation

df

dt
= Csfd , s126d

where Csfd is the collision operator. The total time de-
rivative of kinetic theory is an extension of the concept
of the total time derivative of fluid mechanics, Eq. s44d,
which operates on functions gsxW , td in ordinary space, to
functions fsxW ,pW , td in phase space,

df

dt
=

]f

]t
+

dxW

dt
·

]f

]xW
+

dpW

dt
·

]f

]pW
, s127d

where ]f /]xW ;¹W f. Equation s127d can also be written as

df

dt
=

]f

]t
+

]

]xW
· SdxW

dt
fD +

]

]pW
· SdpW

dt
fD . s128d

If pW is the canonical momentum of Hamiltonian mechan-
ics, Eq. s128d follows from Eq. s127d because of Hamil-
ton’s equations dxW /dt=]H /]pW and dpW /dt=−]H /]xW . In
the presence of a magnetic field, the canonical momen-

tum is pW =mvW +qAW fEq. s191dg. If pW ;mvW , Eq. s128d fol-

lows because xẆ =pW /m and pẆ =qsEW +pW 3BW /md, so

s] /]xWd ·xẆ =0 and the momentum space divergence of pẆ is

zero, s] /]pW d ·pẆ =0.
Without collisions, the kinetic equation is called the

Vlasov equation, df /dt=0. The Vlasov equation is easily
understood. Given the distribution function at t= t0, the
distribution function at t= t0+dt is obtained by advancing
each particle in the distribution along its trajectory, xW
=xW0+ sdxW /dtddt and pW =pW0+ sdpW /dtddt. If fsxW0 ,pW0d is the
given distribution, then for an infinitesimal interval
of time, dt= t− t0, the distribution function is f„xW
− sdxW /dtddt ,pW − sdpW /dtddt…, which implies ]f /]t
=−sdxW /dtd ·]f /]xW − sdpW /dtd ·]f /]pW . The Vlasov equation is
a hyperbolic, partial differential equation that has one
characteristic. That characteristic is the trajectory of a
particle.

The collision operator is the momentum-space diver-

gence of a flux FW of particles through phase space sxW ,pW d,

Csfd = −
]

]pW
· FW . s129d

Collisions are caused by the graininess of the plasma, an
effect that is not directly described by the distribution
function fsxW ,pW d.

The graininess of the plasma leads to complicated
electric fields that scatter particles and cause the colli-

sional flux FW . The electric field at position xW due to a
charge q at xW1 is

EW sxW ,xW1d = −
q

e0
E ikW

k2eikW ·sxW−xW1d d3k

s2pd3 , s130d

which is demonstrated by checking that ¹W ·EW = sq /e0ddsxW
−xW1d, ¹W 3EW =0, and EW sxW →` ,xW1d=0. Note the Dirac delta
function has the representation

dsxW − xW1d =E eikW ·sxW−xW1d d3k

s2pd3 . s131d

The electric field that is obtained from a uniform density

n of charges, kEW l;eEW sxW ,xW1dnd3x1, is zero. However, the
root-mean-square electric field from a uniform density
of charge is not zero,

kE2l ; E EW sxW ,xW1d · EW sxW ,xW1dnd3x1, s132d

and can be written as
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kE2l = nS q

e0
D2E 1

k2

d3k

s2pd3 . s133d

This electric field causes accelerations DaW = sq /mdEW of
the particles, which for a fast-moving particle persist for
a time Dt=1/kv with v the speed of the particle. That is,
a particle has essentially random changes in its velocity,
DvW = sDaWdsDtd, separated by time intervals of order Dt.
These random changes scatter the velocity at an average
rate n= ksDvd2 /Dtl /v2. That is, n= ksq /md2E2Dtl /v2, which
can be written as

n <
nq4

m2e0
2

1

v3 E 1

k3

d3k

s2pd3 . s134d

The integral over wave numbers is logarithmically diver-
gent without a cutoff at large or at small wave numbers,

ln L ;E d3k

4pk2 = lnSkmax

kmin
D . s135d

The cutoff at large wave numbers kmax is given by the
distance of closest possible approach of two charged par-
ticles, bmin=1/kmax. As shown in the discussion of
bremsstrahlung, Sec. VI.A, bmin is determined by quan-
tum effects at fusion temperatures, bmin=" / smvd. The
cutoff at small wave numbers is given by the Debye
length, kmin=1/lD. The Debye length is lD

;Îe0T / snq2d. The Coulomb logarithm is lnL<17 in
laboratory plasmas.

The Debye length, lD;Îe0T / snq2d, is the shielding
distance for the electrostatic potential of a charge. What
is meant by this? Let F be the potential due to a charge

Q that is placed in a plasma. The electric force −qn¹W F
on a species with charge q and number density n is bal-

anced by the pressure force of that species ¹W snTd. In
equilibrium the temperature is constant, so the equilib-
rium density is n=n` exps−qF /Td. The Poisson equation
for the potential is then

¹2F = −
Q

e0
dsxWd −

qn`

e0
se−qF/T − 1d . s136d

Far from the charge, qF /T!1, and Poisson’s equation
becomes ¹2F=F /lD

2 . Consequently, for r@lD, the elec-
tric potential of a charge in a plasma is

F =
Q

e0

expS−
r

lD
D

r
. s137d

Conservation laws place three conditions on the colli-
sion operator Csfd, and the thermodynamic law of en-
tropy increase places a fourth condition. The discussion
of these conditions is simpler using phase-space coordi-
nates in which the momentum is pW =mvW rather than the

canonical momentum, pW =mvW +qAW , of Hamiltonian me-
chanics, so these are the phase-space coordinates that
will be used. The three conservation laws are for the
particle,

nsxWd ; E fd3p; s138d

momentum,

nmuW sxWd ; E pW fd3p; s139d

and energy conservation,

esxWd ; E p2

2m
fd3p . s140d

The entropy per unit volume is

s ; −E f lnsfdd3p . s141d

This definition of the kinetic entropy is shown below to
give results that are in agreement with the thermody-
namic entropy

The Maxwellian distribution fM has the maximum en-
tropy per unit volume s, with a fixed number of particles
per unit volume n, momentum per unit volume nmuW ,
and energy per unit volume, e= 1

2nmu2+ 3
2nT, which de-

fines the temperature T,

fMsxW ,pW d =
n

s2pT/md3/2 expS−
spW − muW d2

2mT
D . s142d

That is, one takes s+l1n+lW2 ·nmuW +l3e to its extreme by
considering variations in the distribution function df
while treating the l’s as constants. When the l’s, which
are called Lagrange multipliers, are chosen to obtain the
correct density, momentum, and energy, the Maxwellian
is obtained. To be consistent with thermodynamics, a
collision operator must cause the entropy to increase
except when the distribution function is a local Maxwell-
ian.

A collision operator, Csfd=−s] /]pW d ·F, that is simple
but obeys the four conditions has the phase-space flux

FW = −
nJ

2
· HspW − muW df + mT

]f

]pW
J . s143d

The collision frequency nJ in this simple collision opera-
tor is momentum independent. The correct collision op-
erator is considerably more complicated and in particu-
lar the collision frequency nJ is dependent on the energy
of the particles being scattered fEq. s134dg.

The simplified collision operator of Eq. s143d is useful
for illustrating the diffusive nature of collisions in plas-
mas. A distribution function that develops complicated
structures in momentum space can be smoothed arbi-
trarily quickly. More precisely, if the distribution func-
tion changes over a range of momenta Dp then that
change is smoothed out at a rate of order nsp /Dpd2.

The change in the entropy density ssxW , td at each point

in a plasma is due to an entropy flux FW s and the creation
of entropy by collisions ṡc. A differentiation of the en-
tropy density ssxW , td, Eq. s141d, with the use of df /dt
=Csfd and Eq. s128d, implies
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]s

]t
+ ¹W · FW s = ṡc. s144d

The entropy flux is FW s;−evWsln fdfd3p where vW =pW /m, and
the rate of entropy production by collisions is

ṡc ; −E lnsfdCsfdd3p . s145d

The definition of entropy per unit volume ssxW , td, Eq.
s141d, is consistent with the thermodynamic entropy if
and only if it satisfies three conditions.

s1d The entropy, esd3x, must be additive. That is, en-
tropy in a region that consists of two parts must be
the sum of the two entropies, a condition that s sat-
isfies.

s2d The entropy of an isolated system cannot decrease.
This condition implies ṡcù0 and is a constraint on
the collision operator. If the distribution function is

written in the form f= fM expsf̂d with fm defined so its
nsxWd, uW sxWd, and esxWd are the same as those of f, then
Eq. s143d for simplified collisional flux gives a posi-
tive entropy production as long as nJ is a positive
matrix,

ṡc =
mT

2
E ]f̂

]pW
· nJ ·

]f̂

]pW
fd3p . s146d

s3d The change in the energy due to a transfer of heat is
TdS.

By taking the time derivative of the energy per unit vol-
ume esxW , td;esp2 /2mdfd3p, one can show, using Eq.
s128d and df /dt=Csfd to eliminate ]f /]t, that the energy
flux is the sum of two parts: a part proportional to the

fluid velocity uW and a part equal to the heat flux FW h

;e 1
2msvW −uW d3fd3p, where vW =pW /m. The entropy flux FW s is

also the sum of two parts when the plasma is near ther-

modynamic equilibrium, which means f= fM expsf̂d with

uf̂ u !1. One part of the entropy flux is proportional to

the fluid velocity uW and the other part is FW h /T. In a con-
tinuum system the temperature is well defined only near
thermodynamic equilibrium, and in that limit the third
condition on the entropy is satisfied.

Thermodynamics gives a simple but rigorous expres-
sion for the heating power P required to maintain a sta-
tionary, uW =0, steady-state plasma,

Psctd = Tsctd E ṡcd
3x , s147d

where the volume integral is over a region enclosed by a
flux surface ct, and Psctd is the total heating power in
that region. To prove this equation, note that the power
per unit volume that must be added to balance the heat

flux is ėh=¹W ·FW h, while the entropy created by collisions

must satisfy ṡc=¹W · sFW h /Td.

Equation s147d coupled with Eq. s146d implies the dis-
tribution functions must be close to local Maxwellians
on each pressure surface to obtain the confinement
needed for fusion ignition. The required energy confine-
ment time in a fusion power plant is about 102 ion colli-
sion times and 104 electron collision times. The mainte-
nance of near Maxwellians requires the trajectories of
charged particles to remain close to constant-pressure
surfaces during the time between collisions.

Thermodynamics relates the collisional entropy pro-
duction ṡc and the plasma transport in an even more
complete form. Given ṡc, one can read off the transport
coefficients. For simplicity, assume that at each point in
the plasma the distribution function is well approxi-
mated by a stationary Maxwellian, so the flow velocity
uW =0. The textbook thermodynamic equation, dU=TdS
−pdV+mdN, relates thermodynamic quantities of an en-
tire system. Plasma studies use the energy e;U /V, the
entropy s;S /V, and the number of particles n;N /V
per unit volume. Substituting these definitions into the
thermodynamic equation yields sde−Tds−mdndV=−se
−Ts+p−mnddV. The thermodynamic properties of a
plasma are independent of the plasma volume V, so
both sides of this equation must be zero. The chemical
potential m can be evaluated for a Maxwellian using m
= se−Ts+pd /n, and one finds

m

T
= c0 + lnS n

T3/2D s148d

with c0 a constant. Consequently, a stationary Maxwell-
ian has the form

fM = cM expSm − mv2/2

T
D , s149d

where cM is a constant. The thermodynamic equation
de=Tds+mdn implies that the time rate of change of the
entropy density is ]s /]t= s1/Td]e /]t− sm /Td]n /]t. Now

]n /]t=−¹W ·GW with GW the diffusive particle flux, and

]e /]t=−¹W ·FW h with FW h the heat flux. Therefore

]s

]t
= − GW · ¹W

m

T
+ FW h · ¹W

1

T
− ¹W · S 1

T
FW h −

m

T
GWD . s150d

The divergence term on the right-hand side of Eq. s150d
is the divergence of the entropy flux, but the other terms
are due to the irreversible production of entropy, which
means production by collisions. Since the chemical po-
tential and the temperature depend only on the ct coor-
dinate, the collisional entropy production is

ṡc = − G
dm/T

dct
+ Fh

d1/T

dct
, s151d

with G;GW ·¹W ct and Fh;FW h ·¹W ct. The quantities
−dsm /Td /dct and ds1/Td /dct are called thermodynamic
forces, and Fh and G are the conjugate fluxes. Near ther-
modynamic equilibrium, the fluxes are proportional to
the forces, G=−Dndsm /Td /dct−Dcds1/Td /dct and Fh
=Dcdsm /Td /dct+DTds1/Td /dct. The cross terms, the

1110 Allen H. Boozer: Physics of magnetically confined plasmas

Rev. Mod. Phys., Vol. 76, No. 4, October 2004



terms proportional to Dc, have the same coefficient due
to the symmetry of the collision operator, or more gen-
erally due to Onsager symmetry sOnsager, 1931d. Conse-
quently

ṡc = DnSdm/T

dct
D2

+ 2Dc
dm/T

dct

d1/T

dct
+ DTSd1/T

dct
D2

. s152d

By calculating ṡc, one can obtain all three independent
transport coefficients.

Much freedom exists in the choice of variables jj that
are used to describe the distribution function. The left-
hand side of the kinetic equation df /dt=Csfd becomes
df /dt=]f /]t+ojs]f /]jjdsdjj /dtd. All that is needed is
knowledge of how each of the variables changes along
the trajectory of a particle, djj /dt. For example, f is a
solution of the collisionless kinetic equation df /dt=0,
the Vlasov equation, if and only if its variables are con-
stants of the motion of the particles, djj /dt=0. In a sys-
tem that is independent of time, fsHd is a solution to the
Vlasov equation where H is the Hamiltonian or energy
of a particle.

The calculation of density perturbations using kinetic
theory is subtle when the unperturbed distribution func-
tion is given as a function of a constant of the motion
such as the Hamiltonian, f0sHd. Consider a collisionless
plasma that is perturbed by a change in the electric po-
tential, dF. The distribution function in the presence of
the perturbation is f= f0sHd+df. The density perturba-
tion that is caused by the perturbation dF is not edfd3v,
but dn=edfd3v+eqdFsdf0 /dHdd3v. That is, the total
change in the distribution function is

Df ; df + qdF
df0

dH
. s153d

To understand the reason, suppose the plasma is per-

turbed by an electric potential dF=F̃ sinskx−vtd. The
kinetic equation of a collisionless plasma, df /dt=0, can
be solved in two ways, and a subscript of v or H will be
placed on df to indicate which set of variables, sx ,v , td or
sx ,H , td, is used to find the solution. First, using variables
sx ,v , td one can write ddfv /dt=]dfv /]t+v]dfv /]x
=−sqE /mddf0 /dv since dv /dt=qE /m. This equation im-
plies

dfv =
k

kv − v

qdF

m

df0

dv
. s154d

Second, using variables sx ,H , td one can write ddfH /dt
=]dfH /]t+v]dfH /]x=−sdf0 /dHddH /dt where the change
in the energy of a particle is dH /dt=q]dF /]t. The solu-
tion is

dfH =
v

kv − v
qdF

df0

dH
. s155d

These two solutions are not equal, even after making the
substitution df0 /dv= sdf0 /dHdmv. Indeed, dfv=dfH
+qdFdf0 /dH. The resolution of this paradox is that the
unperturbed Hamiltonian H0 goes to H=H0+qdF. A

first-order Taylor expansion implies f0sHd= f0sH0d
+qdFdf0 /dH0. The term qdFdf0 /dH is called the adia-
batic part of the plasma response.

C. Landau damping and quasilinear diffusion

• A collisionless, but unidirectional, transfer of energy
can occur between a wave and the particles that form
a plasma. The sign of this transfer, which is called
Landau damping, is determined by the sign of the
velocity derivative of the distribution function at the
place where the particle velocity equals the phase
velocity, v /k, of the wave.

• If the energy density of waves has a continuous de-
pendence on their phase velocity, v /k, the waves
cause a collisionless diffusion of the particles whose
velocities resonate with the phase velocities of the
waves. This is called quasilinear diffusion.

In fusion, and many other plasmas of interest, the col-
lision frequency is small compared to the time it takes a
charged particle to cross a distance comparable to the
plasma size. Since collisional effects are weak, it is natu-
ral to study the Vlasov equation, df /dt=0. This hyper-
bolic partial differential equation has the particle trajec-
tories as its single characteristic. In other words, the
distribution function is carried along by the particle mo-
tion, so any function of the constants of motion is a so-
lution to the Vlasov equation.

Since the Vlasov equation, df /dt=0, contains only in-
formation about the particle trajectories, which are time
reversible, it is natural to assume that its solutions are
themselves time reversible. This turns out to be false in
practice, with the sense of time determined by the na-
ture of the initial conditions. Solutions to the Vlasov
equation can evolve from smooth initial conditions into
functions with arbitrarily complicated structures. Plasma
observations have finite resolution, and the averaging
that is implicit in the observation process leads to irre-
versibility. These time-irreversible collisionless effects
are important in plasma physics for the damping of ex-
ternally driven waves, which gives plasma heating, and
for amplifying plasma waves, which gives instabilities.
The two collisionless phenomena that will be discussed
are Landau damping sLandau, 1946d and quasilinear dif-
fusion sVedenov, Velikhov, and Sagdeev, 1961; Drum-
mond and Pines, 1962d.

Landau damping is a collisionless, but unidirectional,
transfer of energy between an electromagnetic wave and
a plasma. It is central to the theory of plasma heating by
waves and the destabilization of electromagnetic pertur-
bations by non-Maxwellian distributions of the plasma
species.

