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The physics of magnetically confined plasmas has had much of its development as part of the program
to develop fusion energy and is an important element in the study of space and astrophysical plasmas.
Closely related areas of physics include Hamiltonian dynamics, kinetic theory, and fluid turbulence. A
number of topics in physics have been developed primarily through research on magnetically confined
plasmas. The physics that underlies the magnetic confinement of plasmas is reviewed here to make it
more accessible to those beginning research on plasma confinement and for interested physicists.
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I. INTRODUCTION

A plasma is a gas in which charged particles are of
sufficient importance for the gas to be a good electrical
conductor. Ordinary matter becomes ionized and forms
a plasma at temperatures above about 5000 K, and most
of the visible matter in the universe is in the plasma
state. The high electrical conductivity implies that cur-
rents can flow in a plasma. These currents can interact
with magnetic fields to produce the forces that are
needed for confinement.

The physics of plasma confinement using magnetic
fields has been driven intellectually by the program to
develop fusion energy. Fusion has provided a focus for
the research, but much of the physics that has been de-
veloped has far broader applications—most obviously to
space and astrophysical plasmas. In addition, the physi-
cal insights and concepts are of intrinsic scientific impor-
tance.

A number of topics in physics have had their primary
development through research on plasma confinement.
These include:

1)

The relation between the field lines of divergence-
free fields and Hamiltonian mechanics.

2

The constraints of magnetic helicity conservation on
the rapid evolution of magnetic fields.

€)
(4)

Collisionless relaxation phenomena.

Simplified kinetic equations that are based on adia-
batic invariants of classical mechanics.

The theory of small-amplitude and short-
wavelength turbulence, called microturbulence.

)

(6) The experimental observation and theoretical expla-
nation of transport barriers where plasma microtur-
bulence is stabilized by a strong gradient in the

plasma flow.

The demonstration for shear Alfvén waves that con-
tinuum modes are rapidly damped but discrete
modes exist that are weakly damped and can be de-

)
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stabilized by particles with a speed near the phase
velocity of the waves. Shear Alfvén waves propagate
by twisting the magnetic-field lines that are embed-
ded in a plasma.

One of the goals of this review is to make these and
other topics in the physics of magnetic confinement ac-
cessible to a broader audience.

The physics of magnetic confinement is covered in a
number of books. Probably the most complete is Toka-
maks (Wesson, 2004), which emphasizes the relation be-
tween theory and experiment. Fundamentals of Plasma
Physics and Controlled Fusion (Miyamoto, 1997) gives
the details of many of the classic derivations. The
Theory of Toroidally Confined Plasmas (White, 2001) of-
fers insights on a number of fundamental phenomena,
and a standard textbook is Introduction to Plasma Phys-
ics (Goldston and Rutherford, 1995). The International
Thermonuclear Experimental Reactor (ITER) design
team summarized the physics of tokamaks in a series of
articles in the December 1999 issue of the journal
Nuclear Fusion. The first of these articles is an overview
(ITER Physics Basis Editors et al., 1999).

Despite the number of books and articles written on
plasma confinement a review of the fundamental physics
that includes derivations of major results has been lack-
ing up till now. This review is designed to fill that gap
while being accessible to the general physics community.

Several important types of confined plasmas are not
covered in this review. Magnetically confined plasmas
occur in many space and astrophysical situations, and
much of the physics is shared with laboratory plasmas.
However, this review does not provide sufficient context
for understanding the breadth of applications to space
and astrophysical plasmas. Some texts that do provide
such context include Basic Space Plasma Physics by
Baumjohann and Treumann (1996), Physics of Space
Plasmas by Parks (1991), and Plasma Astrophysics by
Tajima and Shibata (1997). Bisnovatyi-Kogan and Love-
lace (2001) have written a major review of the plasma
issues associated with accretion disks, and Ferrari (1998)
has reviewed extragalactic jets. Laboratory plasmas in
which all of the magnetic-field lines in the plasma inter-
sect the chamber walls are also not covered. Plasmas
either flow out of such open systems at a thermal speed
or have a confinement time comparable to a collision
time. The fast Z pinch is an open plasma confinement
system, which has prominence from its use as a driver
for inertial fusion (Ryutov et al, 2000). Open plasma
confinement systems are also important for materials
processing (Lieberman and Lichtenberg, 1994).

Other major plasma topics that are not covered are
waves, which are of particular importance for plasma
heating, and the methods of measuring plasma param-
eters, which is the topic of plasma diagnostics. Standard
books on waves in plasmas are those of Stix (1992);
Brambilla (1998); and Swanson (2003). Plasma diagnos-
tics are based on a broad range of physics principles.
The standard text is Principles of Plasma Diagnostics
(Hutchinson, 2003), and reviews have been written by
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Gentle (1995) and the ITER Physics Export Group on
Diagnostics et al. (1999) in the Nuclear Fusion series on
ITER.

What is covered in this review is the physics of the
magnetic confinement of plasmas that are flowing slowly
compared to sonic speeds and at each point in the
plasma are close to thermodynamic equilibrium, which
implies the confinement is long compared to collision
times. Although the fundamental topic is not fusion, an
understanding of the basic features of magnetically con-
fined fusion plasmas is useful for placing research on
plasma confinement in context. These features are ex-
plained in Sec. 1L

A review of the physics of magnetically confined plas-
mas contains too much material to be absorbed at a uni-
form level. Therefore, paragraphs marked by bullets are
given near the beginning of most sections. Readers are
encouraged to read just the bulleted sections of the en-
tire review before working through the details of the
sections. The main idea in each section can be deter-
mined by reading the first sentence of each paragraph. A
result is generally given before the derivation, so the
derivations can be skipped. However, the derivations are
sufficiently complete that a reader should be able to re-
construct them using a table of identities of vector cal-
culus. The review is designed to be read at various levels
of detail, and that is the way it should be read.