To understand Landau damping, assume that at t=0
the distribution function of a plasma species is indepen-
dent of position, f0svd, but a weak electric field is intro-
duced that for t.0 has the form
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E = Ek cosskx − vtd . s156d

The problem has only one spatial coordinate x and one
velocity coordinate, which is vx, but will be denoted by v
for simplicity. The perturbed Vlasov equation, df /dt=0,
with f= f0+df, is

]df

]t
+ v

]df

]x
+

q

m
E

]f0

]v
= 0. s157d

The solution for the perturbed distribution function df
that obeys the initial condition that df=0 is

df =
qEk

m

]f0

]v

sinskx − vtd − sinskx − kvtd
v − kv

, s158d

which is nonsingular though growing at v=v /k,

sdfdv=v/k = −
]f0

]v

qE

m
t . s159d

Particles moving at the phase velocity of the perturba-
tion, v=v /k, see a time-independent electric field and
are accelerated by it. A spatial average is defined by the
limit as L goes to infinity of kgsxdl;s1/2Lde−L

+Lgdx. The
spatially averaged power going to the plasma is

kPl =E vkqEdfldv . s160d

Using the trigonometric identity sinskx−kvtd=sinskx
−vtdcosfsv−kvdtg+cosskx−vtdsinfsv−kvdtg, one has

kqEdfl = −
q2Ek

2

2m

]f0

]v

sinfsv − kvdtg
v − kv

. s161d

The velocity integral that must be performed to ob-
tain the power, Eqs. s160d and s161d, has the form

E Fsvd
sinfsv − kvdtg

v − kv
dv =E FFv

k
S1 +

j

vt
DG sin j

j

dj

uku
,

s162d

where j;skv−vdt. The integral of sinsjd /j from minus
to plus infinity is p, so when vt→`

lim
vt→`

E Fsvd
sinfsv − kvdtg

v − kv
dv = p

Fsv/kd
uku

. s163d

The spatially averaged power is then

kPl = − p
q2Ek

2

2muku
Sv

]f0

]v
D

v=v/k
. s164d

Power is transferred to the plasma spositive powerd if
there are fewer particles at high energy than low and to
the electric perturbation san incipient instabilityd if there
are more particles at high energy than low.

One can simplify some of the analysis of Landau

damping by writing it in the form df= f̃ expfiskx−vtdg.
The critical step in Landau damping is then the determi-
nation of the imaginary part of what appears to be a real
integral. The theory of Laplace transforms implies the
imaginary part of the integral, the Landau integral, is

SE f8svd
v − kv

dvD
imag

= − i
p

uku
f8Sv

k
D . s165d

Landau damping is closely related to a second phe-
nomenon, quasilinear diffusion, which is important for
understanding the interaction of waves with plasmas and
the effect of short-wavelength perturbations on the
plasma. If one identifies the distribution function f0 of
the Landau damping discussion with the spatially aver-
aged distribution function, f0;kfl, then a spatial average
of the Vlasov equation, df /dt=0 fEq. s128dg with p
=mv, gives

]f0

]t
= −

]

]v
K q

m
EdfL . s166d

Equation s161d gives an expression for kqEdfl, which is
proportional to ]f0 /]v. Therefore

]f0

]t
=

]

]v
Dsvd

]f0

]v
, s167d

where the velocity diffusion coefficient is

D =
q2Ek

2

2m2

sinfsv − kvdtg
v − kv

. s168d

This expression for the velocity-space diffusion is not
useful unless there is a spectrum of perturbations with
different k’s. The spatially averaged energy density of a
single wave is se0 /2dkE2l= se0 /4dEk

2. If eEsv /kddk is the
energy per unit volume of a spectrum of waves, one can
integrate Eq. s168d over k using the integration formula
of Eq. s163d to obtain

D =
2pq2

e0m2

Esvd
uvu

. s169d

The quantity vskd /k is the phase velocity of the electric
perturbation, so a perturbation diffuses particles that
have a velocity equal to the phase velocity.

Quasilinear diffusion is closely related to the stochas-
ticity of magnetic-field lines that was discussed in Sec.
III.A. In principle, the equations of mechanics are re-
versible. However, when stochastic, trajectories that
have an infinitesimal initial separation increase that
separation exponentially with distance along the trajec-
tories. If the trajectories are resolved to finite accuracy,
then the information is quickly lost that would be
needed to launch the time-reversed trajectories.

The spatial averaging that is involved in deriving the
quasilinear diffusion coefficient, destroys information
and allows an entropylike quantity s0;−ef0 ln f0d3p to
increase. However, s0 is not the entropy density, nor
even the spatial average of the entropy density, s
;−ef ln fd3p. The spatially averaged entropy density ksl
cannot change if f is a solution to the Vlasov equation,

df /dt=0 fEq. s144dg. Let f= f0 expsf̂d, then kexpsf̂dl=1

since kfl= f0. Assuming f̂ is small, the relation between

ksl and s0 is ksl=s0− 1
2 ekf̂2lf0d3p. Consequently s0 must

increase if the magnitude of f̂ does, to avoid a change in
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ksl. Actually, the complicated velocity-space structure

that f̂ develops, coupled with the diffusive nature of

plasma collisions, means that f̂ may not reach a large
amplitude even when the fractional change in the
volume-averaged entropy density is of order unity.

Quasilinear diffusion can represent the heating of a
plasma by a fluctuating electric field even in steady state.
Of course for a steady state in the presence of heating,
there must be a cooling term in the kinetic equation,
such as ]f0 /]t=]sncvf0d /]v, where 2ncsvd is the cooling
rate. For this cooling term, the volume-averaged distri-
bution function relaxes to ] ln f0 /]sv2 /2d=−nc /D, which
has the shape of a Maxwellian with an effective tem-
perature Teff /m;D /nc in velocity regions where D /nc is
independent of velocity.

D. Drift kinetic theory

• The single characteristic of the Vlasov operator,
df /dt fEq. s127dg, is the trajectories of the particles.
Consequently, one can use approximations to the
particle trajectories to simplify kinetic calculations.

• Charged particles make a circular gyration about
magnetic-field lines. When the radius of gyration is
small compared to the spatial variation of the electric
and magnetic fields, the magnetic moment, m
=mv'

2 /2B, is a constant of the motion.

• When the gyration radius is small, the particle trajec-
tory can be accurately approximated by tracking the
center of the circle, xWg, about which the particle gy-
rates, the guiding center. The guiding center drifts at
a velocity vWg given by Eq. s181d. The equation of mo-
tion is first order, dxWg /dt=vWg, and not the usual
second-order equation, md2xW /dt2, equal to a force.

• The drift velocity of the gyrocenters is also given by
a Hamiltonian, Eq. s195d, which has only four ca-
nonical variables su ,w ,pu ,pwd, Eqs. s199d and s200d,
instead of the six canonical variables of the full tra-
jectories. The form of the Hamiltonian for the drift
motion demonstrates that variation in the magnetic-
field strength on the magnetic surfaces is the primary
determinant of the confinement properties of the
particle trajectories.

• Particles with a sufficiently small ratio of their veloc-
ity parallel to the magnetic field, vi, to their total
velocity v are trapped between maxima of the
magnetic-field strength along a magnetic-field line.
These trapped particles drift from one field line to
another conserving their action, J= rmvid,.

The Vlasov operator df /dt in the kinetic equation is
determined by the trajectories of the particles, and the
determination of these trajectories is a major difficulty
in solving the kinetic equation. Charged particles in a
magnetic field move in circles with a gyration frequency
V;qB /m, Fig. 10, which makes a direct calculation in-
efficient when the circles are small, as they are in a fu-
sion plasma. In addition to being inefficient, a direct cal-

culation obscures fundamental properties of the
trajectories. For example, the confinement properties of
particle trajectories are essentially determined by the
variation of the magnetic-field strength on the constant-
pressure surfaces.

This section derives the asymptotic expressions for the
particle trajectories sAlfvén, 1940d as well as the associ-

FIG. 10. sColord Orbit of a charged particle and its guiding
center: sad A charged particle gyrates in a circle about a
straight magnetic-field line while moving along the line; sbd the
instantaneous center of this circle is the guiding center xWg, and
the difference between the position of the particle xW and the
guiding center is the vector gyroradius rW ; scd a uniform electric
field perpendicular to the magnetic field causes the particle
velocity, and hence its gyroradius, to be slightly larger on one
side of its gyro-orbit than the other, causing a drift across the
magnetic-field lines.
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ated kinetic theory, which holds when the circles made
by charged-particle orbits in a magnetic field are smaller
than the scale of field variations. The basic results are as
follows: s1d the magnetic moment,

m =
mv'

2

2B
, s170d

is a constant of the motion with v' the magnitude of the

velocity components perpendicular to BW . The invariance
properties of m, which is an adiabatic invariant, are dis-
cussed in Sec. VI.D.2. s2d The center of the circle, xWg,
about which a particle gyrates sFig. 10d, drifts at a veloc-
ity vWg=dxWg /dt. This velocity is called the guiding-center
or drift velocity, and dxWg /dt=vWg gives a first-order ordi-
nary differential equation for the center’s trajectories.
The guiding-center velocity is given by Eq. s181d as well
as by a drift Hamiltonian, Eq. s195d. The Hamiltonian of
the drift motion, Sec. VI.D.3, has only four canonical
variables su ,w ,pu ,pwd—the poloidal and toroidal angles
of Boozer coordinates, Eq. s58d and their conjugate mo-
menta fEqs. s199d and s200d; Boozer, 1984bg. This Hamil-
tonian formulation was utilized in a code by White and
Chance s1984d. Their code has been the basis of numer-
ous investigations of phenomena that depend on particle
drift. In addition to the canonical formulation of the
drift equations, which is emphasized here, Littlejohn
s1981d has given an important noncanonical, though
Hamiltonian, treatment based on Lie theory.

The velocity-space coordinates of the guiding-center
motion, which simplify the kinetic equation, df /dt
=Csfd, are the Hamiltonian H, which is the energy, and
the magnetic moment m, where H=mvi

2 /2+mB+qF. An
average over the phase angle q of the circular gyromo-
tion of the particles gives the drift equations. The
velocity-space volume element in cylindrical velocity-
space coordinates is d3v=v'dv'dqdvi. Using
sH ,m ,q ,xWd as coordinates, dH=mvidvi, so

d3v =
B

m2o
±

dHdmdq

uviu
, s171d

where the o± means that the sum is taken over the sign
of velocity along the magnetic field, vi. In drift kinetic
theory, one can integrate over the gyrophase q, which is
equivalent to replacing dq in Eq. s171d by 2p. The drift
kinetic equation is obtained by calculating
dfsH ,m ,xW , td /dt and setting dxW /dt=vWg, the drift velocity
of the guiding centers,

df

dt
=

]f

]t
+ vWg · ¹W f +

dH

dt

]f

]H
= Csfd , s172d

where the energy exchange between the particles and
the electromagnetic fields, dH /dt, is given by Eq. s196d.

The use of drift kinetic theory to calculate flows re-
quires care. The current density is not qevWgfd3v, as one
would naively expect, but

jW = qE vWgfd3v − ¹W 3 Sb̂E mfd3vD . s173d

The second term is called the magnetization current and
arises, as does a magnetization current in a solid, from
the magnetic moments of the particles that constitute
the medium sJackson, 1999; see Fig. 11d. The actual mag-
netic moment produced by the circular gyromotion is

mW = − mb̂ . s174d

The definition of the magnetic moment of a current dis-

tribution is mW ; 1
2 exW 3 jWd3x, which for a charged particle

moving in a gyro-orbit is mW = sq /2drW 3vW with rW the vector
gyroradius fEq. s177dg.

1. Alfvén’s guiding-center velocity

Alfvén s1940d derived an expression for the guiding-
center or drift velocity that follows from the expression
for the trajectories of a charged particle in given electric
and magnetic fields,

FIG. 11. sColord Magnetization drift: The magnetic field is out
of the figure. In the presence of a density gradient, the number
of particles moving in one direction perpendicular to both the
magnetic field and density gradient differs from the number of
particles moving in the opposite direction. This leads to a
divergence-free flow of the particles in the BW 3¹W n direction
even if all the particles are moving in perfect circles. This flow
is called the magnetization drift.
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m
dvW

dt
= qsEW + vW 3 BW d . s175d

The position of the particle is given by dxW /dt=vW . In a
uniform magnetic field with no electric field, a particle
moves in a circle at the frequency

V ;
qB

m
, s176d

with the circle having a radius sFig. 10d

rW ;
b̂ 3 vW

V
, s177d

where b̂;BW / uBW u. The center of the circle xWg, which is
called the guiding center, moves with a velocity vi

; b̂ ·vW parallel to the magnetic field. The position of the
charged particle is sFig. 10d

xW = xWg + rW . s178d

The addition of a constant electric field perpendicular
to the magnetic field causes the guiding centers to drift

in the EW 3BW direction sFig. 10d. Let

vWE3B ;
EW 3 BW

B2 , s179d

which is independent of position and time if EW and BW

are. If EW ·BW =0, Eq. s175d can be written as msd /dtdsv
−vWE3Bd=qsv−vWE3Bd3BW . The motion of a charged par-
ticle in a constant electric field that is perpendicular to
the magnetic field lines is identical to the motion without
the electric field in a frame of reference moving with the

velocity vW =EW 3BW /B2.
The properties of the trajectories become far more

complicated when the particles move in electric and
magnetic fields that depend on position and time. How-
ever, Eq. s178d can be viewed as defining the guiding
center of a particle in arbitrary magnetic and electric
fields, and the exact motion of the guiding center,

dxWg

dt
= vib̂ +

EW 3 b̂

B
+ vW 3

d

dt
S b̂

V
D , s180d

is obtained using Eqs. s175d, s177d, and s178d.
When the spatial variation of the electric and mag-

netic fields is on a scale much longer than the gyroradius
urW u, particles can be tracked by following the velocity of
the guiding center averaged over the rapid gyromotion,
vWg;kdxWg /dtl. The expression for the guiding-center ve-
locity is sAlfvén, 1940d

vWg = vib̂ +
b̂

V
3 Svi

2kW + vi

]b̂

]t
+

v'
2

2
¹W B

B
D +

EW 3 BW

B2 ,

s181d

where the curvature of the magnetic-field lines is

kW ; b̂ · ¹W b̂ , s182d

with b̂;BW / uBW u. The curvature of a pure toroidal field

BW = sm0G /2pRdŵ is kW =−R̂ /R since dŵ /dw=−R̂. The term

involving ]b̂ /]t in the guiding-center velocity is usually

dropped, since it is small if the time scale T over which b̂
varies is long compared to the characteristic time for a
particle to cross the system R /v.

In time-independent magnetic and electric fields,
Alvén’s expression for the guiding-center velocity can be
written in an alternative form, which simplifies the
theory of particle confinement. One can easily show
sMorozov and Solov’ev, 1966d that

vWg =
vi

B
¹W 3 sAW + riBW d s183d

has the same drift across the magnetic field as Eq. s181d.
The parallel gyroradius is defined by

risH,m,xWd ;
vi

V
, s184d

where the energy H= 1
2mvi

2+mB+qF and the magnetic
moment m are treated as constants. That is, the curl of vi

is calculated holding the energy H and the magnetic mo-
ment m constant. The trajectories are obtained by solv-
ing first-order equations for the guiding-center position,
dxWg /dt=vWg. The only difficulty in the integration is at
turning points of the parallel motion, where vi passes
through zero and changes its sign. This difficulty can be
removed by the Hamiltonian formulation; see Sec.
VI.D.3.

The terms in Alfvén’s expression for the drift of the
guiding center can be understood by analogy to the E

3B drift fEq. s179dg. If a force FW is applied to a charged
particle gyrating in a magnetic field, then the same argu-
ment that led to the E3B drift yields a drift velocity

vWF3B;FW 3BW / sqB2d. If the magnetic-field lines have a

nonzero curvature kW , the centrifugal force, FW c=−mvi
2kW ,

gives the curvature drift. If the magnetic-field strength
varies, the quantity mB acts like a potential energy, giv-

ing the ¹B force, FW ¹B=−m¹W B, and an associated drift.
The only part of the derivation of the guiding-center

velocity, Eq. s181d, that is not obvious is the part of vWg

perpendicular to BW that follows from the last term in Eq.
s180d. This part of vWg is given by

b̂ 3 HvW 3
d

dt
S b̂

V
DJ = vWb̂ ·

d

dt
S b̂

V
D − vi

d

dt
S b̂

V
D . s185d

One can let d /dt=] /]t+vib̂ ·¹W +vW' ·¹W ' for b̂;BW / uBW u and

V;qB /m have no velocity dependence. Since b̂ is a unit

vector, b̂ ·db̂ /dt=0 and
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b̂ 3 HvW 3
d

dt
S b̂

V
DJ = vW'

d

dt
S 1

V
D −

vi

V

db̂

dt
. s186d

The direction of the velocity perpendicular to the mag-
netic field changes over a gyroperiod, so kvW'l=0 in low-
est order, and

KvW'

d

dt

1

V
L =

v'
2

2
¹W '

1

V
. s187d

The gyrophase average is thus

K vi

V

db̂

dt
L =

vi
2

V
b̂ · ¹W b̂ +

vi

V

]b̂

]t
. s188d

2. Magnetic-moment conservation

The integration of the guiding-center velocity, Eq.
s181d, to obtain xWg is greatly simplified by the existence
of an adiabatic invariant, the magnetic moment, which
has the approximate form m=mv'

2 /2B.
An important general principle of Hamiltonian me-

chanics, which is rarely taught in mechanics courses, is
that if the parameters that define a periodic motion of a
particle change sufficiently slowly, then the action of the
periodic motion is conserved. If pWV are oscillating com-
ponents of the canonical momentum of the particle
Hamiltonian and xWV are the conjugate canonical coordi-
nates, then the action is given by an integration over the
periodic motion, rpWV · sdxWV /dtddt. Such invariants are
called adiabatic invariants, and the magnetic moment m
is an example. The conservation properties of adiabatic
invariants is a complicated subject sKruskal, 1962d,
closely related to the existence of a magnetic surface
ssee Sec. III.Ad. The basic result is that if the parameters
of a Hamiltonian are changed on a time scale T, which is
slow compared to the frequency V of a periodic motion,
then the action of that motion is conserved with expo-
nential accuracy. That is, the variation of the action is of
order exps−VTd.

Canonical momenta are defined using the Lagrangian
formulation of the equations of motion. The Lagrangian
of a particle in electric and magnetic fields is

LsxẆ ,xWd =
m

2
xẆ2 + qxẆ · AW − qF , s189d

where xẆ ;dxW /dt, BW =¹W 3AW , and EW =−]AW /]t−¹W F. The ca-
nonical momenta are defined by

pW ;
]L

]xẆ
. s190d

The time derivatives of the canonical momenta are pẆ
=]L /]xW .

The Lagrangian gives the standard equations of mo-
tion, Eq. s175d, in Cartesian coordinates. In these coor-
dinates, the canonical momentum, pW =]L /]vW , is

pW = mvW + qAW , s191d

where vW ;xẆ . The gradient of the Lagrangian is ]L /]xW

=q¹W svW ·AW d−q¹W F. A vector identity implies ¹W svW ·AW d=vW

3 s¹W 3AW d+vW ·¹W AW , where vW is not differentiated since it is
an independent coordinate in a Lagrangian analysis.

Now, dpW /dt=mdvW /dt+q]AW /]t+vW ·¹W AW , so pẆ =]L /]xW is

equivalent to mdvW /dt=qsEW +vW 3BW d.
The beauty of the Lagrangian approach is the ease of

finding the equations of motion in arbitrary sct ,u ,wd co-
ordinates, xWsct ,u ,w , td. If L is independent of a coordi-
nate w, as it is in axisymmetric plasmas, then pw is a
constant of the motion, ṗw=]L /]w=0. The w component
of the canonical momentum is

pw = mvW ·
]xW

]w
+ qAW ·

]xW

]w
. s192d

This equation is obtained from pw;]L /]ẇ using dxW /dt

=]xW /]t+ s]xW /]ctdċt+¯, which implies ]sdxW /dtd /]ẇ

=]xW /]w. The poloidal flux is cp=−2pAW · s]xW /]wd using

Eq. s6d for AW with the gauge g=0. The constancy of pw

ensures the confinement of particles of sufficiently small
velocity. Particles cannot cross the field lines by a dis-
tance greater than their gyroradius in the poloidal field,

BW p;¹W sw /2pd3¹W cp, alone.
The definition of the adiabatic invariant that is known

as the magnetic moment is the integral

m ;
q

m

1

2p
R pW' ·

dxW'

dt
dt s193d

over a gyroperiod where pW is the canonical momentum,

pW ;mvW +qAW . The quantity mm /q is the action of the gy-
romotion.

The approximate expression for the adiabatic invari-
ant, m=mv'

2 /2B, which is correct to lowest order in the
gyroradius to system size, is obtained from Eq. s193d
using rvW' · sdxW' /dtddt= s2p /Vdv'

2 and rAW · sdxW' /dtddt

=−rAW ·dxW'. The minus sign arises because a positive
charge moves about its circular orbit in a clockwise di-
rection, while the convention for a line integral is coun-

terclockwise. The integral rAW ·dxW'=eBW ·daW =pBurW u2. The
approximate expression for the magnetic moment, m
=mv'

2 /2B, follows.
The magnetic moment is proportional to the magnetic

flux enclosed by the circular gyromotion, so magnetic-
moment conservation can be viewed as flux conserva-
tion. The conservation of the magnetic moment is also
equivalent to a fixed Landau level of the quantum
theory of particle motion in a magnetic field. That is, the
adiabatic invariance of m follows from the adiabatic ap-
proximation of quantum mechanics. The lowest-order
conservation of m can also be demonstrated by differen-
tiating the expression for m of Eq. s170d with respect to
time.
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Just as magnetic surfaces can only be broken by reso-
nant perturbations, the invariant m can only be broken if
there is a resonance between the time variation of the
gyromotion and the gyromotion itself. The Fourier
transform of an analytic function efstd exps−iVtddt
,exps−VTd, where T is the distance of the closest pole
of fstd from the real axis; see Sec. V.D.1. T is the charac-
teristic time scale for variations. It is sometimes said that
the magnetic moment is conserved to all orders in e
;1/Vt. What is meant is that if the function exps−1/ed is
Taylor expanded in e about e=0, then every term in the
Taylor series is zero. The function exps−1/ed is the most
important example in physics of a function that is not
zero but has a Taylor series that is identically zero. It
serves as a warning that an expansion in a small param-
eter can be subtle. A complicated variation in the mag-
netic and electric fields across the field lines is irrelevant
to m conservation if the total time derivatives of these

fields, d /dt=] /]t+vib̂ ·¹W , are small compared to the gy-
rofrequency V. The irrelevance of variations across the
magnetic field to the conservation of m is important for
the validity of gyrokinetic theory, which is discussed in
Sec. VI.G.

The constancy of the magnetic moment implies that
the number of independent variables in a guiding-center
calculation is four instead of the six required for the full
particle motion. The four variables can be taken to be
the three components of the guiding-center position and
the energy. The energy, or Hamiltonian, of a charged
particle is

H ;
1
2

mv2 + qF . s194d

Magnetic-moment conservation implies the energy can
also be written as

H =
1
2

mvi
2 + mB + qF . s195d

As shown below, the gyrophase averaged change in the
energy is

KdH

dt
L =

]

]t
smB + qFd − vi

]Ai

]t
, s196d

which can be integrated along with xWg to obtain the en-
ergy H. The parallel velocity is given by the energy and
magnetic moment,

vi = ± Î2msH − mB − qFd . s197d

Equation s196d for the gyrophase averaged energy
change can be derived by writing the Hamiltonian in its

canonical variables, HspW ,xW , td= spW −qAW d2 / s2md+qF, with

the particle velocity vW = spW −qAW d /m. Hamilton’s equa-
tions imply that dH /dt=]H /]t, so

dH

dt
= qS ]F

]t
− vW ·

]AW

]t
D . s198d

The only subtle term in the derivation of Eq. s196d is

kqvW' ·]AW /]tl. This term is calculated using the same

technique as that for rAW ' · sdxW' /dtddt in the magnetic

moment. That is, kvW' ·]AW /]tl=−sV /2ds]B /]tdurW u2.

3. The drift Hamiltonian

When the scale of the spatial and temporal variation
of the magnetic and electric fields is long compared to
the gyroradius and the gyrofrequency of a particle, the
motion of the particle can be tracked using the drift
Hamiltonian, which is the Hamiltonian for the guiding-
center motion. This Hamiltonian is the energy, Eq. s195d,
Hspu ,pw ,u ,w , td= 1

2mvi
2+mB+qF. The canonical mo-

menta of the drift Hamiltonian are

pu =
m0I

2pB
mvi +

q

2p
ct, s199d

and

pw =
m0G

2pB
mvi −

q

2p
cp. s200d

The sct ,u ,wd coordinate system is the Boozer coordinate
system, Eq. s58d, with the subscripts omitted to simplify
the notation.

To obtain the drift Hamiltonian and its canonical co-
ordinates, we start with a Lagrangian for the guiding-
center motion that was given by Taylor s1964d,

LTsxW ,xẆd =
1
2

msxẆ · b̂d2 + qxẆ · AW − smB + qFd , s201d

where b̂;BW /B. To lowest order in the ratio of gyrora-
dius to system size, its trajectories agree with those given
by Alfvén’s expression for the guiding-center motion
fEq. s181dg. The validity of the Taylor Lagrangian is
demonstrated by an explicit calculation. The canonical

momentum pW ;]LT /]xẆ is pW =mvib̂+qAW . The energy or

Hamiltonian is H;pW ·xẆ −LT, which gives Eq. s195d. The
time derivative of the canonical momentum is dpW /dt

=mv̇ib̂+mvidb̂ /dt+qdAW /dt, but db̂ /dt.]b̂ /]t+vikW with

kW ; b̂ ·¹W b̂, and dAW /dt=]AW /]t+vW ·¹W AW . The equations of
motion in Lagrangian dynamics are dpW /dt=]LT /]xW . The

gradient of the first term in LT is zero, that is, ¹W svW · b̂d
.0. This follows from ¹W svW · b̂d=vW 3 s¹W 3 b̂d+vW ·¹W b̂, but b̂

3 s¹W 3 b̂d=−kW and vW ·¹W b̂.vikW . Using ¹W svW ·AW d=vW 3BW

+vW ·¹W AW , one has ¹W LT.qvW 3BW +qvW ·¹W AW −¹W smB+qFd.
Putting the pieces together, mv̇ib̂+mvis]b̂ /]t+vikW d
+q]AW /]t.qvW 3BW −¹W smB+qFd. The component of the
equations of motion that is along the magnetic field is

then mv̇i =mb̂ ·¹W B+qEi, which is consistent with Eq.
s196d for the gyrophase averaged energy change. The
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components of the velocity that are perpendicular to the
magnetic field agree with Eq. s181d for vWg.

Given a Lagrangian, it is usually trivial to obtain a
Hamiltonian description of trajectories. However, a
subtlety exists in obtaining a Hamiltonian description of
guiding-center motion from the Taylor Lagrangian. The
canonical momenta plus the coordinates of the Taylor
Lagrangian depend on only four independent variables,
which can be taken to be sxW ,vid. Consequently the
Hamiltonian can have only four variables, two canonical
coordinates and two canonical momenta.

The canonical coordinates of the drift Hamiltonian
are closely related to the Boozer magnetic coordinates,
Eq. s58d, so one needs to transform the Taylor Lagrang-
ian into these coordinates. The expression is

LT =
m

2
Sm0

Gḟ + Iu̇

2pB
D2

+ q
ctu̇ − cpẇ

2p
− mB − qFm,

s202d

where Fm;F+s. The function s is determined using Eq.
s28d and gives the effect of the motion of the magnetic
coordinate system. Usually the distinction between Fm
and F is negligible, and so it will not be retained. The
most difficult and subtle point in the transformation of
the Taylor Lagrangian into Boozer coordinates is the

parallel velocity, vW ·BW =BW ·dxWsct ,u ,w , td /dt, which gives

vi = sm0 /2pBdfGsctdẇ+Isctdu̇g. To prove this, use the

chain rule to write dxW /dt=]xW /]t+ s]xW /]ctdċt+¯. The

term BW ·]xW /]t=BW ·uW , Eq. s29d, can be taken to be zero,
because the flow of the canonical coordinates along the
field lines can always be chosen to be zero. The time

derivatives u̇.svi /BdBW ·¹W u and ẇ are larger by the ratio
of the gyroradius to the system size than the derivative

ċt, so one can let vW ·BW = sBW ·]xW /]udu̇+ sBW ·]xW /]wdẇ. The

transformation of xẆ ·AW =AW ·uW + sct /2pdu̇− scp /2pdẇ, while

AW ·uW =−s with the choice of gauge g=0 fEq. sA20dg.
Combining the results, one obtains Eq. s202d.

Given the Taylor Lagragian in magnetic coordinates,
Eq. s202d, the determination of the canonical momenta
and the drift Hamiltonian are straightforward. The ca-

nonical momenta are pu;]L /]u̇, which gives Eq. s199d
and pw;]L /]ẇ, which gives Eq. s200d.

It is also useful to have the Hamiltonian for the
guiding-center motion in Clebsch coordinates sc ,a ,fd.
In these coordinates the magnetic field has the contra-

variant representation BW =¹W 3 sc¹W ad, Eq. s9d, and the co-

variant representation BW =¹W f+Ba¹W a+Bc¹W c, Eq. s11d.
Dotting the two representations together, one finds that

the inverse of the coordinate Jacobian is BW ·¹W f=B2. The
Taylor Lagrangian is transformed into Clebsch coordi-

nates by noting that vW ·BW =BW · s]xW /]fdḟ= ḟ and vW ·AW

= sdxW /dtd ·AW =cȧ. The canonical momenta are

pa = qc s203d

and

pf = mvi/B = qri . s204d

The Hamiltonian is the energy fEq. s195dg,

Hspa,pf,a,fd =
B2

2m
pf

2 + mB + qF . s205d

A comparison of the trajectories given by the drift
Hamiltonian in Clebsch coordinates with those obtained
from Eq. s183d is instructive. Equation s183d implies

dc

dt
= vWg · ¹W c = viBS ]ri

]a
−

]Bari

]f
D . s206d

The first of these two terms is reproduced by the Hamil-
tonian formulation, but the second is not. The change in
c as the particle moves along its trajectory due to the
term −viB]sBarid /]f=vi]sBarid /], is given by dc
=−Bari. This follows from df=Bd,, with , the distance

along BW , and dt=d, /vi. Ba has dimensions of the mag-
netic field times a length, which means a length of order
a, the scale of the plasma. Consequently, the maximal
deviation of c along a trajectory is approximately
dc /c<ri /a, which can be viewed as a redefinition of the
guiding-center position, not a systematic drift. The loca-
tion of the guiding center is a question of definition to
within a distance of order a gyroradius. That arbitrari-
ness can be used to simplify the equations for the
guiding-center motion.

4. The action invariant J

The conservation of the magnetic moment m causes
the parallel velocity of a particle to pass through zero
and change sign at a point where H=mB+qF. Particles
that are trapped between two such points of high mag-
netic field or electric potential are called trapped par-
ticles ssee Fig. 12d. They have a periodic oscillation be-

FIG. 12. sColord Trapped and passing particles: A particle is
trapped or passing depending on its energy H relative to the
energy mBmax. Bmax is the maximum of the field strength along
a magnetic-field line, and m is the adiabatically conserved mag-
netic moment. The distance along the line is ,. The electric
potential F is ignored for simplicity.
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tween the points and hence an adiabatic invariant, which
is customarily written as

J = R mvid, . s207d

J is called the action invariant sNorthrop, 1963d. In
Clebsch coordinates sc ,a ,fd, Eqs. s9d and s11d, the ac-
tion is JsH ,m ,c ,ad; rpfdf= rmvid, fEq. s204dg, which
means J is an action in the standard sense of Hamil-
tonian mechanics.

The derivatives of the action, JsH ,m ,c ,ad give impor-
tant information about the long-term trajectories of
trapped particles. The derivative with respect to the en-
ergy gives the bounce time tb, the time to go from one
turning point to the other. Equation s197d for the paral-
lel velocity implies ]vi /]H=1/mvi, so

]J

]H
= R d,

vi

= 2tb. s208d

Writing J=qrridf makes the c and a derivatives easier
to evaluate. Equation s206d implies

]ri

]a
=

vWg · ¹W c

viB
+

]sBarid
]f

. s209d

Therefore

]J

]a
= qR vWg · ¹W c

vi

d, = 2qDc , s210d

where Dc is the change in c going from one turning
point to the next. Similarly,

]J

]c
= − 2qDa . s211d

The long-term motion of a trapped particle consists of a
radial drift,

dc

dt
=

1

q

]J/]a

]J/]H
, s212d

and a precession,

da

dt
= −

1

q

]J/]c

]J/]H
. s213d

E. Particle trajectories and transport

• Particles that have a sufficiently large ratio of the
velocity parallel to the magnetic field, vi, to the total
velocity v can move all along the field lines sFig. 12d
and are generally well confined when magnetic sur-
faces exist. Such particles are called passing particles.

• Particles with a small ratio of vi /v are trapped be-
tween maxima of the field strength sFig. 12d and are
well confined only when stringent conditions are met
on the variation of the magnetic-field strength in the
magnetic surfaces. The trapped particles can be well
confined if the field strength depends on only one
angle in the magnetic surface, as is the case in axi-

symmetry, or if the magnetic-field strength is the
same at all minima of the field strength in a magnetic
surface.

• The electric potential in a confined plasma, with a
temperature T, has the characteristic magnitude uFu
<T /e. The reason is that one species is generally
more poorly confined, so that a species preferentially
leaves the plasma until its pressure gradient is bal-

anced by the electric field u¹W pu= uenEW u. Only a tiny
fraction of the particles are lost while setting up this
electric field, which is called the ambipolar field, so
the plasma is approximately quasineutral.

• A pressure gradient drives a net current along the
magnetic-field lines. This current is called the boot-
strap current.

In a confined fusion plasma, particles can move a dis-
tance more than a thousand times the size of the plasma
between collisions. Plasma confinement for times long
compared to the collision time requires that the trajec-
tories of all particles that form a Maxwellian distribution
stay close to the constant-pressure surfaces. In addition,
the alpha particles that are produced by the fusion reac-
tion must remain confined as they slow from their birth
energy of 3.5 MeV and heat the plasma sITER Physics
Expert Group on Energetic Particle, …, 1999ad. Two
questions need to be addressed: s1d Do the trajectories
of high-energy particles remain in the plasma? s2d What
effect does the straying of near-thermal particles from
the pressure surfaces have on the transport coefficients?

Before discussing the motion of particles and the as-
sociated transport phenomena, it is useful to have an
estimate of the radial electric field in a plasma. The char-
acteristic change in the electric potential across a con-
fined plasma is uqDF /Tu of order unity. This potential
difference is associated with only a small net charge den-
sity qnD with nD /n!1. That is, a confined plasma is gen-
erally quasineutral. The reason for the potential differ-
ence DF is that one species, ions or electrons, is more
poorly confined than the other. The more poorly con-
fined species leaves the plasma until the electric poten-
tial becomes sufficiently strong to provide confinement
for that species d ln p /dct=−qndF /dct. If the tempera-
ture were constant, the density and potential would be
related by n~exps−qF /Td. Even a substantial density
drop is associated with a modest change in qF /T. The
net charge density qnD associated with this potential is
given by Gauss’s law, ¹2F=−qnD /e0, which implies qnD

<e0DF /a2 with a the minor radius of the plasma. The
fractional charge imbalance can be written as nD /n
<slD /ad2, where the Debye length is lD;Îe0T /q2n. In
a fusion plasma, the Debye length is of order a tenth of
a millimeter, so the charge imbalance between electrons
and ions nD /n is extremely small, and the plasma is said
to be quasineutral. The electric force exerted on the

overall plasma, qnDEW , is also a factor of slD /ad2 smaller

than the pressure force ¹W p.
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A related concept to quasineutrality is ambipolarity,
which means the electrons and the ions diffuse at the
same rate so there is no radial current. In steady-state
situations, plasma transport is generally ambipolar for
otherwise the plasma would lose either all of the ions or
all of the electrons.

1. Confinement of particle trajectories

The confinement of individual particles is strongly de-
pendent on whether a particle is trapped or passing sFig.
12d. If Bmaxsctd is the maximum magnetic-field strength
on the magnetic surface that contains toroidal flux ct,
then a particle is trapped if mBmaxùH−qFsctd. If a par-
ticle is not trapped then it is said to be passing. For
passing particles, the parallel velocity retains a given
sign between collisions, vi .0 or vi ,0, and is never zero.
For a barely trapped particle, the conservation of m im-
plies mBmax=mBmin+mvi

2 /2, where vi is the parallel ve-
locity at the location of the minimum of the magnetic-
field strength. If one defines 2e;sBmax−Bmind /Bmax,
then at the magnetic-field minimum vi /v=Î2e for a
barely trapped particle. In a circular-cross-section toka-
mak, e.r /Ro.

The confinement of passing particles is rarely a prob-
lem unless magnetic surfaces are lost. The confinement
of passing particles is easily derived using the form for
the guiding-center velocity of Eq. s183d. Since the paral-
lel velocity never vanishes, the motion of a passing par-

ticle is along an effective magnetic field BW *sH ,m ,xWd;BW

+¹W 3 sriBW d, where the energy H and the magnetic mo-

ment m are constants of the motion. The field BW * is di-

vergence free and differs from the magnetic field BW only
by a small term that is proportional to the gyroradius to

the system size. If BW has magnetic surfaces, then the

surface quality of the BW * field can be investigated using
the methods of Sec. III.A.

The confinement of trapped particles in toroidal plas-
mas is more difficult than that of passing particles, and
constrains the design of confinement systems. In prin-
ciple, the guiding-center drifts can carry a trapped par-
ticle out of the plasma after it has traveled a distance of
order sR /rda, where R is the radius of curvature of the
field lines, r is the gyroradius, and a is the minor radius
of the plasma. This distance is too short for confining
fusion plasmas. The time constant that is associated with
unbounded drift motion is t<aR / srvd, which is of order
the time for Bohm diffusion fEq s229dg.