Il. FUSION ENERGY

e The goal of research on fusion energy is a commer-
cially viable source of energy. The primary research
effort is on the fusion of two isotopes of hydrogen,
deuterium and tritium, to form an isotope of helium,
an alpha particle, and a neutron.

e Fundamental considerations imply that in a fusion
power plant the particle distribution functions would
be close to local Maxwellians with a temperature of
about 20 keV and a density of approximately 2
% 10%° nuclei/m?, and the plasma would have the
shape of a torus with the minor radius of the torus a
few meters in length.

e Technical limits on the magnitude of the magnetic
field that can be used for confining fusion plasmas
make the efficiency of the utilization of the magnetic
field a central issue.

e Most of the freedom in the design of fusion plasmas
is in the plasma shape, which means freedom in the
design of the coils that surround the plasma. About
50 shape parameters can be controlled, though only
about four of these are consistent with an axisym-
metric torus.

Fusion is a potential source of energy, which is essen-
tially unlimited in quantity and produces no greenhouse
gases. The fusion reaction that appears technically easi-
est to harness is between two isotopes of hydrogen, deu-
terium and tritium, with the product being ordinary he-
lium (an alpha particle) and a neutron. Deuterium
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occurs naturally in water in sufficient abundance as to be
an essentially unlimited resource. Tritium has a half-life
of 12 years and must be produced through an interaction
of the neutron with isotopes of lithium. Consequently,
the fuel for fusion is deuterium and lithium. The waste
products of fusion energy production need not be radio-
active in principle, but in practice some radioactive
products will be produced. The level, lifetime, and na-
ture of the radioactive waste are dependent on the use
of appropriate materials and the cleverness of the de-
sign. The fusion reaction is easily terminated, so a run-
away reaction is not a safety concern. Sheffield (1994)
has written a general review of fusion systems and Baker
et al. (1998) have discussed fusion systems with a focus
on the important issue of the materials that would be
used in fusion power plants.

The development of fusion power is paced by both
physics and engineering considerations. A magnetically
confined plasma with an essentially self-sustaining fusion
burn has not yet been produced, but this is thought to be
essentially an issue of the size of the experiments that
have been undertaken. A number of proposals have
been made for a burning plasma experiment; the most
ambitious currently under consideration is the Interna-
tional Tokamak Experimental Reactor (ITER; Aymar,
2000). Many studies have claimed fusion power could be
economically competitive, but the compatibility of the
physics and the engineering with energy at an acceptable
cost will remain a primary issue until demonstration
power plants are built.

Fundamental considerations imply that toroidal fusion
power systems would have a power output of order a
gigawatt. First, the structure surrounding the plasma
must have a minimum thickness, about 1.5 m, for the
fusion neutrons to convert lithium into tritium and heat
as well as shield the external world from radiation. Sec-
ond, until material limitations arise at a power density of
several megawatts per square meter of chamber wall
area, power becomes cheaper the higher the power den-
sity. These two considerations plus the need for a toroi-
dal plasma, which is discussed in Sec. III, imply that fu-
sion energy is most economical in units of approximately
one gigawatt of electrical power. A larger or smaller unit
size would imply a larger or a smaller aspect ratio of the
toroidal plasma.

The electrostatic repulsion of the deuterium and the
tritium nuclei sets the energy scale at which fusion reac-
tions occur, which is a thermal energy of a few tens of
kilovolts, which is a few hundred million degrees kelvin.
For the plasma to maintain its burning state, the rate of
production of high-energy alpha particles must be suffi-
cient to offset the energy losses of the plasma through
electromagnetic radiation and thermal transport through
diffusion; see Sec. VI. Since neutrons are electrically
neutral they have no significant interaction with the
plasma or the magnetic field. The maximum rate of en-
ergy production, at fixed plasma pressure, occurs at a
temperature of approximately 20 kV, or 2.3 108 K. For
a steady burn at a temperature of 20 kV, the number
density of nuclei times the energy confinement time
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must equal 2 X 10%° (nuclei/m?) sec. At that temperature
the deuterium and tritium are completely ionized and,
therefore, form a plasma. These considerations would be
changed if the plasma reaction rate could be substan-
tially increased. Fisch and Herrmann (1994) have pro-
posed a method for increasing the reaction rate by en-
hancing the transfer of energy from the fusion alphas to
the fusing ions.

The required power density on the chamber walls for
economic electric power determines the plasma density,
about 2 X 10?° nuclei/m?, and the plasma pressure, about
ten atmospheres.

Plasmas of interest for magnetically confined fusion
are in a paradoxical collisionality regime. The rate for
Coulomb collisions, which relax the particle distribution
functions to Maxwellians, times the energy confinement
time is about 100 for the ions and 10 000 for the elec-
trons. The rapidity of collisions implies the distribution
functions are close to Maxwellian. However, the mean
free path of the thermal particles, about 10 km, is enor-
mous compared to the size of the plasma. This paradoxi-
cal collisionality regime places requirements on the
quality of the collisionless particle trajectories in order
to have adequate confinement; see Sec. VLE.1.

Three considerations set a minimal level for the
magnetic-field strength, which is a few tesla.

(1) The magnetic-field pressure must be significantly
larger than the plasma pressure to provide a stable
force balance; see Sec. V.

(2) A charged particle moves in a circle about magnetic-
field lines, and the radius of this circle, the gyrora-
dius p, must be sufficiently small that the high-
energy alpha particles remain in the plasma and
heat it; see Sec. VLE.1.

(3) The thermal transport coefficients, which are re-
duced by an increase in the magnetic-field strength,
must be sufficiently small to obtain the required en-
ergy confinement time; see Sec. VLF.

Engineering considerations make it desirable to use
the lowest magnetic-field strength that is consistent with
the physics requirements. The technical limitations that
arise for magnetic fields larger than about 10 T make
magnetic confinement fusion more difficult than if
higher fields could be used. If higher fields were avail-
able, power losses from electron cyclotron radiation,
which set an upper limit on the electron temperature,
would be of increasing importance. A discussion of elec-
tron cyclotron losses is given in Sec. VI.A and by Alba-
jar, Bornatici, and Engelmann (2002).

In addition to fusion using magnetic fields to confine
the plasma, a large research program is being pursued
on inertial confinement fusion. The physics is described
in the book Inertial Confinement Fusion by Lindl (1998).
Inertial confinement means the plasma is confined for a
time of order a/C,, with C; the speed of sound and a the
plasma radius. Confinement is determined by the bal-
ance between the inertial and the pressure forces. Mag-
netically confined plasmas are in essentially a static bal-
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ance between the magnetic and the pressure forces. The
characteristic plasma density during the burn period of
an inertially confined plasma is of order 10%
particles/m?, which is about 12 orders of magnitude
larger than the density of a magnetically confined fusion
plasma. The size of the pellets that are imploded in in-
ertial confinement has a millimeter scale, while magnetic
fusion plasmas have a scale of meters. However, the cen-
tral plasma temperatures are roughly the same in mag-
netically and inertially confined fusion plasmas in order
to obtain an optimal reaction rate.

The focus of much of the research on magnetic fusion
during the last decade has been on understanding and
extrapolating of transport processes in confined plasmas.
Energy transport means the loss of energy by plasma
processes rather than by electromagnetic radiation. Con-
fined plasmas are usually, but not always, in a state in
which microturbulence dominates the transport pro-
cesses. Microturbulence (Sec. VI.F) means the fluctua-
tions have a wave number that is greater than, or of
order of, the inverse of an ion gyroradius p; and an am-
plitude of order the ion gyroradius to system size p;/a
<1072. The extrapolation of microturbulent transport
from existing to future experiments and to fusion power
plants is essential for the scientific planning of fusion
research and is an issue in the feasibility of fusion power.

The focus of innovation in fusion research is on ways
to obtain more control over fusion plasmas and on im-
proved fusion systems. A plasma equilibrium is deter-
mined by the shape of the plasma, the magnetic-field
strength, and the profiles of the plasma current and pres-
sure; see Sec. V.A. In a power plant, economics dictates
that only about 5% of the fusion power can be used for
control. Consequently, the plasma current and pressure
profiles are largely determined by internal plasma phe-
nomena. The largest element of control that the de-
signer has over the plasma and its performance is on the
plasma shape. Control of the plasma shape is actually
control over the design of the coils that surround the
plasma. As shown in Sec. V.D.1, coil constraints limit the
designer to about 50 shape parameters, of which only
four (aspect ratio, ellipticity, triangularity, and square-
ness) are consistent with an axisymmetric torus. The axi-
symmetric tokamak (Sec. IV) is the most advanced
plasma confinement configuration and is the configura-
tion of choice for all major designs for experiments with
a fusion burn. Careful consideration of the four axisym-
metric shape parameters is known to be essential for
attractive tokamaks. However, tokamaks set more than
90% of the available shape parameters to zero. The use
of a larger set of shape parameters allows the designer
to sidestep issues in tokamak design, such as current
profile control, and is being studied under the topic of
stellarator research; see Sec. IV. Other elements of
plasma control that may be available include the density
profile, through clever fueling techniques, and the inter-
action between the plasma edge and the surrounding
walls.
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lll. MAGNETIC-FIELD LINES
e Near-Maxwellian plasmas are in force balance be-
tween the pressure and the magnetic forces, V}
=X B.
¢ The magnetic-field lines confining a near-Maxwellian
plasma must lie in the surfaces of constant pressure,

B-Vp=0. These surfaces can be spatially bounded
only if they have the topological form of a torus. The
pressure p(i,) is a function of , which is the flux of
the toroidally directed magnetic field that is enclosed
by the pressure surfaces.

In plasmas of fusion interest, the ions and the elec-
trons are in near-Maxwellian distributions, which implies
the plasma has the pressure of an ideal gas, p=nT,
where 7T is the temperature in energy units and n=n,
+n; is the sum of the number of electrons and ions per
cubic meter. Plasma confinement implies a pressure gra-

dient, and Vp is a force per unit volume. This force is
balanced by the electromagnetic force produced by the
cross product of the current density in the plasma and
the magnetic field,

Vp=jxB. (1)

Equation (1) gives the force equilibrium of a near-
Maxwellian plasma and places fundamental constraints
on magnetic confinement systems.

A confined near-Maxwellian plasma is constrained to
have the topological form of a torus. Why is this? Equi-
librium implies B -ﬁp =0; a magnetic-field line must lie in
a constant-pressure surface through its entire length. For
example, a constant-pressure surface cannot be a sphere
and satisfy Eq. (1). The magnetic-field lines in a
constant-pressure surface resemble strands of hair. The
hair on a topological sphere, such as a person’s head,
always has a crown, a place where the hair spirals out
from a point. A crown is a point at which Eq. (1) cannot
hold. A theorem of topology says a nonsingular vector

field B(x) can be everywhere tangent to a spatially
bounded function, namely, p(x), in only one shape, the
torus.

Since toroidal surfaces are central to the whole theory
of plasma confinement, it is important to have a method
for describing them as a basis for terminology. The sim-
plest description uses (R,¢,Z) cylindrical coordinates
with spatial positions given by

%(r,6,0) = R(r,0,0)R(¢) + Z(r,0,0) Z. )

Expressed in terms of the Cartesian unit vectors, the
radial unit vector of cylindrical coordinates is ﬁ(@)
=X cos ¢+y sin ¢ and its derivative dR/ de is the unit
vector ¢. Simple circular toroidal surfaces are given by
R=R,+rcos(f) and Z=-rsin(6). The constant R, is the
major radius, r is the local minor radius, and e=r/R,,,
which must be less than one, is the local inverse aspect
ratio. A function, such as x(r, 8, ¢), which determines the
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Poloidal flux

v, = _f 5 da,
and

Poloidal current

G=[ 3 da,

zZa

A constant
Y, ory
surface. Toroidal flux
11[}1 = fB d&(p
and
Toroidal current

FIG. 1. (Color) Magnetic fluxes and currents defined using the
cross-sectional area for the toroidal flux ¢, and the current /
and using the central hole of the torus for the poloidal flux ¢,
and the current G. The poloidal angle is € and the toroidal
angle is ¢. (R,,Z) are ordinary cylindrical coordinates.

positions in space that are associated with three quanti-
ties (r, 0, ¢), defines an (r, 6, ¢) coordinate system. The
Appendix gives the theory of general coordinates that is
required for understanding this review. The polar angle
of cylindrical coordinates, ¢, is also the toroidal angle.
The angle 6 is called the poloidal angle, and r is a radial
coordinate that labels the various toroidal surfaces.