Trapped particles are well confined if the magnetic-
field strength along the magnetic-field lines satisfies pe-
riodicity, Bs,d=Bs,+Ld, where , is the distance along a
field line and L is a constant along that line. Magnetic
configurations that satisfy this constraint are called qua-
sisymmetric. If the field strength is given in Boozer co-
ordinates, Eq. s58d, then periodicity implies the field
strength can depend on the poloidal and toroidal angles
only though the linear combination uh;u+Nhw, where
Nh is an integer. That is, the field strength has the form

Bsct ,uhd. The helical canonical momentum, ph

;pW · s]xW /]wduh
, of the Taylor Lagrangian, Eq. s202d, is

conserved,

ph = m0
G − NhI

2pB
mvi − q

cp + Nhct

2p
. s214d

The expression for ph is obtained using s]xW /]wduh
= s]xW /]wdu−Nh]xW /]u, so ph=pw−Nhpu. The conservation
of ph means the excursions that trapped particles make
from the magnetic surfaces are proportional to the gyro-
radius.

An axisymmetric tokamak satisfies the condition of
quasisymmetry with Nh=0. But the condition of quasi-
symmetry can also be satisfied to high accuracy in stel-
larators in which the magnetic surfaces are not symmet-
ric in w. The Quasi-Helically Symmetric stellarator at
the University of Wisconsin, the first operating quasi-
symmetric stellarator, has four periods, Np=4 and Nh
=4 sTalmadge et al., 2001d. The NCSX stellarator, which
is being constructed at Princeton sZarnstorff et al., 2001d
is quasi-axisymmetric, Nh=0, just as is a tokamak, but
has three periods, Np=3 sFig. 7d. Garren and Boozer
s1991a, 1991bd have shown that quasisymmetry cannot
be precisely achieved except in perfect axisymmetry.
However, the required breaking of quasisymmetry,
which is of order the local inverse aspect ratio cubed,
sr /Rd3, can be very small.

A different method than quasisymmetry for obtaining
trapped-particle confinement can be derived starting
with the requirement that a deeply trapped particle re-
main close to a flux surface. A condition for good con-
finement of deeply trapped particles is that all the
minima of the field strength Bmin along each field line
occur at essentially the same value of B sMynick et al.,
1982d. Field minima satisfy ]B /],=0 and ]2B /],2.0,
where , is the distance along a magnetic-field line.
Deeply trapped particles have svi /v'd2!1 even when
they are near the minimum of the field strength and
have esentially zero action, J= rmvid,=0 fEq. s207dg.
Since the action is conserved, the particles must remain
deeply trapped throughout their drift motion. That is,
they must remain at a minimum of the field strength.
The guiding-center drift, Eq. s181d, for a deeply trapped

particle is vWg= sBW /qB2d3¹W smB+qFd so the particles
drift on surfaces of constant mB+qF. Since the potential
is a function of the toroidal flux, Fsctd sSec. V.B.3d, the
deeply trapped particles stay on a flux surface if
]Bmin /]a=0. The derivative ]Bmin /]a is zero at minima
if all minima of the magnetic field on a ct surface have
the same value.

If deeply trapped particles are confined to the mag-
netic surfaces, then it is relatively easy to shape the
variation in magnetic-field strength along the field lines
to confine most of the trapped particles. However, par-
ticles near the boundary between trapped and passing
tend to have bad orbits unless all field maxima are at the
same field strength sCary and Shasharina, 1997d. The
condition of all field maxima being at the same field
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strength is not as important because a radial varia-
tion in the average field strength, B0sctd
;ÎeB2Jdudw /eJdudw, and the electric potential Fsctd
cause particles to drift in a way that converts particles
near the trapped-passing boundary into either trapped
or passing particles. In addition, collisions in a plasma
are a diffusive phenomenon, and thermal particles near
the trapped-passing boundary switch rapidly between
the two types of orbits, which means they slowly diffuse
rather than rapidly drift out of the confinement region.

The W7-X stellarator is designed sNührenberg et al.,
1995d to make the minima of the field strength on a
magnetic surface have the same value. This is accom-
plished by the plasma’s having a pentagonal shape when
viewed along the z axis sFig. 6d. Each magnetic surface
has five straight sections where the field strength is low
and five high-curvature corners where the field strength
is high. It is easy to design all field minima to have the
same field strength, since they occur in the straight sec-
tions. The maxima of the field strength occur in the cor-
ners of the pentagonal shape. The fractional variation in
the field strength at the maxima is approximately
2dR /R, where dR is the half-width of the plasma along
the major radius at the corners, and dR is very narrow in
W7-X, dR /R<1/20. The pressure balance in W7-X ap-
proximately satisfies psctd+B0

2sctd /2m0 const, so at the
design beta value k2m0p /B2l=5% the radial variation in
B0 is sufficient to confine most particles near the
trapped-passing boundary. The principle used to confine
particle orbits in W7-X has been given many names:
linked mirrors, quasi-isodynamic, quasi-omnigenious,
and most recently quasipoloidal symmetry. Quasipoloi-
dal symmetry is broken by the strong curvature in the
corners to first order in the inverse aspect ratio r /R,
while quasisymmetry in its more traditional usage is bro-
ken in third order, sr /Rd3.

A tokamak with too few toroidal field coils offers an
example of the bad particle confinement that occurs
when the field strength minima on a magnetic surface
have differing values. The field minima are created by
the space between the individual coils. Even when these
minima are shallow, ]Bmin /]a is large and the particles
trapped in these minima drift out of the device on a
relatively short time scale aR / srvd. The fractional varia-
tion in the magnetic field due to toroidal asymmetry is
called the toroidal ripple d. The approximate expression
for the field strength is Bsct ,u ,wd=B0h1− sr /Rodcos u

+d cossNwdj fEq. s19dg. Unless the toroidal ripple satis-
fies d! sr /Rodsi /Nd it causes a large number of second-
ary minima at varying values of the field strength.

When the minima of the magnetic field on a pressure
surface are not all at the same field strength, the colli-
sionless drift trajectories generally cross a large fraction
of the pressure surfaces. From the conservation of ac-
tion, Sec. VI.D.4, one has

dct

da
= −

]J/]a

]J/]ct
. s215d

Since a is the Clebsch angle with a characteristic range
of unity, the radial excursion of particles Dct is approxi-
mately s]J /]ad / s]J /]ctd. This can be reduced by enhanc-
ing the precession, which is the change in the Clebsch
angle per bounce, Da=−s]J /]ctd /2q fEq. s211dg. The
precession of the deeply trapped particles is propor-
tional to ]smB+qFd /]ct, which for thermal particles is
generally dominated by the radial variation of the po-
tential, ]F /]ct with either sign of the radial electric field

EW =−sdF /dctd¹W ct enhancing the confinement of drift or-
bits. However, for superthermal particles a precession
zero, or resonance, can occur in which ]smB+qFd /]ct
=0. Frequently, ]B /]ct,0 for deeply trapped particles,
which means they are in a region of bad field-line curva-
ture. In this case, an electric field that tends to push a
charge species out, qs]F /]ctd,0, cannot have preces-
sion resonance and provides better confinement of the
individual trajectories than an electric field that pulls
that species in. For very-high-energy particles, such as
fusion a particles, m= smv'

2 /2d /B is sufficiently large
that only the term m]B /]ct in the precession is impor-
tant.

The action J is only an adiabatic invariant and is not
conserved if the integrand of Eq. s207d varies on the
time scale of the bounce motion tb. Even in the absence
of collisions, the action invariant can be broken in two
ways. First, the drift motion of a particle can take it to a
place where the local minimum in which it is trapped no
longer confines particles with the action that that par-
ticle has. Each region in which a particle can be trapped
has a maximum value of the action, Jmax, that it can
confine. As the particle drifts from one field line to an-
other, the maximum action varies, and if the action J
exceeds Jmax the particle escapes from the region where
it has been trapped. A particle can also be captured by
local minima if it drifts so that Jmax is increasing.

The second way the action J is broken by the particle
drift motion is if a particle drifts a sufficient distance in a
full bounce that the magnetic field near a turning point
changes significantly from one bounce to the next. This
is particularly important for finding the effect of toroidal
ripple on trapped alpha particles in tokamaks and can
determine the required limitation on ripple. The change
in ct per full bounce of a particle is 2Dctsct ,ad=]J /]a. If
the change in a during a full bounce, which is −2]J /]ct,
is sufficiently large, the sign of 2Dctsct ,ad is essentially
random with each full bounce, and the particle diffuses
collisionlessly with a diffusion rate that is approximately
sDctd2 /tb, which is proportional to the square of the
ripple amplitude d2. This effect sGoldston et al., 1981d
can occur at arbitrarily small ripple, even ripple that is
too small to cause secondary minima d! sr /Rodsi /Nd, if
the precession rate of the alphas is sufficiently large in
the axisymmetric field.

The breaking of the conservation of the action J due
to particle drift motion can give trapped-particle trajec-
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tories a complexity that can only be studied by numeri-
cally integrating the guiding-center equations of motion.

2. Transport at low collisionality

The deviation of trapped-particle trajectories from the
pressure surfaces leads to enhanced transport and to a
net parallel current that is proportional to the pressure
gradient, the bootstrap current. The transport phenom-
ena associated with the deviation of the particle drift
trajectories from the pressure surfaces are known as
neoclassical transport.

Usually the transport rates for particles and energy in
tokamak plasmas are much larger than their neoclassical
values because of microturbulence ssee Sec. VI.Fd, so
the neoclassical transport theory is not as important as
one might think. However, the bootstrap current is im-
portant for steady-state tokamaks and can be a compli-
cation in the design of stellarators. The theory of neo-
classical transport in tokamaks has been reviewed by
Hinton and Hazeltine s1976d, and a book on the theory
of collisional transport in toroidal plasmas has been
written by Helander and Sigmar s2002d.

To understand neoclassical transport, suppose the
typical deviation of a trapped particle from a pressure
surface is a distance sDrdt. In a low-collisionality limit,
the distribution function must be consistent with the
Vlasov equation, df /dt=0. Since the overall confinement
is long compared to a collision time, the distribution
function must also be close to a local Maxwellian, fM

~nsrde−H/Tsrd. The deviation from a local Maxwellian is

f̂= sDrdt] lnsfMd /]r. If this is inserted into Eq. s146d for
the entropy production, ignoring the temperature gradi-
ent for simplicity, one finds that

ṡc =
n

Î2e
sDrdt

2Sd lnsnd
dr

D2

, s216d

where Î2e is the fraction of trapped particles. For circu-
lar magnetic surfaces, e=r /Ro, the inverse aspect ratio.
Actually there are two factors of Î2e in this equation for
the entropy production. The first factor is an enhanced
effective collision rate n / s2ed because the collision op-
erator is diffusive, and particles need to be scattered
through velocity space by a distance of only Î2ev to
move all the way across the trapped-particle part of ve-
locity space and become passing particles. The second
factor of Î2e comes from the trapped particles’ being the
only particles that have a large deviation from the pres-
sure surfaces sSec. VI.E.1d. The rate of entropy produc-
tion is also fd lnsnd /drg2 times the diffusion coefficient,
Eq. s152d, so the diffusion coefficient is D
<sn /Î2edsDrdt

2.
For quasisymmetric confinement systems, the devia-

tion of the trapped-particle trajectories from a constant-
pressure surface can be calculated using the conserva-
tion of the helical canonical momentum ph fEq. s214dg.
The deviation of a particle from a magnetic surface de-
pends on the variation in its parallel velocity vi, which is

maximized by the barely trapped particles. For a barely
trapped particle, vi /v= ±Î2e. Consequently a barely
trapped particle deviates by an amount

Dcbt = Î2em0
G − NhI

i + Nh
r s217d

on either side of the flux surface on which its turning
points are located, where r=mv /qB is the gyroradius.
At large aspect ratio, ct=pBr2, I!G=2pRoB /m0, and
the deviation of a barely trapped particle is

sDrdbt =Î2

e

r

i + Nh
. s218d

This deviation of trapped particles is called a banana
orbit because of its shape when projected on a constant-
w plane. The diffusion, D<sn /Î2edsDrdt

2, is then ap-
proximately

D <
n

e3/2S r

i + Nh
D2

, s219d

which is called the neoclassical diffusion coefficient sGa-
leev and Sagdeev, 1968d. In tokamaks and quasi-
axisymmetric stellarators, Nh=0, but Nh is nonzero in
quasihelically symmetric stellarators sTalmadge et al.,
2001d.

As shown by Kovrizhnikh s1969d, the statement that
Eq. s219d gives the neoclassical diffusion in a quasisym-
metric system is misleading. This equation is approxi-
mately correct for the diffusion of heat, but the diffusion
of particles in a quasisymmetric system can only arise
from unlike particle collisions. The reason is the
momentum-conserving properties of the collision opera-
tor. Three expressions are important: s1d the collisional
entropy production, Eq. s145d, s2d the relation between
the collisional entropy production and the transport co-

efficients, Eq. s152d, and s3d f̂= sDctd] lnsfMd /]ct. The de-
viation of a particle from a magnetic surface, Dct, is cal-
culated using ph conservation, Eq. s214d, which for a

density gradient implies f̂~ sdn /dctdmvi. The momen-
tum conservation properties of the collision operator
then make the entropy production zero, ṡc=0, so no par-

ticle transport occurs. For a temperature gradient, f̂ has
additional factors of the velocity, so the entropy produc-
tion ṡc is nonzero, and the diffusion of heat is approxi-
mated by Eq. s219d. Particle transport does not vanish in
quasisymmetric systems because ions and electrons can
exchange momentum. For ions this rate of momentum
exchange is a factor of approximately Îme /mi smaller
than the rate of ion-ion collisions, though for electrons
the rates of momentum exchange with like and unlike
particles are comparable. Momentum conservation
means that the transport of ions and electrons must be
at the same rate, to lowest nontrivial order in
gyroradius-to-system-size ratio, independent of the ra-
dial electric field. This phenomenon is called intrinsic
ambipolarity.
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In systems that are not quasisymmetric, the constraint
of ambipolarity sets the radial electric field. In quasisym-
metric systems, the radial electric field, and hence the
rate of toroidal rotation, are only weakly affected by
neoclassical transport.

One neoclassical effect that is very important for
steady-state tokamaks is the bootstrap current sBicker-
ton et al., 1971d. The conservation of ph, Eq. s214d, im-
plies that the deviation of a trapped-particle trajectory
from the pressure surface has one sign, say positive,
sDrdt.0, when the parallel velocity is positive and an-
other, say negative, when the parallel velocity is nega-
tive. In the presence of a density gradient, dn /dr,0,
this implies that at a fixed radius there are more barely
trapped particles with a positive than with a negative
parallel velocity. The passing particles that have a posi-
tive parallel velocity interact through a diffusive colli-
sion operator with passing particles that have a negative
parallel velocity only through the trapped particles. This
and the fact that there are more trapped particles mov-
ing in the positive direction along the magnetic-field
lines than in the negative direction leads to an excess of
passing particles moving in the positive direction ssee
Fig. 13d. The excess of passing particles moving in the
positive direction produces a net parallel current jb

<qvTsDrdtdn /dr, where vT;ÎT /m is the thermal speed.
That is,

jb <
1

ÎeB

T

i + Nh

dn

dr
. s220d

The calculation of transport coefficients in non-
quasisymmetric configurations is complicated. Transport
coefficients as well as the effect of collisions on the par-
ticle trajectories can be determined using the Monte
Carlo equivalent to the collision operator sBoozer and
Kuo-Petravic, 1981d. The Monte Carlo collision operator
represents the effects of collisions during a time step by

a change of the velocity coordinates that has a random
component for each particle. The simplest Monte Carlo
collision operator represents the Lorentz collision op-
erator,

Csfd =
n

2
]

]l
s1 − l2d

]f

]l
, s221d

where l;vi /v is the pitch of the particle relative to the
magnetic field. The Monte Carlo equivalent is

ln = s1 − ntdlo ± Îs1 − lo
2dnt , s222d

where ln and lo are the new and the old values of the
pitch with the change caused by collisions during a time
interval t. The symbol 6 means the sign is chosen at
random. Since the particle trajectories are the character-
istics of the operator df /dt, the inclusion of effects of
collisions by Monte Carlo methods means one can find
the solution f to the equation df /dt−Csfd=g by the
method of characteristics. This is the basis of df Monte
Carlo studies of transport sLin et al., 1995; Sasinowski
and Boozer, 1995d, in which one calculates transport co-
efficients by using Monte Carlo methods to determine
the deviations from a local Maxwellian of the particle
distribution functions. An alternative to the Monte
Carlo codes for numerical evaluation of transport coef-
ficients is the DKES code svan Rij and Hirshman, 1989d
which solves an approximate form of the drift kinetic
equation by a variational principle.

3. Power required for maintaining fields

• The net current in a tokamak can be maintained in
steady state using externally produced radio-
frequency waves. However, the required power is un-
acceptably large for practical fusion power if more
than about a third of the total current is wave driven.

• Tokamaks can be designed so that more than two-
thirds of the net plasma current is maintained by the
bootstrap current, which is the net current driven by
the pressure gradient. The requirement of a large
bootstrap current makes the feasibility of steady-
state tokamaks more sensitive to the pressure profile
given by plasma transport processes than is a steady-
state stellarator.

An important issue for steady-state tokamaks is the
power that is required for maintaining the plasma cur-
rent sFisch, 1987; ITER Physics Expert Group on Ener-
getic Particles, …, 1999bd. The traditional way to main-
tain the current in a tokamak is to have a solenoid
within the central hole of the torus. A change in the
magnetic flux in this solenoid produces a loop voltage,
V=]cp /]t, Eq. s31d, which drives the current. A loop
voltage can only be maintained transiently, so a different
method must be adopted for long-pulse or steady-state
tokamaks.

The most developed method of steady-state current
drive uses waves to maintain a distribution of electrons
in which more electrons are moving in the direction re-
quired for the current than in the opposite direction.