A. Relation to Hamiltonian mechanics

e The field lines of a magnetic, B(x), or any other
divergence-free field are the trajectories of a Hamil-
tonian. (A short tutorial on Hamiltonians is given
below just after the bullets.) If ¢(x) is a toroidal

angle, and E-ﬁ@#O, then the magnetic-field lines
are given by a one-and-a-half-degree-of-freedom
Hamiltonian, which is the poloidal magnetic flux
(¢, 0,¢). The canonical momentum is the toroidal
flux ¢, the canonical coordinate is a poloidal angle 6,
and the canonical time is the toroidal angle ¢; see
Fig. 1. The full Hamiltonian system consists of the
Hamiltonian, ,(¢;,,60,¢), and the transformation
function, x(;, 6, ¢), which gives the spatial location
of each canonical coordinate point (i, 6, ¢).

e When the magnetic-field lines lie in toroidal surfaces,
the canonical coordinates can be chosen so that the
poloidal flux is a function of the toroidal flux alone,
#,(4,). The twist of the field lines, which is called the
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separatrix
lsl=1

lsl<1

X point O point

FIG. 2. (Color) The solution to Eq. (15) plotted for an m=3
magnetic island in the ¢=0 plane. The surface |s|=1 is the
island separatrix, and the limit |s|— 0 gives the island O point.
The half width of the island is 6.

rotational transform, is «=d,/dy,. When the rota-
tional transform is a rational number ¢=n/m, the
field lines close on themselves after n poloidal and m
toroidal transits of the torus. The coordinates in
which the poloidal flux is a function of the toroidal
flux alone are called magnetic coordinates and trivi-
alize the solution of the magnetic differential equa-
tion B- V}‘: g, which arises frequently in plasma phys-
ics.

e If a magnetic field éo()?) that forms perfect surfaces is

perturbed by a field 55’, then the magnetic surfaces
can split to form islands (Fig. 2), where the rotational
transform is a rational number, (=n/m. If

6B-Vi,/ By-Vo=2b,,, explilng—m86,,)], the width of
the island that splits the surface v=n/m is propor-
tional to \m If islands from different rational sur-
faces (¢ different rational numbers) are sufficiently
wide to overlap, the magnetic-field lines in that re-
gion will come arbitrarily close to every point in a
volume of space rather than lying on surfaces. Such
field-line trajectories are said to be stochastic.
Plasma confinement is destroyed in regions of sto-
chastic field lines.

e The opening of an island is a singular process in a
toroidal plasma. Let p(x) be any function that satis-

fies éo-ﬁpO:O. Without an island dp,/di; is gener-
ally nonzero near the resonant rational surface ¢
=n/m, but with an arbitrarily small island only the
derivative dpy/dy, can be nonzero, where the helical
flux is defined by diy, = (v—n/m)d,.

The nested toroidal surfaces of magnetic-field lines
are reminiscent of the tori formed by particle trajecto-
ries of an integrable Hamiltonian H(p,x,?) that is peri-
odic in time with T the period, H(p,x,t+T)=H(p,x,t).
Such Hamiltonians are said to have one-and-a-half de-
grees of freedom. An excellent reference for the Hamil-
tonian mechanics used in this review is the book Regular
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and Chaotic Dynamics (Lichtenberg and Liberman,
1992).
The Hamiltonian formulation of mechanics follows

from Newton’s equations of motion, dﬁ/dtz—ﬁV(i,t)
and dx/dt=p/m. Let H(p,x,0)=p*/2m+V(x,t); then
Newton’s equations of motion are reproduced by the set
of ordinary differential equations dp/dt=-dH/dx and
dx/dt=0H/dp. Any set of ordinary differential equa-
tions of this form is said to be Hamiltonian with X the
canonical coordinate, p the canonical momentum, and ¢
the canonical time, regardless of the functional form of
the Hamiltonian, H(p,x,). If x' are the components of
the canonical coordinate x, and p; are the components of
the canonical momentum p, then Hamilton’s equations
are dx'/dt=0H/dp; and dp;/dt=—dH/dx'. The super-
scripts number the components and are not powers. In
Hamiltonian systems with one-and-a-half degrees of
freedom x and p have only one component each.

Magnetic-field lines are the trajectories of a one-and-
a-half-degree-of-freedom Hamiltonian (Kerst, 1964;
Whiteman, 1977; Boozer, 1983; Cary and Littlejohn,
1983). A magnetic-field line moves through 3-space
(x,y,2), so the same number of coordinates are involved
as in the (p,x,f) space of Hamiltonian mechanics. The
only problem is that Cartesian coordinates (x,y,z) are
not the canonical coordinates for magnetic-field lines. To
obtain canonical coordinates, one must first write the
magnetic field in what is called the symplectic form
(Boozer, 1983),

27B =V X VO+ Ve X Vi, 3)

with 6 and ¢ arbitrary coordinates except é-ﬁ@# 0. In
practice, ¢, is generally the magnetic flux of the toroi-
dally directed field, 6 is a poloidal, and ¢ is a toroidal
angle (Fig. 1). When B-Vo#0, points in 3-space can be
described using (¢;,6,¢) as coordinates, which means
points in space are given as the function x(i,, 0, ). Us-
ing (R,¢,Z) cylindrical coordinates [Eq. (2)], one de-
fines points in space by giving R and Z as functions of
the (i.0,¢) coordinates, ¥(4.60,0)=R(¢).0,0)R(¢)
+Z(l;btv 0, ¢)Z

The (¢,,6,¢) coordinates are the canonical coordi-
nates of the magnetic-field lines. The mathematics of
general coordinate systems is described in the Appen-
dix. When §-§¢¢0, the Jacobian J of the canonical
coordinates is finite, that is, 1/7: Eﬁwt-(€6X 5@)
=27B-Ve. In these coordinates, magnetic-field lines,

which are the solutions to dx/d T:E()?), are easily shown
to have the canonical form

% - _ (9%(% 09@) .

de a0 @
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ﬁ _ a¢g(¢t’ 67(10) (5)
de - I,

using Eqgs. (A4) and (3). The canonical momentum is the

toroidal magnetic flux, ,=[ é-dﬁw, which is the mag-
netic field integrated over the cross section of a
constant-¢, torus (Fig. 1). The canonical coordinate is a
poloidal angle 6, and the canonical time is a toroidal
angle ¢. The Hamiltonian is the poloidal flux that goes
down through the hole in a constant-i, torus, i,

=—[B-da, (Fig. 1). The field-line Hamiltonian ¢, can be
a function of clock time ¢ in addition to ,, 6, and ¢ (Sec.
II1.C), but clock time is a parameter in the Hamiltonian
description and not one of the canonical variables.