FIG. 13. sColord Trapping of particles: In the presence of a
density gradient, the number of trapped particles with a paral-
lel velocity greater than zero differs from the number with a
parallel velocity less than zero. This variation in density is
transmitted to the passing particles by the diffusive property of
collisions in a plasma. A particle is trapped if −Î2e,vi /v
,Î2e at the minimum of the magnetic-field strength along a
magnetic-field line with e the variation in the field strength.
Otherwise the particle is passing.
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Unfortunately, too much power is required to maintain
the full tokamak current. However, the total current
need not be externally driven because a pressure gradi-
ent drives a net toroidal current, the bootstrap current
fEq. s220dg. From the point of view of nonequilibrium
thermodynamics, the bootstrap current arises from a
cross term in the transport matrix. The bootstrap current
can provide most of the current in a tokamak, but the
magnitude and profile of this current is dependent on
the plasma pressure and density profiles. Since plasma
profiles are difficult to control in the absence of external
input power, the requirement of a large bootstrap cur-
rent places an additional uncertainty on the feasibility of
steady-state tokamaks, an uncertainty that does not exist
for steady-state stellarators.

Waves in various frequency ranges can provide the
power to maintain a current. In the frequency range of
the so-called lower hybrid waves, this power was derived
by Fisch s1978d and in the electron cyclotron frequency
range by Ohkawa s1970d and Fisch and Boozer s1980d.
The required power to maintain a current using waves
can be approximated by a simple argument sBoozer,
1988d. The most efficient steady-state current drive has
the current carried by high-energy, mildly relativistic
electrons that form a tail on the background Maxwell-
ian. The current density is j=entc, where nt is the num-
ber of the tail electrons per unit volume and c is the
speed of light. The power per unit volume that is re-
quired to maintain this current cannot be smaller than
the power required to maintain the tail, pw= sg
−1dntmec

2nsgd, where g;1/Î1−v2 /c2 and nsgd is the
slowing-down rate of electrons with kinetic energy sg
−1dmec

2. The power per unit volume pw is proportional
to a driven current of density j. The quantity Ew;pw / j
has units of volts per meter. For electrons at g<2, which
is the most efficient energy for current drive, Ew<Er
where

Er ;
e lnsLd

4pe0sc/vped2 . S0.087
V
m
D1 n

1020 1

m3 2 , s223d

the background electron density is n, the electron
plasma frequency is vpe;Îne2 /e0me, and lnsLd<17 is
the Coulomb logarithm fEq. s135dg. Equation s223d is
obtained within a numerical factor if one uses the colli-
sion frequency n of Eq. s134d in the calculation of Ew
;pd / j with v=c.

The power required to maintain a current using sub-
relativistic electrons can be calculated by similar argu-
ments, with the current density j=entv and the power
per unit volume pw= sntmev

2 /2dnsvd. The rate of slowing
of high-energy particles nsvd is proportional to 1/v3, Eq.
s134d, so

Ew < Er
c2

v2 . s224d

The total power to maintain the current is obtained by

multiplying Ew by 2pR̄, where R̄ is the average major

radius on a magnetic surface, to obtain, Vw;2pR̄Ew,
which has units of voltage. The power is Pw
=eVwsctdsdI /dctddct, where Isctd is the net toroidal cur-
rent inside a magnetic surface that contains toroidal flux
ct. The quantity Vw can be tens of volts, which makes the
power requirements for driving the total current—more
than ten megamperes—unacceptable.

The power required to maintain a current using waves
scales differently than ph=Eiji, the power required using
a loop voltage, which means an electric field Ei =hji. The
power required for maintaining a current with waves,
pw, is proportional to the driven current, while ph scales
as the current squared. For the total current, the ratio
ph /pw<smec

2 /Tdhsc /vped /aj /Îbu, where vpe
2 ;nq2 /e0me

is the square of the electron plasma frequency and bu

;2m0p /Bu
2 is the plasma beta in the poloidal field alone.

For small tokamaks ph /pw can be larger than one, and
currents are efficiently carried by high-energy electrons,
such as runaway electrons. In a power-plant-scale device
ph is much less than pw. The more important ratio is the
ratio of pw to the fusion power, which is nTtEsT /
mec

2dsc /vped / saÎbud, where nT is the collision frequency
of thermal electrons and tE is the energy confinement
time. In a power plant, this ratio is comparable to unity.

F. Microstability

• Confined plasmas are generally unstable to perturba-
tions that have a wavelength across the magnetic
field comparable to, or smaller than, the ion gyrora-
dius ri, but with a wavelength along the field lines
that is comparable to the overall system size. For
near-Maxwellian plasmas, the characteristic growth
rates and frequencies of microinstabilities are Cs /a,
where Cs;ÎsTe+Tid /mi is the sound speed and a is
the plasma radius.

• Microinstabilities lead to microturbulence with an
associated particle diffusion of order the gyro-Bohm
rate, Dg=ri

2Cs /a. The relative amplitude of the fluc-
tuations in microturbulence is small, roughly equal to
the ratio of the ion gyroradius to system size, dn /n
<ri /a.

• The most prominent microinstabilities in the modern
literature are the ion and the electron temperature
gradient modes. They are called the ITG or hi mode
and the ETG or he mode.

• The logarithmic temperature gradients, d ln T /dr,
can have critical values at which the transport greatly
increases. Plasma temperature gradients may remain
close to these critical values, which makes the tem-
perature throughout the plasma proportional to the
temperature near the plasma edge.

Even when a plasma is stable to perturbations that
have a wavelength comparable to the plasma size, the
plasma may be unstable to perturbations with wave-
lengths comparable to or smaller than the gyroradius of
the ions, ri. Such instabilities are called microinstabili-
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ties. Microinstabilities do not cause a sudden loss of the
plasma equilibrium but can greatly enhance the plasma
transport across the magnetic-field lines. Long-
wavelength instabilities, such as the instabilities dis-
cussed in Sec. V, can be so catastrophic in their effect
that the only issue of interest is whether they are stable
or not. With microinstabilities the primary issue is the
nonlinear, or saturated, state, which is generally turbu-
lent. In other words, the primary issue is the transport
caused by the microturbulence. Unlike the large fluctua-
tions associated with turbulence in ordinary fluids, the
fluctuations associated with plasma microturbulence are
small, dn /n<ri /a,1/500. Horton s1999d has reviewed
the theory of microinstabilities associated with drift
waves, which is the type of microinstability of most rel-
evance to toroidal plasmas. Yoshizawa et al. s2001d have
reviewed the theory of turbulence in fluids and plasmas
with an emphasis on plasma microturbulence.

Although collisions play an important role in some
microinstabilities, generally the issue is whether the Vla-
sov equation, df /dt=0, is consistent with the growth of
electromagnetic perturbations. Gardner’s theorem
sGardner, 1963d gives a condition under which the
Vlasov-Maxwell equations can have no unstable solu-
tions. Unfortunately, this condition is violated in
current-carrying plasmas, such as magnetically confined
plasmas. Gardner s1963d noted that the distribution
function in the Vlasov equation is the density of a con-
served fluid in phase space sxW ,pW d. If fsxW ,pW d has a form
such that the plasma energy is increased by the inter-
change of any packets of this fluid, then no energy can
be removed from the plasma to support electromagnetic
fluctuations, and the system must be stable. If the distri-
bution function of a single plasma species in the direc-
tion r̂ is

Fsu,vW0d ; E dfu − r̂ · svW − vW0dgfsvWdd3v , s225d

Gardner’s theorem says the Vlasov-Maxwell equations
have no unstable solutions if a vW0 exists such that
u]F /]uø0 for all species, for all values of u, and for all
directions r̂. Distribution functions can be far from local
Maxwellians and satisfy Gardner’s condition for stability.
Unfortunately, Gardner’s condition is not satisfied for a
current-carrying plasma, so microinstabilities are an is-
sue in magnetic confinement.

Rosenbluth and Rutherford s1981d argued that only
low-frequency microinstabilities are energetically pos-
sible when the source of their free energy is the pressure
gradient. By low frequency they mean no higher than
approximately Cs /a, where Cs;ÎTs /mi, Ts is the sum of
the electron and ion temperatures, a is the plasma ra-
dius, and mi is the ion mass. The energy per unit volume
associated with the oscillations of an instability is
roughly nmisvDd2 with v the frequency and D the spatial
scale of the microinstability. The maximum energy that
the oscillation can tap from the pressure gradient is ap-
proximately nTssD /ad2, where a is the plasma radius.
The first-order term nTsD /a vanishes because the aver-

age motion of the plasma kDl is zero in an oscillation.
The instability is not energetically favored unless
nmisvDd2ønTssD /ad2, or uvuøCs /a.

A heuristic model clarifies some of the properties of
the plasma transport caused by the turbulence associ-
ated with fully developed microinstabilities. The per-
turbed electric potential dF of a fully developed micro-
instability has a scale across the magnetic-field lines in
the magnetic surface of 1/k' and D in the radial direc-
tion. The variation of the potential dF along the
magnetic-field lines is very weak, ki /k'!1, in order to
avoid Landau damping sSec. VI.Cd. The variation in the

electric potential causes a drift velocity EW 3BW /B2. The
magnitude of the radial component of this velocity is
dvr<k'dF /B. Let tc be the correlation time of the mi-
croturbulence, which means the time scale over which
significant changes in the pattern of the perturbed po-
tential dF occur. If dr&D, then during a correlation time
particles in the plasma take a radial step, dr<dvrtc, with
equal probability of the step’s being inwards or out-
wards. The random steps cause diffusion with the diffu-
sion coefficient D<dr

2 /tc, which can be rewritten as D
<k'

2 sdF /Bd2tc.
The correlation time of microturbulence has different

values in two limits. If the microturbulence is extremely
weak the correlation time is determined by the growth
rate of the underlying microinstability, and the theory is
essentially that of quasilinear diffusion sSec. VI.Cd.
However, when the microturbulence is fully developed
the correlation time is determined by the turbulence it-
self changing the potential dF. In this strong-turbulence
limit, the correlation time is determined by how long it
takes particles to diffuse across the potential contours,
tc<1/ sk'

2 Dsd. The diffusion coefficient Ds is the coeffi-
cient for diffusion in the magnetic surfaces across the
field lines. In this direction, the E3B velocity is dvs

<sdF /Dd /B, so the diffusion in the magnetic surfaces is
related to diffusion across the surfaces by Ds

<D / sk'Dd2. The correlation time is tc<D2 /D, and the
radial step is dr<D. Inserting this expression for tc into
D<k'

2 sdF /Bd2tc, one finds

D < k'DUdF

B
U . s226d

In strong microturbulence the particle diffusion is linear
in the perturbation amplitude rather than quadratic as it
is in quasilinear diffusion.

The perturbation amplitude that is reached in a mi-

croturbulent plasma is bounded by u¹W dnu<u¹W nu. That is,
the microturbulence cannot create steeper gradients
than the ambient gradient while transferring energy
from the gradients. If one of the species is responding
adiabatically, which means edF /T=dn /n, the bound on
the fluctuation amplitude is
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edF

T
=

dn

n
<

1

k'a
, s227d

where 1/a;d ln snd /dr is the scale of the ambient den-
sity gradient. The radial diffusion coefficient is then

D <
D

a

T

eB
, s228d

where T / seBd=riCs, which is the ion gyroradius times
the speed of sound.

The transport caused by microturbulence is depen-
dent on the radial extent D of the constant dF contours.
There are two extreme assumptions about D. The more
pessimistic is that D is proportional to the size of the
plasma, D~a. This assumption makes the diffusion pro-
portional to the Bohm diffusion coefficient, which in the
modern literature is usually defined as

DB ;
T

eB
, s229d

although David Bohm’s unpublished work, which first
gave this coefficient, included an unjustified factor of 1

16.
The confinement time given by Bohm diffusion, tB
<a2 /DB, is similar to the time it takes particles to drift
out of a torus due to unconfined particle trajectories,
td=a /vg, where a is the plasma radius and vg<sri /adCs
is the guiding-center drift velocity. The more optimistic
assumption is that D is of order the ion gyroradius ri.
The assumption that D<ri gives the gyro-Bohm rate,

Dg ;
ri

a

T

eB
=

ri
2Cs

a
. s230d

The Bohm time is far too short for a fusion power plant.
The gyro-Bohm confinement time, tg=a2 /Dg, is mar-
ginal,

tg < 7 ms
a3B2

sT/10 keVd3/2 , s231d

where the plasma radius is in meters and the magnetic
field is in tesla.

What sets the radial scale D of the perturbed potential
dF? First, consider a microinstability, such as the ion
temperature gradient sITGd instability discussed below,
in which the electrons have an adiabatic response, which
means Dn /n=eF /T, but the ions behave nonadiabati-
cally. In linear theory, D can be much larger than the ion
gyroradius. However, the long radial contours of the po-
tential are broken up in the nonlinear microturbulent
state by what are known as zonal flows sDiamond and
Kim, 1991d. These flows come from the E3B drift in the
part of potential perturbation that has a nonzero aver-

age over the magnetic surface, dF̄sct , td;kdFl. The

surface-averaged fluctuation in the potential, dF̄sct , td,
cannot be damped by electrons flowing along the field
lines, unlike the rest of the variation in the potential,

dF−dF̄. Indeed, the adiabatic response of the electrons,

if written correctly, is dn /n=esdF−dF̄d /T. The drive for

the zonal flows is the surface-averaged inertial force of
the fluctuating E3B velocity. The left-hand side, or in-
ertial part, of the Navier-Stokes equation is rs]vW /]t

+vW ·¹W vWd=]srvWd /]t+¹W · srvWvWd, where the continuity equa-

tion ]r /]t+¹W · srvWd=0 was used to place the inertial
terms in the second form. The force that drives the zonal
flows is the average over the magnetic surfaces of

k¹W · srvWvWdl, where vW = sBW 3¹W dFd /B2 is the E3B velocity
of the plasma in the turbulence. The tensor rvWvW is known
as the Reynolds stress tensor, so zonal flows are driven
by the Reynolds stresses. When the microturbulence is
strong, the zonal flows are sufficiently robust to make
D<1/k'. When the ions are the nonadiabatic species,
the perpendicular wave number k' tends to be compa-
rable to the ion gyroradius ri. The reason is that when
k'!1/ri the instability grows faster the larger k'. How-
ever, when k'@1/ri the ions respond adiabatically to
changes in the potential by moving across the field lines
sSec. VI.Gd, which removes the drive for the instability.
The typical fluctuation amplitude, Eq. s227d, is of order
the ion gyroradius to system size, ri /a.

Microinstabilities, such as the electron temperature
gradient sETGd mode that is discussed below, also exist
in which the ions respond adiabatically but electrons
nonadiabatically. The ions behave adiabatically when
the wave number of the perturbations satisfies k'ri@1,
so the ions are free to cross the field lines in response to
changes in the potential. For this case zonal flows are
not important because the adiabatic ion response, dn /n
<−edF /T, is to the full variation in the electric potential
and not just the part that varies on the magnetic sur-
faces, as is the case with adiabatic electrons. The radial
extent D of the constant-potential contours is still lim-
ited by the ion gyroradius ri because otherwise the ions
could not respond adiabatically, although the perpen-
dicular wave number for the ETG mode is comparable
to the electron gyroradius, k're<1. Because of the
great anisotropy, k'D<ri /re, ETG microturbulence can
produce transport comparable to ITG microturbulence
with zonal flows sDorland et al., 2000; Jenko et al., 2000d.
For both, the diffusion is comparable to the gyro-Bohm
rate. However, it should be noted that a number of ex-
periments see a reduction in the diffusion with ion mass
rather than the increase that would be expected from
gyro-Bohm diffusion. This effect, which is discussed by
Bessenrodt-Weberpals et al. s1993d, is not understood
theoretically.

An important feature of recent experiments has been
the observation of transport barriers, which are narrow
regions in which transport is greatly reduced. This topic
has been recently reviewed sTerry, 2000; Wolf, 2003d.
Despite the narrowness of the transport barriers, the re-
duction in transport is sufficiently great to significantly
enhance the overall plasma confinement. The theoretical
explanation sBiglari et al., 1990d is a stabilization of the
microturbulence by a strong radial gradient, or shear, in
the E3B flow in the magnetic surfaces. The shearing

rate of the flow is gs;udfsEW 3BW d /B2g /dru. If the shearing
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rate gs is greater than the growth rate of a microinsta-
bility, the instability is stabilized by being torn apart by
the sheared flow and is stabilized. Since the jump in the
potential across a shear layer cannot be greater than
roughly DF<Ts /e, and the typical growth rate is Cs /a,
one finds the width of a shear layer is roughly ds<Îari.
Neoclassical diffusion in a tokamak, Eq. s219d, divided
by the gyro-Bohm diffusion, Eq. s230d, is

Dg

Dnc
<

i2e3/2

n

Cs

a
, s232d

which is roughly 102 in a fusion plasma. A simple esti-
mate of the temperature drop that one can obtain across
a transport barrier DT /T is sds /adsDg /Dncd. Since
sds /adsDg /Dncd is generally greater than unity under fu-
sion conditions, one can obtain a large temperature drop
across a transport barrier. The difference between zonal
flows and transport barriers is that zonal flows have a
radial scale and a time variation determined by the mi-
croturbulence. Transport barriers are quasistatic fea-
tures with the strong variation in the electric potential
related to the strong variation in the pressure, through

the tendency in plasmas for u¹W pu<uenEW u for one of the
two species.

The diffusion coefficients that have been discussed are
more properly considered transport coefficients for heat
than coefficients for particles. The reason is that if either
species responds adiabatically there can be no particle
transport. Radial particle transport averaged over a
magnetic surface is Gr= ksn+dnddvrl. For an adiabatic re-

sponse, dn /n= ±edF /T while vr= r̂ · sBW 3¹W dFd /B2, so dn
and vr are out of phase, which means their average over
the surface is zero. Although individual particles of the
nonadiabatic species diffuse, so that heat can be trans-
ported, the electric field arranges itself so the net par-
ticle flux is zero in order to preserve quasineutrality,
qni.ene.

Neither species responds fully adiabatically in fully
developed microturbulence, so microturbulence gener-
ally leads to particle transport across the magnetic-field
lines, which is effectively an enhancement of the perpen-
dicular component of the resistivity tensor h' fEq. s32dg.
The component of the resistivity along the magnetic
field, hi, is, however, rarely enhanced by microturbu-
lence, for two reasons. First, the parallel component of
the fluctuating electric field dEi =−ikidF is small com-
pared to the electric field across the magnetic-field lines
because uki /k'u!1, so little scattering of the parallel
motion of the particles occurs. Second, if any group of
ions and electrons can diffuse rapidly across the
magnetic-field lines, then h' is enhanced, but if any
group of electrons can flow freely along the magnetic-
field lines, then hi remains close to its quiescent plasma
value.