The derivation of the symplectic representation of the
magnetic field, Eq. (3), clarifies the interpretation. Let
(r,0,¢) be an arbitrary set of well-behaved coordinates.
For example, let the radial and vertical coordinates of
cylindrical coordinates, Eq. (2), have the form
R(r,0,0)=R,+rcos § and Z=-rsin §, which makes r
constant on circular toroidal surfaces. In three dimen-
sions a vector can have only three independent compo-
nents, so any vector can be written in the form

T A R )
A_Vg+l//tv<27r> lr/lpv(Zﬂ')' ©)

The functions of position, g, i, and ¢,, represent the

three components of A IfAis interpreted as the vector
potential of the magnetic field, then its curl gives the
symplectic representation of the magnetic field [Eq. (3)].

The theory of one-and-a-half-degree-of-freedom
Hamiltonian systems (Lichtenberg and Lieberman,
1992) is the same as that of magnetic-field lines. A
magnetic-field line has three fundamentally different
types of trajectories.

(1) It can close on itself after traversing the torus m
times toroidally, in the ¢ direction, and # times po-
loidally, in the @ direction.

(2) A field line can come arbitrarily close to every point
on a toroidal surface as the number of toroidal tra-
versals goes to infinity.

(3) A field line can come arbitrarily close to every point
in a nonzero volume of space as the number of tor-
oidal traversals goes to infinity.

The first of these possibilities is topologically unstable;
an arbitrarily small perturbation can destroy the closure
of a set of field lines. For example, the closure of a pure

toroidal field é:(,uOG/ 2mR)¢, with G the current, can
be destroyed by an arbitrarily small field in the vertical

direction B,Z. The second possibility, each field line
coming arbitrarily close to every point on a toroidal sur-
face, is the one desired for magnetic confinement. The
Kolmagorov-Arnold-Moser  theorem  (Kolmogorov,
1954; Arnold, 1963; Moser, 1967) says this possibility is
topologically stable over most of a volume filled by field
lines if the perturbation is sufficiently small. The state-
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ment that a magnetic field lies in toroidal surfaces means
the second possibility, except on isolated surfaces of zero
measure. The third possibility, magnetic-field lines com-
ing arbitrarily close to every point in a volume, implies
the absence of magnetic confinement in that region. Un-
fortunately, this is the generic situation for a magnetic
field. Consequently, magnetic confinement depends on
the formation of very special magnetic fields, fields that
have lines that lie on nested surfaces through the bulk of
the plasma volume.

In regions of magnetic confinement of a near-

Maxwellian plasma, the constraint B-Vp=0 holds. This
constraint greatly simplifies the field-line trajectories. In
the language of Hamiltonian mechanics the pressure p is
an isolating constant of the motion. Whenever an isolat-
ing constant of the motion exists in a one-and-a-half-
degree-of-freedom Hamiltonian system, the canonical
coordinates can be chosen so the Hamiltonian is a func-
tion of only one canonical variable, the canonical mo-
mentum, rather than three. These canonical coordinates
are called action-angle variables and are central to
Hamiltonian perturbation theory. For magnetic-field
lines, action-angle coordinates are known as magnetic
coordinates (Hamada, 1962). Their existence is easily

demonstrated. Since §-€p=0, the magnetic field can be
written in arbitrary (p,6,¢) coordinates as E:BlV}J
X€0+BZ€¢X€p. The constraint that V-B=0 implies
dB{/d¢=—0B,/ 90, which means the expansion coeffi-
cients must have the forms 27B;=,(p)(1+J\/36) and

2mB,=,(p) - ¥ (p)IN dp. The magnetic field, therefore,
has the form

2B =V i, X V 0, + Vo X Vi (), (7

where the magnetic poloidal angle 6,,=6+\. In mag-
netic coordinates (i, 6,,,¢), the field-line Hamiltonian,
which is the poloidal flux #,, is a function of the toroidal
flux ¢, alone. The rotational transform «(¢;,), the greek
letter iota, and its reciprocal, the safety factor g(i,), are
defined by

1 dy
=—= 2 8
q diy ®

In general, the rotational transform is used in the stel-
larator and the safety factor in the tokamak literature.
We use ¢ to avoid confusion with the use of g for elec-
trical charge.

When magnetic coordinates exist, ¢,(¢4,), the field-line
trajectories are said to be integrable and can be given
explicitly in terms of the initial conditions: ;= and
60,,= 6o+ (). The initial poloidal angle of the field
lines a= 6,/2 can be used as a coordinate in place of
0,,. If this is done

B=Vy, X Va, 9)

which is called the Clebsch representation. The theory of
this representation predates Clebsch (1859), and in the
mathematics literature ¢, and « are called Euler poten-
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tials. A history has been given by Stern (1970). The
magnetic-field lines are orthogonal to both the toroidal

flux ¢, and to « since 5-61//,:0 and é-ﬁa:O, so both are
constants of the motion of the Hamiltonian. However,
the constancy of « only prevents a field line from coming
arbitrarily close to all points on a ; surface if ¢ is the
ratio of two integers, t=n/m, in other words, a rational
number. When iota is a rational number, the field lines
close on themselves after m toroidal circuits, which
means in the ¢ direction, and 7 circuits in the poloidal,
which means in the 6 direction. If ¢ is a rational number,
a is what is called in Hamiltonian mechanics an isolating
invariant because it isolates the trajectory so it can ap-
proach only a fraction of the spatial points it could oth-
erwise reach. However, when ¢ is an irrational number,
the trajectory of a single field line comes arbitrarily close
to every point on a constant-¢; surface, and one says « is
a nonisolating invariant.

The Clebsch representation of the magnetic field, Eq.
(9), exists in any region of space in which all field lines
pass through a plane. Let (r, @) be any set of coordinates
in that plane, and let the trajectory of a field line that
passes through the point (r,a) be x(r,a,f), where € is
the distance along a field line from the plane. By con-
struction both r and « are constant along a field line,
B-Vr=0and é-ﬁa:O, SO é:f(r,a,€)€r>< Va. Since B is
divergence free, df/d¢=0. If we define ¢, so dy,/dr
=f(r,a), then é:ﬁwtx Va.

Various choices are commonly made for the third co-
ordinate of Clebsch coordinates. The most common is
the distance along the field lines €. The dual relations of

general coordinates, Eq. (A7), imply é=€¢,x Va
=(1/9)dx/d€, where J is the Jacobian of (¢, a,{) coor-
dinates. Since ¢ is the distance along the lines, (9x/d()?
=(JB)?>=1, which implies that the Jacobian of (i,,a,{)
coordinates is 1/B. Any vector in three dimensions can
be written in the covariant form, E:E¢r€¢,+éa€a
+l§ﬁ€. The orthogonality relation of general coordi-

nates, Eq. (A3), implies B%Eé-&f/ o¢=B. That is,
E:B§€+Ewlew,+§a§a. (10)

Another choice for the third coordinate is the magnetic
scalar potential ¢, which is defined by the indefinite in-
tegral &(i;,a,€)=[Bd{ along each field line. Using this
coordinate, an arbitrary magnetic field can be written as

B=V¢+B,Vy+BVa. (11)

The Jacobian of (¢,,a,¢) coordinates is 1/ (V:,bt
XVa)-Vé=1/B

Magnetic coordinates are central to the theory of
magnetically confined plasmas because they allow a
simple solution to a differential equation that frequently

arises, the magnetic differential equation B-Vf=g



1078 Allen H. Boozer: Physics of magnetically confined plasmas

(Kruskal and Kulsrud, 1958; Newcomb, 1959). In mag-
netic coordinates, Egs. (7) and (8), this equation has the
form

NN
<<9<P+L(¢t)t90m)f_§-§¢’ (12)

which can be solved algebraically using the Fourier ex-
pansion of g/B-Ve=37,,,¢{"¢%)_The Fourier expan-
sion coefficients of the function f are f,,,=—iv,,,/(n
—un).

A practical example of the use of the magnetic differ-
ential equation is the effect of a magnetic perturbation

8B on a field that has perfect surfaces, éo. To find the
perturbed magnetic surfaces one solves for a function

p=po+p such that (§0+ 5}§) . Vip =0. The unperturbed

system has perfect surfaces so éo-ﬁpozo. Consequently
the first-order result is given by the magnetic differential
equation

For simplicity, assume the Fourier expansion
5B -V
iy, sin(ng - mb,), (14
By Ve

where ¢, is the toroidal flux enclosed by a surface of
constant py. Then one obtains a finite solution near the
resonant rational surface, =4, on which (i,
=n/m only if the gradient of p, vanishes there. More
precisely, as ,— i,,,, one must let dpy/dy,=(n—uwm)cgy
with ¢, a constant. Then p=cyb,,, cos(np—m8,,), and
near the rational surface py(¥)=po(Yn,)—com(de/
dis)(h,— )% 12. The equation for the perturbed sur-
faces is py(i,) + dp=const. Using the identity cos(2x)=1
—2sin’(x), the equation for the perturbed surfaces near
the resonant rational surface is

s 4b,n
lr//t_lv[/mn_ |S| du {SZ—SiIIZ(ngD m0m>} (15)
m— 2
diy

The constant s labels the surfaces of constant p, which
are the magnetic surfaces in the perturbed configuration.

Equation (15) for perturbed magnetic surfaces has two
topologically distinct regions, which can be studied by
holding ¢ fixed and varying 6,, (Fig. 2). First, the sur-
faces that have a surface label |s|=1 cover the full range
of 6,,. The surfaces with s>1 and s<-1 are different
sets of surfaces, which are distorted by the perturbation
but not fundamentally changed. However, the surfaces
that satisfy 1>s>-1 cover only a limited 6,, range and
are said to form a magnetic island. The two signs of s
= +|s| give two parts of the same surface for 1>s>-1.

Each term b,,,, in a Fourier expansion of a magnetic
perturbation, Eq. (14), produces an island if there is a
surface ,=,,, on which «(4,,,)=n/m, which is called a
resonant rational surface. The half-width of the island in
toroidal flux is
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S = ——mn | (16)

Islands can also be calculated using the Hamiltonian for
the field lines. Equation (3) implies the function b

56§-€¢,/50-€¢:—a¢p/00. Therefore, if wp:z,_bp(wt)

+(’Zp(¢t))mn COS(”‘P_maM), then bmn:_m(lzfp)mn and Eq
(16) can be rewritten as

Sy = 8l | 17)
du
dy,

The Chirikov criterion (Chirikov, 1979) says that if the
half-widths of islands from different resonant rational
surfaces become comparable to the separation between
these resonant surfaces, the magnetic-field lines become
stochastic, which means a single field line comes arbi-
trarily close to every point in a finite volume of space.