Our discussion of microturbulence has assumed that
only the electric potential is perturbed. Microturbulence
couples to shear Alfvén modes sSec. VI.Hd, when the
Alfvén frequency, vA;vAi /Ro, is comparable to that of

microinstabilities, Cs /a. Since the Alfvén velocity is vA

;ÎB2 /m0min, the coupling occurs when the plasma
pressure satisfies b;2m0p /B2. sai /Rod2. Alfvén cou-
pling means that the component of the vector potential
parallel to the magnetic field, dAi, is perturbed. If dAi /B
is Fourier decomposed in magnetic coordinates that
have a simple covariant form, Eq. s58d, then the mag-
netic surfaces are broken to form an island unless each
Fourier component sdAi /Bdmn vanishes at its rational
surface, i=n /m fEq. s80dg. It is unclear whether the reso-
nant components of sdAi /Bdmn are nonzero under stan-
dard plasma conditions, but if they were nonzero they
would produce a qualitative change in the microturbu-
lence due to electron transport along the stochastic
magnetic-field lines. On the other hand, if the Fourier
components sdAi /Bdmn exactly vanish at their resonant
rational surfaces, then the effect of the coupling of the
microturbulence to the shear Alfvén modes would be to
cause the magnetic surfaces to wobble, which makes cal-
culations more difficult but causes no qualitatively new
physical effects.

The microinstability that has received the most atten-
tion in recent years is the ion temperature gradient
sITGd instability, also called the hi mode,

hi ;
d lnsTd
d lnsnd

, s233d

where Tsctd is the ion temperature and nsctd is the ion
density. The ITG mode, which has been reviewed by
Horton s1999d, appears to be responsible for the en-
hanced transport of heat by ions in tokamak plasmas
and can be viewed as a kinetic version of sound waves
that are destabilized by the ion temperature gradient.

The simplest version of the ITG instability sKadomt-
sev and Pogutse, 1970d occurs in a uniform magnetic

field BW =Bẑ with the plasma having temperature and
density gradients in the x direction. The fluctuations de-
pend on y, z, and time as expfiskyy+kzz−vtdg and only
weakly on x. In a fluid model, the ions obey the conti-

nuity equation, ]n /]t+¹W · snvWd=0, with the perpendicular

components of the velocity given by vW'=EW 3BW /B2. Us-
ing a tilde to denote perturbed quantities, the continuity
equation implies

v
ñ

n
+

ky

B

d ln n

dx
F̃ = kzṽi . s234d

The parallel component of the velocity is given by force
balance along the field lines, nmidvi /dt=−]p /]z
−en]F /]z, or

vminṽi = kzsp̃ + enF̃d . s235d

The ions are assumed to respond adiabatically, which
means p /n5/3 is carried with the flow, ]sp /n5/3d /]t

+vW ·¹W sp /n5/3d=0, and
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p̃

p
=

5
3

ñ

n
−

ky

vB
shi − 2/3d

d ln n

dx
F̃ . s236d

The electrons are of sufficiently low mass that they can
move rapidly along the magnetic-field lines and remain
in thermodynamic equilibrium,

ñ

n
=

eF̃

Te
, s237d

which is called an adiabatic response. In giving the elec-
tron response we have assumed that the perturbation
has a long spatial scale compared to the Debye length,
which implies the electron and ion densities are essen-
tially equal in both the unperturbed and the perturbed
states. In other words, the perturbed plasma is quasineu-
tral. Combining results, one finds

1 −
v*e

v
= Skz

v
D2 T

mi
HTe

T
+

5
3

+
v*e

v
Shi −

2
3
DJ , s238d

where the electron drift frequency is

v*e ; −
kyTe

eB

d ln n

dx
. s239d

If the frequency, v, of the perturbation is high compared
to the drift frequency v*e, then Eq. s238d gives sound
waves

v2 =
Te + 5

3T

mi
kz

2. s240d

However, when the frequency of the perturbation is low
compared to the drift frequency, v!v*e, the frequency
of the perturbation is

v2 =
T

mi
S2

3
− hiDkz

2, s241d

which has an exponentially growing ITG mode for hi
.2/3. In a plasma such as a fusion plasma in which
collisions are weak, neither the sound wave nor the ITG
mode are treated realistically in this analysis unless
v /ki @ÎT /mi, because otherwise strong-ion Landau
damping sSec. VI.Cd implies that only decaying solutions
exist. In other words, the analysis is only realistic for
sound waves if T /Te!1 and for the ITG mode if hi@1.
To the extent the electrons respond adiabatically, the hi
mode causes ion heat transport but no electron trans-
port and, because of quasineutrality, no particle trans-
port.

Here we have ignored not only kinetic effects, but
also two other important determinants of ITG stability,

shear and the BW 3¹W B drift. Magnetic shear, the change
in direction of magnetic-field lines from one pressure
surface to another, is stabilizing. Magnetic shear effects
will be considered in the discussion of Alfvén instabili-

ties in Sec. VI.H.2. The BW 3¹W B drift destabilizes the
ITG drift in regions of bad magnetic-field-line curvature,
which means the center of curvature is on the higher-
pressure side of the field lines. This destabilization of the

ITG mode is closely related to the destabilization of bal-
looning modes by bad curvature sSec. V.C.2d. The ver-
sion of the ITG mode in which curvature effects domi-
nate is called the toroidal branch, and the version in
which curvature effects are subdominant is called the
slab branch.

An important feature of ITG turbulence is that it be-
comes strong only when a critical gradient is reached. In
the simplest version of the theory, the critical gradient is
a critical value of hi. When curvature effects are re-
tained, turbulence can arise when the radius of curva-
ture R times 1/LT;ud ln T /dru exceeds a critical value.
The R /LT critical gradient is counterintuitive, since the
weaker the curvature the easier it is for curvature to
destabilize the mode. However, the growth rate of the
mode and the maximum rate of transport become small
when R is large. In many experiments, in particular
those with a high ion temperature, the plasma is thought
to operate just above the critical gradient. In this situa-
tion, the logarithmic ion temperature gradient,
d ln T /dr, is given by the critical gradient with the mag-
nitude of the heat flux determined by conditions at the
plasma edge. That is, the ion temperature throughout
the plasma is proportional to the ion temperature near
the plasma edge. A similar phenomenon occurs in the
earth’s atmosphere where the temperature profile is de-
termined by the critical gradient for convection,
d lnspd /d lnsndùg, with the magnitude of the heat flux
determined by the boundaries of the convection zone.

A second instability, the electron temperature gradi-
ent sETGd mode, has very similar physics, only the role
of the electrons and ions is reversed. The ETG mode has
wave numbers comparable to the electron gyroradius re.
On this scale the ions have only weak magnetic effects,
ri<60re, and the ions respond adiabatically, dn /n
=−eF /T. The ETG mode may be responsible for the
enhancement of the electron heat transport above its
neoclassical value sDorland et al., 2000; Jenko et al.,
2000d, and the combination of the ITG and the ETG
modes may give the enhanced particle transport that is
observed in experiments.

G. Gyrokinetic theory

• The simplification of the particle trajectories and ki-
netic theory that occurs when the gyroradius r is
small compared to the system size can be extended
to include perturbations of the magnetic and electric
fields that have arbitrarily large wave numbers per-
pendicular to the magnetic field, k'r arbitrary. This
approximate kinetic theory is called gyrokinetic
theory.

Computational studies of microinstabilities, which are
on the scale of the gyroradius of one of the species, are
carried out using the gyrokinetic equations. This and
other computational studies of plasmas have been dis-
cussed by Tang s2002d. The gyrokinetic equations are the
kinetic equations but with the particle velocity repre-
sented by the gyrokinetic drift velocity. The derivation
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of these equations was developed by Rutherford and
Frieman s1968d, Taylor and Hastie s1968d, and Antonsen
and Lane s1980d.

The gyrokinetic drift velocity consists of two parts.
The first part is the guiding-center drift of the particles
in the large-scale electric and magnetic fields. This is just
the ordinary guiding-center drift, vWg, which was dis-
cussed in Sec. VI.D. The second part, dvWg, is the modifi-
cation of the drift of the guiding center by the small-
scale perturbations. The perturbations that arise in
microturbulence are small, of order the gyroradius-to-
system-size ratio r /a, but the drifts that the perturba-
tions cause can be of order of other guiding-center drifts
due to the strong spatial gradients, of order 1/r.

Despite having a wavelength across the magnetic-field
lines comparable to the gyroradius of one of the species,
the perturbations that arise in a microturbulent plasma
have a wavelength along the magnetic field comparable
to the plasma size. The long parallel wavelength arises
to minimize Landau damping sSec. VI.Cd. This compli-
cated spatial structure can be accommodated math-
ematically by writing perturbed quantities, such as the
electric potential, in eikonal form,

dF = F̃sxW ,tdeiSsct,ad, s242d

just as one does for ballooning modes. The eikonal
Ssct ,ad depends on the two Clebsch coordinates, where

BW =¹W ct3¹W a, Eq. s9d, and represents the rapid variation

of dF across the magnetic-field lines. F̃ varies on a much
longer spatial scale, which involves the plasma size, and
with a slow time scale, of order the thermal sound speed
divided by the plasma radius Cs /a. Although

kW' ; ¹W S s243d

is very large, k'r<1, the spatial variation of kW' itself is
much longer, involving the overall scale of the plasma.

Three electromagnetic quantities affect the particle
drifts due to their rapid spatial variation: the perturbed

electric potential, dF=F̃ expsiSd, the perturbed parallel

component of the vector potential, dAi =Ãi expsiSd, and
the perturbed parallel component of the magnetic field,

dBi = B̃i expsiSd. As shown below, their effect on the
drifts is given by

dvWg ;Ke−iSg
dxWg

dt
L = −

ikW' 3 b̂

B
x , s244d

with the generalized potential

x = sF̃ − viÃidJ0sk'rd +
mB̃i

q

2J1sk'rd
k'r

s245d

defined using the time derivative of the particle energy
or Hamiltonian,

q
]x

]t
;Ke−iSg

dH

dt
L . s246d

Here Sg means the eikonal is evaluated at the guiding-
center position, and k¯l means an average over the gy-
rophase q. J0 and J1 are the zeroth and the first cylindri-
cal Bessel functions, m;mv'

2 /2B is the magnetic

moment, which is an adiabatic invariant, and b̂;BW /B.
The time derivative of the guiding-center position xWg,
Eq. s180d, depends on the electric and magnetic fields at
the true position of the particle, xW , rather than at the
location of the guiding center, xWg. The difference be-
tween the true position xW and the guiding center xWg is the
vector gyroradius rW =xW −xWg, Eq. s177d. The difference be-
tween the eikonal evaluated at the guiding-center posi-
tion and the actual position of a particle is Sg−S
=−kW' ·rW .

The Bessel functions that appear in the gyrokinetic
equations measure the importance of the interaction of
a charged particle with the magnetic field. As k'r→0
the interaction is strong, and the Bessel functions have
the limits J0sk'rd→1 and 2J1sk'rd / sk'rd→1. For k'r
→`, the interaction becomes weak, but at a slow rate,
1 /Îk'r. As z;k'r→`, the Bessel functions have the
asymptotic forms Jnszd=Îs2/pzd cosfz− sn+1/2dsp /2dg.

The distribution function of gyrokinetic theory is
evaluated at the guiding-center position of the particles
xWg rather than their actual position xW and has the form

fsH ,m ,xWg , td= f0sH ,xWgd+df, where df= f̃sH ,m ,xWg , td
3expsiSgd and f0 is the equilibrium distribution function.

The gyrokinetic equation for the amplitiude of the

perturbed distribution function, df= f̃ expsiSgd, is

S ]

]t
+ vWg · ¹W + ikW' · vWgDf̃ + Q + FI = CLsf̃d , s247d

where the inhomogeneous term is

FI ; dvWg · ¹W f0 + q
]x

]t

]f0

]H
, s248d

with f0 the distribution function for the unperturbed

equilibrium. CLsf̃d is a linearized collision operator, and
the quantity Q is a quadratic nonlinearity. The dominant
nonlinearity in gyrokinetic theory is generally taken to

be the sdxWg /dtd ·¹W df nonlinearity, for which Q has the
form

Q =
b̂ · kke−iSg¹W sxeiSgd 3 ¹W sf̃eiSgdll

B
. s249d

The notation kk¯ll means an average over the gy-
rophase and a projection of the expression using the or-
thogonality of the solutions to the linear gyrokinetic
equation. The function x expsiSgd comes from convert-
ing the electric and magnetic fields that appear in dxWg /dt
from the particle position to the guiding-center position
plus an average over the gyrophase. The gyrophase av-
erage is discussed below in the derivations of dvWg and x.
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The nonlinear part Q of the gyrokinetic equation re-
quires a definition of orthogonality among the solutions
to the linear gyrokinetic equation, which means solu-
tions that have different eikonals S. For example, in axi-
symmetric systems different solutions in eikonal form
can have different toroidal mode numbers, as discussed
in Sec. V.C.2 on ballooning modes. The gradient of the
eikonal is the effective perpendicular wave number. As
is well known from Fourier analysis, perturbations with
different wave numbers are orthogonal. The definition
of orthogonality and the evaluation of the required inte-
grals to obtain Q is the major subtlety of the study of
microturbulence with the gyrokinetic equation. An ap-
proximate method, which is relatively easy to follow, has
been given by Beer, Cowley, and Hammett s1995d.

The linear part of the gyrokinetic equation follows
from Eqs. s244d and s246d and the kinetic equation
df /dt=Csfd, where df /dt=df0 /dt+ddf /dt. The time de-
rivative of the perturbed distribution function is ddf /dt

= sdf̃ /dtdeiSg + if̃eiSgdSg /dt, and the time derivative of
the equilibrium distribution function is df0 /dt

= sdf0 /dHddH /dt+ sdxWg /dtd ·¹W f0. The linear gyrokinetic
equation is obtained by multiplying both sides of the
kinetic equation by e−iSg and then averaging over the
gyrophase q. The rapidly varying part of df is in the

eikonal, so f̃ is slowly varying, and df̃ /dt=]f̃ /]t+vWg ·¹W f̃.

The gyrophase average is kdSg /dtl= kvWg ·¹W Sgl=kW' ·vWg.
To have a complete set of equations, relations are

needed between the perturbed distribution function f̃

and the perturbed electric potential F̃, the parallel com-

ponent of the vector potential Ãi, and the parallel com-

ponent of the magnetic field B̃i. For purposes of taking
the averages, the perpendicular velocity of the particle
will be written as

vW' = v'hscos qk̂' 3 b̂ + sin qk̂'dj . s250d

The perturbed electric potential is given by Poisson’s
equation, which can be approximated as k'

2 dF
= sq /e0ddn, or

k'
2 F̃ =

q

e0
ñ . s251d

The perturbed density of a species is dn=eDfd3v, where

Df;qdFs]f0 /]Hd+df fEq. s153dg. Since df= f̃ expsiSgd
but dn= ñ expsiSd with Sg−S=−k'r cos q, the perturbed
density is

ñ = qF̃E ]f0

]H
d3v +E J0sk'rdf̃d3v , s252d

where we used the integral expression for the zeroth-
order Bessel function,

J0szd =
1

2p
E

−p

p

e−iz cos qdq , s253d

to carry out the integration over the gyrophase q, which
is one of the integration variables in d3v fEq. s171dg.

The perturbed parallel component of the vector po-

tential can be calculated using Ampère’s law, ¹W 3¹W

3dAW =m0djW, or

k'
2 Ãi = m0j̃i . s254d

The perturbed current density is

j̃i = qE viJ0sk'rdf̃d3x , s255d

where we have assumed df0 /dH is symmetric in vi.

The equation for B̃i is given by the force balance
across the field lines, which for short-wavelength pertur-

bations has the form k̂ ·¹W sp'+B2 /2m0d=0. This follows

from m0jW3BW =BW ·¹W BW −¹W B2 /2 since BW ·¹W BW =B2b̂ ·¹W b̂

+ b̂BW ·¹W B is negligible when k'@ki. The perturbed per-

pendicular pressure is p̃'= kemsvW · k̂'d2Dfd3vl, which
means

p̃' = SqF̃E m
]f0

]H
d3v +E mf̃

2J1sk'rd
k'r

d3vDB , s256d

where m;mv'
2 /2B is the magnetic moment and the

first-order Bessel function obeys

J1szd
z

=
1

2p
E

−p

p

e−iz cos u sin2 udu . s257d

The adiabatic term in p̃, which is the term proportional

to F̃, is equal and opposite for the electrons and the ions
provided the Debye length satisfies k'lD!1, so edne

=qdni. The force balance is p̃'+BB̃i /m0=const, so

B̃i = − m0E mf̃
2J1sk'rd

k'r
d3v . s258d

The remainder of the section gives the derivations of
Eq. s245d for x, which is defined by q]x /]t
;ke−iSgdH /dtl and dvWg;ke−iSgdxWg /dtl fEq. s244dg.

First, we need the approximate relation between the
vector potential and the magnetic field that holds when
k'a@1 with a the plasma radius. The magnetic field is

dBW =¹W 3dAW where dAW =Ã
W

expsiSd. Dotting this expres-

sion with the unperturbed magnetic field BW , one finds

that BW ·dBW =¹W · sdAW 3BW d+dAW ·¹W 3BW . The only term on
the right-hand side that is large is the first term, through

its dependence on kW';¹W S,

dBi = − sikW' 3 b̂d · dAW '. s259d

The components of the perturbed magnetic field that are

perpendicular to the unperturbed field are given by BW
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3dBW =¹W sBW ·dAW d−dAW 3¹W 3BW −dAW ·¹W BW −BW ·¹W dAW . The
large term is the first term, which gives

b̂ 3 dBW = ikW'dAi . s260d

Second, we derive the expression for x, Eq. s245d,
from its definition, Eq. s246d. The exact equation for the
change in the energy of the particles is dH /dt=qs]F /]t

−vW ·]AW /]td fEq. s198dg. The required gyrophase average
ke−iSgdH /dtl is the sum of two terms. The first term is

qS ]F̃

]t
− vi

]Ãi

]t
DkeisS−Sgdl . s261d

The gyrophase average kexpfisS−Sgdgl can be written as
kexpsik'r cos qdl=J0sk'rd. The second term is

− KvW' ·
]

]t
sdAW 'e−iSgdL =

m

q

]B̃i

]t

2J1sk'rd
k'r

, s262d

which is derived using Eqs. s250d and s259d, vW' ·dAW '

=v'k̂' ·dAW ' sin q+ isv' /k'ddBi cos q. The gyrophase
average ksin q expfisS−Sgdgl is zero because

1

2p
E

−p

p

eiz cos q sin qdq = 0, s263d

and the gyrophase average kcos q expfisS−Sgdgl is

1

2p
E

−p

p

eiz cos q cos qdq = iJ1szd , s264d

where z=k'r and r=mv' /qB. Assembling the parts,
one obtains ke−iSgdH /dtl=q]x /]t with x given by Eq.
s245d.

Third, we calculate the part of dvWg, Eq. s244d, that is
across the magnetic field. The time derivative of the
guiding-center position is given by Eq. s180d. Because of
the slowness of the time variation, the perturbed electric
field is given by the gradient of the potential,

dEW = − ikW'dF . s265d

The contribution of the E3B drift to dvWg is

Ke−iSg
dEW 3 BW

B2 L = −
ikW' 3 b̂

B
J0sk'rdF̃ , s266d

where we used kexpfisS−Sgdgl=J0sk'rd. The effect of
the perturbation on the term is

dKe−iSgvW' 3 b̂
d

dt

1

V
L = −

iB̃i

VB
KeisS−SgdvW' 3 b̂

dS

dt
L .

s267d

The large term is dS /dt=vW' ·¹W S=kW' ·vW', which means

dS /dt=k'v' sin q. Equation s250d implies vW'3 b̂

=v'sk̂'3 b̂dsin q−v'k̂' cos q. The gyrophase integral

that involves the second term in vW'3 b̂ is zero, and the
gyrophase integral that involves the first term is calcu-
lated using Eq. s257d,

Ke−iSgvW' 3 b̂
d

dt
eiSL = − iskW' 3 b̂dv'

2 J1sk'rd
k'r

. s268d

Fourth, we calculate the part of dvWg, Eq. s244d, that is
along the perturbed magnetic field. Motion along the

magnetic field is given by vib̂+vidb̂ with the change in

the direction of the magnetic field, db̂=dBW ' /B. Equa-
tion s260d implies

dke−iSgvidb̂l =
ikW' 3 b̂

B
viÃiJ0sk'rd . s269d

Putting the pieces together, one finds the effect of the
perturbations on the drift equation s244d with the gener-
alized potential x given by Eq. s245d.

H. Alfvén instabilities

• Shear Alfvén waves are a twisting of the magnetic-
field lines. These waves have a continuous spectrum
of possible frequencies but are generally heavily
damped. The damping occurs if there is sufficient
field-line shear, which means variation in the direc-
tion of the magnetic-field lines or sufficient variation
in the Alfvén velocity, B /Îm0r with r the plasma
mass density, transverse to the magnetic field.

• If the Alfvén velocity varies along the magnetic-field
lines and the magnetic-field lines have shear, then the
continuous spectrum of Alfvén waves has gaps, and
weakly damped discrete ssharp-frequencyd shear
Alfvén modes can exist in these gaps.

• Energy is transferred between shear Alfvén modes
and particles with a resonant velocity, v /ki, along the
field lines. A destabilizing transfer of energy from
the particles to the waves occurs if the diamagnetic
drift frequency of the interacting particles, v* of Eq.
s290d, is larger than the frequency v of the Alfvén
mode; otherwise the transfer is stabilizing. Only par-
ticles, such as fusion alphas, that have a gyroradius in
the poloidal magnetic field alone comparable to their
density gradient have a destabilizing interaction.

If a magnetic field is twisted and released, the twist
travels down the magnetic-field lines at the Alfvén ve-
locity,

vA ;Î B2

m0r
, s270d

and is called a shear Alfvén wave. Most shear Alfvén
perturbations are strongly damped, but certain perturba-
tions called gap modes have weak natural damping. The
weakly damped gap modes are susceptible to being
driven to high amplitude by interactions with particles
that are moving along the field lines with a velocity com-
parable to the Alfvén velocity. This instability of the gap
modes goes under the name of the toroidal Alfvén
eigenmode sTAEd instability. The theory of short-
wavelength TAE instability was developed by Cheng et
al. s1985d, and the theory of the more important low-
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mode-number TAE instability by Cheng and Chance
s1986d. The concern is that alpha particles produced by
the fusion reaction will drive gap modes to a high am-
plitude causing a loss of the alphas from the plasma be-
fore they can transfer their energy to the bulk plasma
sITER Physics Export Group on Energetic Particles, …,
1999ad. Only at a low plasma beta, b;2m0p /B2, is the
Alfvén velocity above the speed va at which fusion al-
phas are produced, b.1.8% sT /20 keVdsva /vAd2, with T
the plasma temperature. Wong s1999d has reviewed the
relation between the experiments and theory for TAE
instabilities. The properties of shear Alfvén modes that
are central to this theory will be discussed in this section.

1. Continuum Alfvén wave damping

Shear Alfvén waves have a continuous spectrum that
is heavily damped sTataronis and Grossmann, 1973d.
The physics is illustrated by a model in which the equi-
librium magnetic field is uniform and in the ẑ direction,

BW =Bẑ, but the plasma mass density r depends on x. The

force balance is rsxd]vW /]t=djW3BW with m0djW=¹W 3dBW . The
perturbation to the magnetic field is given by the ideal

Ohm’s law, ]dBW /]t=¹W 3 svW 3BW d. The two components of
velocity that enter the calculation are written as vx

= ṽxsxd expfiskyy+kiz−vtdg and vy= ṽysxd expfiskyy+kiz
−vtdg. The wave number ky is in the surface of constant
Alfvén velocity, and the wave number ki is along the
magnetic field.

If the model equations for Alfvén waves are analyzed,

keeping all three components of dBW , one finds

fv2 − ki
2vA

2 sxdgṽx + vA
2 d2ṽx

dx2 + ikyvA
2 dṽy

dx
= 0 s271d

and

fv2 − ski
2 + ky

2dvA
2 sxdgṽy + ikyvA

2 dṽx

dx
= 0. s272d

These equations, which are more general than the deri-
vation given here, can be combined into a single equa-
tion for ṽx,

d

dx
S v2 − ki

2vA
2

v2 − ski
2 + ky

2dvA
2

dṽx

dx
D +

v2 − ki
2vA

2

vA
2 ṽx = 0. s273d

When the Alfvén velocity is independent of position,
this equation has two types of solutions. One type is the
compressional Alfvén mode with vA

2 d2vx /dx2+ hv2− ski
2

+ky
2dvA

2 jvx=0, which is a propagating wave if kx
2

;sv2 /vA
2 d− sky

2+ki
2dù0 and evanescent sexponential de-

pendence on xd otherwise. The other solution is the
shear Alfvén wave with v2=ki

2vA
2 , which has an arbitrary

dependence on x. When the Alfvén velocity depends on
position, these two types of solutions are coupled, and
the point where vA

2 sxd=v2 /ki
2 is a singular point, a point

at which energy is absorbed.
Equation s273d has a singular point, which will be de-

noted by x=0, where vA
2 sxd=v2 /ki

2. At the singular

point, the velocity ṽy has a 1/x singularity, which means
there is an infinite amount of energy in the vicinity of
the singular point, an unphysical result. This singularity
in the energy means an arbitrarily large amount of en-
ergy can accumulate, a buildup of energy that can be
represented by letting the frequency be complex, v
=v0+ ig. Assume g is small, let x=0 be the point where
ki

2vA
2 =v0

2, and let

d ;
2v0g

ki
2dvA

2 /dx
s274d

evaluated at x=0. Then near its singular point Eq. s273d
can be approximated as

d

dx
sx − idd

dṽx

dx
= sx − iddky

2ṽx, s275d

while Eq. s272d implies kyṽy= idṽx /dx.
To calculate the power per unit area flowing into the

singular point of Eq. s273d, we study the two indepen-
dent solutions of Eq. s275d in the vicinity of the singular
point. These solutions are the cylindrical zeroth-order
modified Bessel functions of the first, I0sjd, and the sec-
ond, K0sjd, kind, where j;kysx− idd. As j→0, I0→1
and K0→−ln j. The regular, or I0, part of the solution is
undamped, but the singular, or K0, part is damped. Fo-
cusing on the singular part of the solution, let

ṽx = VsK0sjd , s276d

where Vs is a constant. Then near j=0, ṽy=−iVs /j. The
average power per unit y−z area that goes into the ve-
locity singularity is P=Reherṽy

*s]ṽy /]tddx /2j. Here we
used the easily proven result that if a function fsyd is the
real part of fc expsikyyd and another function gsyd has
the same form, then the y average of fsydgsyd is
Rehfc

*gcj /2. Since ]ṽy /]t=−ivṽy, P= sg /2derṽy
*ṽydx. The

integral that must be performed has the form

E
−`

` dx

x2 + d2 =
p

udu
, s277d

so P= sp /2dsg / ududr0Vs
2 /ky

2 where r0=rsx=0d. In other
words, the power per unit area going into the sigularity
is

P =
p

2
v0

r0Vs
2

ky
2 Ud ln vAsxd

dx
U . s278d

2. The weakly damped gap mode

The existence of weakly damped gap modes requires
both a shear in the magnetic-field lines across the lines
and a variation in the magnetic-field strength along the
magnetic-field lines. An equation for the shear Alfvén
mode, which contains both shear and variation in the
Alfvén velocity, is relatively simple when the perturba-
tion is localized to a magnetic-field line. This occurs
when the perpendicular wave number k' is large in
comparison to the wave number along the magnetic field
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lines ki. The assumption k'@ki leads to the eikonal ap-
proximation as in the discussion of ballooning modes,
Sec. V.C.2, and gyrokinetics, Sec. VI.G.

All the perturbed quantities in a shear Alfvén wave
can be expressed in terms of the perturbation to the

electric potential dF=F̃ expsiSd, where Ssad=2pma is
the eikonal and m is a large integer. The perpendicular

wavelength is k';¹W S. The Clebsch angle a= sum

− iwd /2p is defined so BW =¹W ct3¹W a fEq. s9dg. The equa-
tion for the perturbed electric potential, which is derived
below, is

]

]z
Sk'

2

B

]dF

]z
D = −

k'
2

B
Vszd2dF , s279d

where z is a dimensionless coordinate along the
magnetic-field line. The distance along a line is ,
= sL /2pdz with L a characteristic distance. V is a dimen-
sionless, or normalized, frequency,

Vszd2 ; v2S L

2pvAszdD
2

, s280d

with v the frequency of the perturbation F̃~exps−ivtd.
The characteristic form is V2szd=V0

2s1+2e coszd. In a
large-aspect-ratio tokamak, e=r /Ro gives the variation
in the magnetic-field strength, and L=2pRo / i is the pe-
riodicity length of the field strength. The period of the
magnetic-field strength in a tokamak is um=2p, but
along a field line um= iw with d,=Rodw.The frequency
vA;s2p /LdvA is known as the Alfvén frequency, so V
=v /vA. For a large-aspect-ratio tokamak, vA=vAi /Ro.

A magnetic field has global shear if di /dct is nonzero.
When the field is sheared, the characteristic dependence
of k'

2 /B on z is

k'
2

B
~ s1 + s2z2d , s281d

with s~di /dct. This follows from 2p¹W a=¹W um− i¹W w

−wsdi /dctd¹W ct with w~z. For a large-aspect-ratio toka-
mak, z= iw and s=d lni /d lnr.

This paragraph contains the derivation of Eq. s279d
for dF. The derivation starts with the ideal Ohm’s law,

dEW +vW 3BW . The magnetic perturbation of a shear Alfvén
wave is perpendicular to the main field, and when k'

→` Eq. s260d shows that dBW '= ikW'3 b̂dAi with b̂

;BW /B. Therefore dEW =−b̂]dAi]t−¹W dF, which implies vW

= sBW 3 ikW'ddF /B2 and ]dAi /]t=−sBW ·¹W dFd /B. The force

balance r]vW /]t=djW3BW implies djW'= sBW 3r]vW /]td /B2 and

that ¹W ·djW'=k'
2 rs]dF /]td /B2. Since the current is

divergence-free, BW ·¹W sji /Bd=−¹W ·djW'. Therefore

BW ·¹W sji /Bd=−k'
2 sr /B2d]dF /]t. Ampere’s law gives

k'
2 dAi =m0ji, and ]2dF /]t2=−v2dF. Let BW ·¹W

= s2pB /Ld] /]z with L a characteristic length along the
field line. V2 is defined by Eq. s280d. Combining results,
one obtains Eq. s279d.

The energy density of a shear Alfvén wave,

w =
rk'

2

4B2SdF * dF +
1

V2

]dF*

]z

]dF

]z
D , s282d

is the sum of the kinetic energy rvW * ·vW /4 and the mag-

netic energy dBW * ·dBW /4m0. The factors of four, where
two is expected, come from the use of complex arith-
metic, as discussed just above Eq. s277d.

A shear in the magnetic-field lines, sÞ0, causes a
rapid loss of energy from Alfvén waves if the field
strength is constant, e=0. Consider the Fourier trans-
form of Eq. s279d with k'

2 /B replaced using Eq. s281d.
That is, let dF=ef̃ expsikizddki, which implies ddF /dz

→ ikif̃ and zdF→−idf̃ /dki. Then when the variation of
the Alfvén speed along the field lines is ignored, V2

=const, Eq. s279d implies

s2 d

dki

sV2 − ki
2d

df̃

dki

= sV2 − ki
2df̃ . s283d

This equation is singular at the place where ki =V, which
is the equation for a shear Alfvén wave in the absence of
shear, s=0. The energy density in ki space, wk, is defined
so ewkdki =ewdz, and is given by

wk =
p

2
rSk'

B
D

0

2S1 +
ki

2

V2DSf̃ * f̃ + s2df̃*

dki

df̃

dki

D s284d

with the subscript naught on sk' /Bd0
2 implying evalua-

tion at z=0. Near the singular point ki =V, the dominant
component in the energy density wk scales as the square
of sdf̃ /dki, and an infinite amount of energy is located
near this point in ki space. These equations and the reso-
lution of their singularity exactly follow the derivation
that led to Eq. s278d for the dissipation of Alfvén wave
energy. The singular point, ki =V, of Eq. s283d represents
the transfer of energy to the region z→`, which in
steady state has infinite energy content, while the singu-
lar point kivA=v of Eq. s273d represents the transfer of
energy to an arbitrarily small region in x, which means
to kx→`.

The existence of gaps in the spectrum of Alfvén waves
and the existence of weakly damped modes in those
gaps is easier to demonstrate if the perturbed quantities
are expressed in terms of u;sik' /ÎBddF, which places
the energy density in a nonsingular form,

w =
r

4B
Suuu2 +

1

V2Udu

dz
−

sz

1 + s2z2suU2D . s285d

The equation for u has the characteristic form

]2u

]z2 −
s2

s1 + s2z2d2u = − s1 + 2e cos zdV0
2u . s286d

The solution to this equation for values of V0 is given in
Fig. 14. The equation obtained from transforming
Eq. s279d is ]2u /]z2−sszdu+V2szdu=0, where sszd
;sÎB /k'd]2sk' /ÎBd /]z2. Using k' /ÎB~Î1+s2z2 and
V2szd=V0

2s1+2e coszd, one obtains the characteristic
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equation for u. If V2=const, then the solution is u
→expsiVzd for either s→0 or sz→`. This means as z
→` the Fourier transform of the shear Alfvén wave sat-
isfies ki→V. Since the amplitude of u is constant as z
→`, the solution u→expsiVzd has infinite energy.

Now consider the effect of a variation in the Alfvén
speed along the magnetic-field lines. The characteristic
equation for u, Eq. s286d, reduces to the Mathieu equa-
tion sBender and Orszag, 1978d,

d2u

dx2 + s1 + 2e cos xdV0
2usxd = 0, s287d

for either zero shear, s=0, or for uszu@1. The Mathieu
equation has two types of solutions, depending on the
value of the eigenvalue V0

2. For certain ranges of V0
2, the

regular regions, the equation yields oscillatory solutions,
and for others, the singular, or gap, regions, there are
exponentially growing solutions sFig. 14d. The smallest
V0

2.0 region that is singular occurs in the vicinity of
V0

2=1/4 for ueu!1, which means v=vA /2 with vA
;vAi /Ro the Alfvén frequency. More precisely, the sin-
gular, or gap, region is V0

2= 1
4 s1±ed for ueu!1. The regu-

lar ranges of V0
2 give continuum shear Alfvén waves.

These solutions extend over the full range of z and,
therefore, require an infinite energy to drive. The singu-
lar regions, or gaps, are values of V0

2 for which physical
shear Alfvén waves do not exist. The energy in a singu-
lar solution is in the region uzu→`, since the amplitude
of u increases exponentially with uzu.

The characteristic equation for u, Eq. s286d, also has
spatially bounded solutions, which means the solution is
concentrated in the region where uszu is small sFig. 14d.
These solutions are the gap modes because they occur in
the singular gap regions of the Mathieu equation and
have little intrinsic damping. They are the modes of in-

terest for Alfvén instabilities. Since they have finite en-
ergy, they can be driven unstable by their interactions
with high-energy particles. The existence of discrete
modes in the gaps of a frequency spectrum is a well-
known phenomenon in condensed-matter physics. For a
simple discussion see Allen et al. s2003d.

3. The particle-Alfvén wave interaction

The interaction of the particles that form the plasma
with the shear Alfvén wave is given by the kinetic equa-
tion. This interaction is weaker than one might at first
expect for modes, such as the discrete or gap mode, that
have no parallel electric field. When Ei =0, particles in
resonance with a shear Alfvén wave, vi =v /ki, do not
exchange energy with the wave unless there is a cross-
field drift vd in the equilibrium magnetic field.

To simplify the analysis of the interaction of particles
with a shear Alfvén wave, the perturbed electric poten-
tial will be assumed to have the form

dF = F̃eiskiz+kyy−vtd. s288d

The distribution function f of the species that has a reso-
nant interaction with the Alfvén wave can be written as
the sum of an equilibrium distribution and a perturba-
tion, f= frsH ,xd+df and obeys the Vlasov equation
df /dt=0. The time-averaged power to the Alfvén wave
per unit volume will be shown to be

pw =
p

2

ky
2vd

2

ukiu
Sv*

v
− 1Dq2

Tr
F̃2f̄rS v

ki
D , s289d

where vd is the guiding-center drift velocity of particles
in the ŷ direction in the unperturbed magnetic field,

v* ;
kyTr

qB

] ln fr

]x
s290d

is the diamagnetic drift frequency, f̄rsvzd;efrdvxdvy, and
Tr;−] ln fr /]H is the effective temperature of the inter-
acting particles, which have a Hamiltonian H.

The power to the shear Alfvén wave, Eq. s289d, has a
destabilizing sign only if v* is greater than v, which is
equivalent to the requirement that the gyroradius ru of
the interacting particles in the poloidal field alone be
sufficiently large to be comparable to their density gra-
dient. The condition on the poloidal gyroradius is de-
rived by first noting that the gap mode has a typical
frequency v=vA /2 with the Alfvén frequency vA

;vAi /Ro. For the interacting species Tr,mrvA
2 , and ky

.m /r with m the poloidal mode number. Defining the
poloidal gryroradius ru;sRo / irdr, one finds that the
condition v* .v implies rud ln nr /dr*1/m. Only par-
ticles, such as fusion alphas, that have a poloidal gyrora-
dius comparable to their density gradient can destabilize
Alfvén modes. Extremely high m-number Alfvén modes
are not of such great concern because of the small radial
extent of the perturbations that they produce.