A qualitative understanding of the formation of is-
lands and the breakdown of magnetic surfaces can be
gained from a study of what is called the standard map
(Chirikov, 1979). Given an initial poloidal angle 6, and
radial position W, the standard map assumes that after
one toroidal circuit the poloidal angle of a field line be-
comes 60;=60,+¥, and the radial coordinate becomes
¥, =Wy+k sin(6;). When k=0, the radial coordinate is
27 times rotational transform, ¥=2(i;,). The param-
eter k is proportional to the perturbation. A trajectory
of the standard map is found by iteration from the origi-
nal position (6,,%¥,). That is, the Nth point along the
trajectory is at  Oy=0y_1+¥n_; and Y=V,
+k sin(@y). The standard map has the essential property
for modeling the field lines of a divergence-free field,
which is a unit Jacobian d(Wy, Oy)/d(Wn_1,0y_1)=1. If a
large collection of trajectories are followed that were
initially in a small area (8W)(86,), then the area occu-
pied by the trajectories remains the same forever. For
k #0, islands appear at ¥=27n/m, where n and m are
integers, with the width of the islands scaling as Vk for
small k. For k<0.9716..., Greene (1976) has shown that
trajectories of the standard map can cover only a limited
range of W. However, for larger values of the perturba-
tion k, some trajectories cover an unlimited W range
(Fig. 3). Such trajectories are said to be stochastic. The
breakdown of the ¥ surfaces with increasing k is analo-
gous to the breakdown in the magnetic surfaces with an
increasing perturbation.

In the presence of a perturbation that produces an
arbitrarily small island, any function py(x) that satisfies

By-Vpy=0 must have the form dpy/di,=(n—un)c,. This
constraint on p, implies that the opening of an island is
a singular process in a toroidal equilibrium. In the ab-
sence of an island, a function such as the pressure can
have a nonzero derivative with respect to the toroidal
flux, dpy/di,, but an arbitrarily small island means the
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derivatives near the island can only be nonzero using the
helical flux, dpy/di, # 0, where the helical flux is defined
by di, = (1—n/m)dy,. The singularities that arise due to
the modification of the pressure gradient by a small
resonant perturbation are known as the Glasser effect
(Glasser et al., 1975). The resolution of these singulari-
ties is an area of active research and is usually discussed
under the topic of neoclassical tearing modes; see, for
example, Rosenberg et al. (2002). The singularities asso-
ciated with the gradient in the electric potential can pre-
vent a small island from opening in a rotating plasma;
see Sec. V.B.3.

B. Methods of forming toroidal magnetic surfaces

e A spatial region in which the magnetic-field lines lie
in toroidal surfaces requires either a net toroidal cur-
rent flowing within the region or helical shaping of
the bounding toroidal surface.

To form magnetic surfaces, a tokamak (Fig. 4), uses a
net toroidal current in the plasma, while a stellarator
(Figs. 5-7) uses helical shaping and in some cases a net
toroidal current as well. Both of these plasma confine-
ment systems are discussed in Sec. IV. Ignoring the to-
pologically unstable case of all field lines closing on
themselves, magnetic-field lines form toroidal surfaces
only when there is both a toroidal and a poloidal mag-
netic field. The toroidal magnetic field can be produced
simply by external coils, while the poloidal field is more
difficult.

A pure toroidal magnetic field is produced by a wire
carrying a current G along the z axis of cylindrical coor-
dinates,

= MG G o
B =ty TP 18
¢~ 27 " ?T 2r R (18)

An infinite straight wire is not a practical coil set, but
exactly the same magnetic field is produced by any cur-
rent distribution that surrounds the toroidal region of
interest, runs in a constant-¢ plane, and is axisymmetric
(no ¢ dependence). The toroidal field due to external

coils is given by a multivalued scalar potential, §=€¢,
that obeys Laplace’s equation, V2¢=0, which has the so-
lution ¢p=pueGe/2m. It is impossible to make the toroi-
dal field coils perfectly axisymmetric because that would
preclude any direct access to the plasma. The effect of N
separate toroidal field coils can be approximated by as-
suming the coils have N vertical legs located at an outer
radius R, with the current returning along the z axis,
that is, R=0. The magnetic potential becomes

G R \Ncos N
:MO_[¢+(_> cos <p]’ (19)
2 R, N

which gives a sinusoidal ripple in the strength of the
toroidal field. In order to make the ripple sufficiently
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FIG. 3. (Color) Iterates of the standard map plotted for (a) k
=0.3 and (b) k=1.1. Islands arise near rational values of ¥/2
for small values of k, but the trajectory followed by iterating
the map remains bounded in ¥ space. For k>0.9716, trajecto-
ries exist that cover all values of W. The large fuzzy region in
(b) is a single stochastic trajectory found by one set of itera-
tions. The periodicity of the standard map was used to plot all
iterates in the 0< /27 <1 and 0<W¥/27 <1 region.

small, one needs the separation between the toroidal
field coils to be significantly less than the minor radius of
the plasma, which means N must be somewhat larger
than 27/ €., with e,=a/R, the inverse aspect ratio of the
toroidal surface that forms the plasma edge at r=a. The
physical reasons that the toroidal ripple must be limited
are discussed in Sec. VL.E on particle trajectories and
transport.

The production of the poloidal, é-directed, magnetic
field is more difficult. Of course a poloidal field can be
produced by a coil that encircles the z axis at a radius R,
and carries a current I. Close to the coil, r/R,<<1, the
poloidal field is B 4= uol/27r, and the poloidal flux obeys
A, Ir=27R,By(r). The toroidal magnetic flux is ap-
proximately i,=mr’B,, so the rotational transform, ¢
=d,/di, is approximated by
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Poloidal
Field
Coils

Toroidal
Field
Coils

FIG. 4. (Color) A tokamak showing the axisymmetric plasma
and the coils necessary to support it. Magnetic surfaces exist in
a tokamak only when the toroidal plasma current / is nonzero.

. RoBO

ngO

(20)

L

A circular coil produces magnetic surfaces, but this con-
figuration by itself is not suitable for confining fusion
plasmas. Connections are needed between the coil and
the outside world so that the heat produced by the slow-
ing of the fusion neutrons within the coil structure can
be removed. Such connections would have to pass
through the hot fusing plasma and would destroy its con-
finement.

Although a circular coil cannot be used to produce the
poloidal magnetic field, much the same effect can be
produced by a current in the plasma that is parallel to
the magnetic field, which is called the net plasma cur-

rent, fne,zk(f)é/ Mo. This method was suggested by I.
Tamm and A. Sakharov in the Soviet Union in the early
1950s and is used to form the poloidal field in tokamaks.