To derive the power going to an Alfvén wave, the
time derivative of both the unperturbed and the per-

FIG. 14. sColord The solution to Eq. s286d, plotted for three
values of the eigenvalue: red, V0=0.42 gives a solution in the
continuum, green, V0=0.4775 gives a singular solution, and
blue, V0=0.487 gives a discrete mode. The parameters s=0.5
and e=0.2 are the same for all three solutions.
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turbed parts of the distribution function are needed. The
time derivative of the unperturbed part of the distribu-
tion function fr is given by

dfr

dt
=

dxg

dt

]fr

]x
+

dH

dt

]fr

]H
, s291d

which depends on dH /dt=]H /]t and the x̂ component
of the guiding-center velocity, dxg /dt. The time rate of
change of the Hamiltonian is

]H

]t
= qS ]dF

]t
− vi

]dAi

]t
D = qS1 −

kivi

v
D ]dF

]t
, s292d

where we used dEi =−]dF /]z−]dAi /]t=0, which means
vdAi =kidF. The relation between dAi and dF also gives
the guiding-center velocity in the x direction,

dxg

dt
=

dEy

B
+ vi

dBx

B
= − S1 −

kivi

v
D 1

B

]dF

]y
, s293d

and the time derivative

dfr

dt
= isv − kividS1 −

v*

v
DqdF

Tr
fr, s294d

where we have written ] ln fr /]H=−1/Tr and used the
diamagnetic drift frequency fEq. s290dg.

The time derivative of the perturbed part of the dis-

tribution function df is given by ddf /dt=]df /]t+vWg ·¹W df,
which can be written as ddf /dt=−isv−kivi −kyvdddf,
where vd is the drift of particles in the y direction in the
unperturbed magnetic field. Since f obeys the Vlasov
equation, df /dt=0, the perturbed distribution function is
given by ddf /dt=−dfr /dt, or

df = S1 −
v*

v
DS1 +

kyvd

v − kivi − kyvd
DqdF

Tr
fr. s295d

The time-averaged power per unit volume going to

the Alfvén wave is pw= k−djW·dEW l. The perturbed electric

field is dEW =−ikydFŷ, and the part of djy=evddfd3v that
is in phase is the imaginary part, which is given by the
Landau integral, Eq. s165d,

idjy
i = − i

p

ukiu
qkyvd

2S1 −
v*

v
DqdF

Tr
f̄rS v

ki
D , s296d

where f̄rsvzd;efrdvxdvy. The time-averaged power per

unit volume to the Alfvén wave is pw= k−djW·dEW l
= kdjW' ·¹W dFl, which implies pw=kyj̃y

i F̃ /2. Consequently
the power to the wave per unit volume is given by Eq.
s289d.

VII. PLASMA EDGE

• Control of the plasma edge is important to sad main-
tain plasma purity, sbd limit the maximum heat flux to
the chamber walls, and scd achieve a high edge tem-
perature if the plasma transport is associated with a
critical temperature gradient.

• The plasma edge can be defined by a solid object,
called a limiter, or by a separatrix between the
magnetic-field lines that lie on toroidal surfaces and
on open magnetic-field lines that intercept the cham-
ber walls. Most modern plasma confinement devices
define the edge with a separatrix. This method of
defining the plasma edge is called a divertor.

The edge is the interface between the hot plasma and
the walls. This interface must remove impurities, such as
the helium ash, and the waste heat. Ideally the waste
heat is removed by electromagnetic radiation because
that avoids hot spots on the walls. In addition, the edge
is more important to plasma confinement than one
might expect because transport often appears to obey a
critical-gradient theory, which means the temperature
throughout the plasma is proportional to the edge tem-
perature.

In modern plasma confinement devices the plasma
edge is generally defined by the separatrix between
magnetic-field lines that lie on toroidal magnetic-
surfaces and open magnetic field lines that go into spe-
cially designed regions on the chamber walls sFig. 9d.
This method of defining the plasma edge is called a di-
vertor sITER Physics Expert Group on Diverter Model-
ling …, 1999; Loarte, 2001d.

Simple features of divertors can be understood from a

fluid model, rvW ·¹W vW +¹W p= jW3BW , with ¹W · srvWd=0 and r
=mn the mass density of the plasma. The plasma flow is

rapid along the magnetic field. Let rvW =Gb̂+rvW', then

BW · ¹W S G

B
D = S , s297d

where the source S;−¹W · srvW'd. Equation s297d gives the
flux of plasma G along a magnetic-field line. Since the
flow is essentially parallel to the magnetic field, the par-

allel component of the force balance is Gb̂ ·¹W sG /rd
+ b̂ ·¹W p=0, which can be written as

Gs,d
dsG/rd

d,
+

dp

d,
= 0, s298d

where d /d,; b̂ ·¹W . If the density rs,d is used as the in-
dependent variable,

dG2

dr
= − 2rSCs

2 −
G2

r2 D , s299d

where Cs
2;dp /dr. That is, the effective sound speed is

Cs
2;sdp /d,d / sdr /d,d. Equation s299d is well known

from the theory of nozzles in fluid mechanics and says
the density drops as the flux G increases when the flow
starts with zero speed, G /r=0. The maximum flux that
can be obtained is G=rCs, which implies a flow at the
speed of sound Cs. If the divertor chamber exerts a suf-
ficiently small back pressure, then the plasma flow will
reach the sonic rate as it flows down the field lines. In
the other limit in which the back pressure pb keeps the
flow slow compared to the sound speed, the flux reaches

1135Allen H. Boozer: Physics of magnetically confined plasmas

Rev. Mod. Phys., Vol. 76, No. 4, October 2004



G2=2r0sp0−pbd with p0 the pressure where G=0. Diver-
tors have been operated in both the high and the low
back-pressure limit. The advantage of a high back pres-
sure is that more of the energy moving down the di-
vertor channel can be radiated away primarily through
atomic radiation sSec. VI.Ad, which reduces the peak
heat loads. The advantage of a sonic flow is that the
plasma is efficiently swept into the divertor chamber.

An important issue is the ability of materials to with-
stand the high energy fluxes in the energy of the imping-
ing particles. The energy of the impinging particles is
greatly modified by the sheath potential between a
plasma and a material surface. The flow of a plasma into
a wall is roughly at the speed of sound. However, the
electrons would naturally flow into the wall at the elec-
tron thermal speed, which is a factor Îmi /me faster. To
preserve the quasineutrality of the plasma, a jump in the
electrostatic potential occurs on a Debye length scale
between a plasma and a wall with the potential holding
back the electrons. This means ÎTe /me expseDFd<Cs,
or DF /eTe< lnsÎmi /med<4. The ions impinge on the
wall not only with their thermal energy but also with the
kinetic energy obtained from the sheath potential qDF.

The required divertor flux is G= n̄pa2 / stpdd, where n̄ is
the average density in the plasma, tp is the confinement
time for particles, and d is the width of the divertor out-
flow channel.

Stellarators use an island chain about a rational sur-
face, i equal to a rational number, at the plasma surface
to divert the plasma into the divertor chamber sRenner
et al., 2002d. This idea is analogous to that used in toka-
maks where the separatrix that lies between field lines
that encircle the plasma and those that go to the divertor
chamber is at the i=0 rational surface, which is the only
rational surface on which an island can form in axisym-
metry.

The variation in the electrostatic potential across the
divertor region has important implications for the over-
all confinement of the plasma. The ions can sense the
presence of open magnetic-field lines once they are
within a banana orbit width of the plasma edge. Because
of their higher thermal speed, electrons tend to leave as
soon as they cross onto open field lines, while the ions
penetrate deeper into the open field-line region. Conse-
quently, it is natural for a strong shear in the E3B flow
to occur near the plasma edge, which can stabilize the
microtubulence. A region of greatly reduced transport
at the plasma edge is called a high, or H, mode of con-
finement and was the first transport barrier observed
sWagner et al., 1982d.
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APPENDIX: GENERAL COORDINATE SYSTEMS

Clever choices of coordinates are an important part of
classical physics. Any three quantities, which are con-
ventionally denoted by sx1 ,x2 ,x3d, can be used as coor-
dinates if they are well-behaved functions of the Carte-
sian coordinates and if positions in Cartesian
coordinates are well-behaved functions of sx1 ,x2 ,x3d.
The superscripts on the x’s number the coordinates and
are not powers. The position in space associated with
each coordinate point is defined by the transformation
function xWsx1 ,x2 ,x3d. The transformation function can be
given in Cartesian coordinates as

xW = xsx1,x2,x3dx̂ + ysx1,x2,x3dŷ + zsx1,x2,x3dẑ . sA1d

For example, cylindrical coordinates sR ,w ,Zd are de-
fined by xWsR ,w ,Zd=R cos wx̂+R sin wŷ+Zẑ.

Most people find it surprising that a coordinate trans-
formation is defined by giving xWsx1 ,x2 ,x3d rather that
xisxWd with the index i going from 1 to 3. The reason
xWsx1 ,x2 ,x3d is given is that we want to convert functions
of position, like the temperature TsxWd, into functions of
sx1 ,x2 ,x3d. Given xWsx1 ,x2 ,x3d one has Tsx1 ,x2 ,x3d
=T„xWsx1 ,x2 ,x3d….

The quantities sx1 ,x2 ,x3d are valid coordinates only if
the Cartesian coordinates sx ,y ,zd are well-behaved
functions of sx1 ,x2 ,x3d. This implies the Jacobian

J ;
]xW

]x1 · S ]xW

]x2 3
]xW

]x3D sA2d

cannot be infinite. The condition that the quantities
sx1 ,x2 ,x3d be well-behaved functions of the Cartesian
coordinates implies that the Jacobian cannot be zero.

The gradients of the three coordinates ¹W xi with the
index i=1,2,3, and the three tangent vectors ]xW /]xi are
related by the orthogonality relation,

¹W xi ·
]xW

]xj = dj
i. sA3d

This relation, which is fundamental to the whole theory
of general coordinates, can be proven using the chain
rule. First consider each coordinate to be a function of

the Cartesian coordinates xisx ,y ,zd, so ¹W xi=]xi /]xW
= s]xi /]xdx̂+¯. The derivatives of the transformation
equations, called tangent vectors, are ]xW /]xj= s]x /]xjdx̂
+ s]y /]xjdŷ+ s]z /]xjdẑ. When one takes a dot product be-
tween the gradient of a coordinate and a tangent vector,

one finds using the chain rule that ¹W xi ·]xW /]xj=]xi /]xj. If

i=1 and j=2, one has ¹W x1 ·]xW /]x2= s]x1 /]x2dx1,x3, which is
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zero. In words, the derivative of x1 with respect to x2

while holding x1 constant is zero. If one lets i=1 and j

=1, one has ¹W x1 ·]xW /]x1= s]x1 /]x1dx2,x3, which is one.
The use of general coordinates is illustrated by the

derivation of the equations for field lines. Field lines are

defined by dxW /dt=BW sxWd where t is a parameter that de-
fines positions along the line. We want the trajectory of
the field lines in general coordinates, which means we
want the functions xistd. Now dxW /dt=os]xW /]xiddxi /dt.
Dotting both sides of the defining equation for field lines
by the various coordinate gradients and using the or-
thogonality relation, one finds that

dxi

dt
= BW · ¹W xi. sA4d

If BW ·¹W x3 is nonzero, one can use x3 as the parameter
that defines positions along the line. The chain rule im-

plies dx1 /dx3=BW ·¹W x1 /BW ·¹W x3.
The orthogonality relation allows one to write the gra-

dients of the coordinates in terms of the tangent vectors,
for example,

¹W x1 =
1
J

]xW

]x2 3
]xW

]x3 . sA5d

This relation is called a dual relation and is important in
practical calculations, for otherwise the calculation of a
coordinate gradient would require a function inversion
of xWsx1 ,x2 ,x3d to obtain x1 as a function of the Cartesian
coordinates sx ,y ,zd. A vector in three dimensions can be
expanded using any three independent vectors, so

¹W x1 = a1
]xW

]x2 3
]xW

]x3 + a2
]xW

]x3 3
]xW

]x1 + a3
]xW

]x1 3
]xW

]x2 . sA6d

Dotting this equation with ]xW /]x1, one finds that a1

=1/J. Dotting the equation with ]xW /]x2, one finds a2
=0. Similarly, one finds a3=0.

Dual relations also exist that give the tangent vectors
in terms of the gradients, for example,

]xW

]x1 = J¹W x2 3 ¹W x3. sA7d

These dual relations are derived in an analogous man-
ner.

Given a transformation function xWsx1 ,x2 ,x3d, one can
expand any vector using the tangent vectors ]xW /]xi as

basis vectors. This expansion, BW =oBis]xW /]xid, is called

the contravariant representation of the vector BW . The or-
thogonality relation implies the expansion coefficients

are given by Bi=BW ·¹W xi.
An arbitrary vector can also be expanded using the

gradients of the coordinates as the expansion vectors,

BW =oBi¹W xi, which is called the covariant representation.

The expansion coefficients are given by Bi=BW ·]xW /]xi.

The dot product of two vectors is given by AW ·BW

=oAiB
i=oAiBi.

The covariant and contravariant representation of
vectors have distinct roles in both differential and inte-
gral vector calculus. First consider the gradient of a sca-
lar,

¹W f = o ]f

]xi¹
W xi, sA8d

which is a covariant vector.
Next consider the curl of a vector. This is easy for a

vector written in the covariant representation, which is
the expansion using the coordinate gradients,

¹W 3 BW = o ¹W Bi 3 ¹W xi. sA9d

One can expand ¹W Bi in terms of the coordinate gradi-
ents and use the dual relations to show that

¹W 3 BW =
1
J o eijk]iBj

]xW

]xk , sA10d

where

]i ;
]

]xi sA11d

and eijk is the contravariant fully antisymmetric tensor.
This tensor is defined by e1,2,3=1 with the sign changing
if the order of two adjacent indices are changed. For
example, e2,1,3=−1. If two indices are identical, the fully
antisymmetric tensor is zero, e1,1,3=0. The curl of a co-
variant vector is a contravariant vector.

The divergence can be calculated using the contravari-
ant vector. One uses the dual relations to write

BW =
J
2 o eijkBi¹W xj 3 ¹W xk, sA12d

where the components of the covariant antisymmetric
tensor eijk have identical values to the components of the
contravariant tensor eijk. The divergence is simple be-
cause the divergence of cross gradients is zero, and

¹W · sfvWd=vW ·¹W f+ f¹W ·vW . Writing the Jacobian as 1/J
=¹W x1 · s¹W x23¹W x3d, which can be proven using the dual
relations, one finds

¹W · BW =
1
J o ]JBi

]xi . sA13d

The curl can be taken only if a vector is in covariant
form and the divergence can be taken only if a vector is
in contravariant form. How can one convert a vector
from one form to another? The covariant components

are given by Bi=BW · s]xW /]xid, which if BW is known in con-
travariant form yields Bi=os]xW /]xid · s]xW /]xjdBj. The
metric tensor is defined as

gij ;
]xW

]xi ·
]xW

]xj , sA14d

so Bi=ogijB
j.

The name metric tensor comes from its role in deter-
mining distances between two coordinate points. The
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vector between two adjacent coordinate points is dxW
=os]xW /]xiddxi. The square of the distance is sdxWd2

=ogijdxidxj.
A vector in covariant form can be rewritten in contra-

variant form using Bi=ogijBj where gij;¹W xi ·¹W xj. Using
the dual relations one can show that gij is the matrix
inverse of gij.

There are three types of integrals: line, area, and vol-
ume. A line integral is performed along a curve, which
means one of the three coordinates is varied while two
are held constant. Let us assume the first coordinate is

varied, then dxW = s]xW /]x1ddx1 and eBW ·dxW =eBW · s]xW /

]x1ddx1, which can also be written as eBW ·dxW =eB1dx1. In
other words, a line integral is an ordinary integral of a
covariant coefficient.

The only difficulty in area, or surface, integrals is be-
coming comfortable with the definition of the area ele-
ment. A surface is defined by holding one coordinate
constant, say x1, and varying the other two. The area
element is then

daW1 ;
]xW

]x2 3
]xW

]x3dx2dx3 = ¹W x1Jdx2dx3, sA15d

where a dual relation was used to obtain the second
form. An area integral is then the double integral

eB ·daW =eB1Jdx2dx3, where B1=BW ·¹W x1 is the contravari-
ant coefficient.

The volume element is obtained by dotting the area
element with the distance across the surface, d3x
;s]xW /]x1ddx1 ·daW1, which can be written as d3x
=Jdx1dx2dx3. In other words, the integral of a function f
over a volume is the triple integral efJdx1dx2dx3.

The expression for the time derivative of a general
covariant vector, namely, the vector potential, is impor-
tant for the theory of the evolution of magnetic fields.

Let AW =ct¹W su /2pd−cp¹W sw /2pd+¹W g. The time derivative
at a fixed spatial point xW is

S ]AW

]t
D

xW
= S ]ct

]t
D

xW
¹W

u

2p
− S ]u/2p

]t
D

xW
¹W ct + ¯ + ¹W s ,

sA16d

where the ¯ stands for terms involving cp and w, which
are of the same form as those for ct and u. The quantity

s ; S ]g

]t
D

xW
+ ctS ]u/2p

]t
D

xW
− cpS ]w/2p

]t
D

xW
. sA17d

Time derivatives holding the coordinates sct ,u ,wd fixed,
which are denoted by a subscript c, are related to time
derivatives holding the spatial position xW fixed by the
chain rule,

S ]f

]t
D

c
= S ]f

]t
D

xW
+ S ]xW

]t
D

c
· ¹W f . sA18d

The velocity of the sct ,u ,wd coordinates through space is
uW ;s]xW /]tdc, so the time derivative of the coordinates has

the form s]ct /]tdxW =−uW ·¹W ct, while the derivative of cp

has the form s]cp /]tdxW = s]cp /]tdc−uW ·¹W cp. Let BW ;¹W 3AW ,

then uW 3BW = fuW ·¹W su /2pdg¹W ct− suW ·¹W ctd¹W su /2pd+¯, and

the time derivative of AW can be written

S ]AW

]t
D

xW
= − S ]cp

]t
D

c
¹W

w

2p
+ uW 3 BW + ¹W s . sA19d

The expressions uW ·¹W u=−s]u /]tdxW and uW ·¹W w=−s]w /]tdxW
plus Eq. sA17d imply

AW · uW = − s + s]g/]tdc. sA20d
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