FIG. 5. (Color) The coils and some magnetic-field lines of the
Large Helical Device (LHD). The rotational transform in
LHD is due to the wobble of the magnetic-field lines produced
by the helical coils. A typical plasma has an average major
radius of 3.6 m. Figure courtesy of the National Institute for
Fusion Science, Japan.
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FIG. 6. (Color) The W7-X stellarator with its helically shaped
plasma and the coils required to support it. Magnetic surfaces
exist in a stellarator even in the absence of a plasma. The
average major radius of a plasma is 5.5 m. Figure courtesy of
the Max-Planck-Institut fiir Plasmaphysik, Garching, Ger-
many.

If the plasma pressure gradient is negligibly small, the
net current is the total current. Such equilibria are called
force free and obey the equation

V X B = k(¥)B. 1)

Taking the divergence of both sides of this equation, one
finds that k(x) is constrained to be constant along the
magnetic field,

B-Vk=0. (22)
This implies that a gradient in k= uyj/B, with j
= ; -é/B, can only occur in regions of good magnetic
surfaces where k(i,) is a function of the enclosed toroi-
dal flux. If the magnetic surfaces are essentially circular,
then the rotational transform is given by Eq. (20) with

By=puol/27r and [ the current enclosed by a surface of
radius r. Usually k can be approximated by a constant

FIG. 7. (Color) The surface of the proposed National Compact
Stellarator Experiment (NCSX) quasiaxisymmetric stellarator,
shown with three toroidal circuits of a magnetic-field line. The
rotational transform ¢ is just under 2/3, so the line almost
closes. Despite the strong helical shaping, the particle drifts are
similar to those of an axisymmetric tokamak. Much of the ro-
tational transform in NCSX is due to the torsion of the mag-
netic axis. The average major radius of a plasma is 1.44 m.
Figure courtesy of the Princeton Plasma Physics Laboratory,
Princeton, NJ.
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for sufficiently small r. The rotational transform in that
region is t=R,k/2. For radii r larger than the current
channel, the rotational transform is ¢ 1/72.

Stellarators (Spitzer, 1958) have magnetic surfaces and
a nonzero rotational transform even in the absence of a
plasma. Stellarator magnetic surfaces must have helical
shaping. The existence of magnetic surfaces without any
enclosed currents is demonstrated starting with the axi-
symmetric magnetic surfaces formed by a coil encircling
the z axis at a radius R,,, which is designed so the rota-
tional transform . is an integer N, in the center of the
region of interest. If this system is modified by a mag-
netic perturbatlon in which b,,_; - N, is nonzero, an is-
land is formed [Eq. (16)]. Since the’ magnetic surfaces
inside an island do not cover the full range of theta (Fig.
2), room exists for connections and supports for the coil.
The magnetic surfaces inside the island fill a volume and
have no current on them. The integer N, is the number
of periods of this type of stellarator, which is called a
Heliac (Boozer et al., 1983).

The poloidal field in a stellarator can be produced in
two ways in the absence of a plasma. The first way uses
helical wobbles of the magnetic-field lines that are
driven by helical currents in coils (Spitzer, 1958). The
rotational transform in the Large Helical Device (Ya-
mada et al., 2001) is produced entirely by the field-line
wobble produced by helical coils (Fig. 5). The magnetic
field that is produced by the helical wobbles acts, when
averaged over the wobbles, as if there were a force-free
current that filled the space around the coils and that
became exponentially small with increasing distance
from the coils. To understand this, consider a weak he-
lical perturbation to a spatially constant magnetic field,
B/BO z+V¢> with ¢(x,y, z) A(x)cos(k,z—k,y) in Car-
tesian coordinates. Since V2¢ must be zero, the distance
A(x) xexp(kx) with k*= k§+k§. The magnetic-field lines
are given by dx/dz=B,/B,=kAcos(--) or x=x
+(kA/k;)sin(--+), and dy/dz=B,/B,. That is, dy/dz
=k,Asin(---)/{1 -k Asin(---)}, which when expanded
to keep the important second-order terms in A is
dy/dz=k,A sin(--)+{(kk*/ k) +(kyk,)}A? sin’(---). The
magnetic-field lines have an oscillation in the y direction,
dy=(ky/k;)A sin(---), but also a systematic drift in that
direction, which is equivalent to a y-directed magnetic
field,

<£L>_y<( @

By 2k kz)(m)z >

The second-order terms in the dx/dz equation give no
systematic drift. Consequently, field lines wobble in and
out of a constant-x surface but have a drift in the y di-
rection. The rotational transform per period in the y and
x directions is ¢,= (k,/k,)(B,)/ B, or

e )
b,==(-* (kA)%. (24)
P2 \k,

There is an upper limit on the transform per period

since kA must be small compared to 1. The effective
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force-free current that fills the space around the helical
coil is pofyy=2k(B,)Z.

The second way to produce a poloidal field without a
plasma is through torsion in the magnetic axis. The mag-
netic axis is the field line at ,=0 and is the axis of the
poloidal angle. The torsion 7 of a curve measures the
extent to which the curve fails to lie flat on a plane. The
rotational transform due to torsion is

=, 25)

with (7) the torsion of the magnetic axis averaged along
its length L. Torsion was used in the early 1950s to pro-
duce the poloidal field in Spitzer’s Figure-8 stellarators
(Spitzer, 1958). The optimization of the particle trajecto-
ries in a stellarator (Sec. VI.E.1) requires the use of tor-
sion. Indeed, torsion gives a major part of the rotational
transform in both the Wendelstein-7X (W7-X) (Fig. 6;
Beidler et al., 1990), and the National Compact Stellar-
ator Experiment (NCSX) (Fig. 7; Zarnstorff et al. 2001)
stellarator designs. The derivation of the relation be-
tween the torsion and the rotational transform uses the
Frenet formulas (Mathews and Walker, 1964) to analyze
the behavior of field lines near the magnetic axis, with ¢
the distance along the axis. The magnetic axis, x,(€), is
the closed curve about which the field lines wind. The

derivative of a curve is its tangent, BOE dxy/de, which is
a unit vector along the magnetic-field line that forms the
axis. The derivative of the tangent is dBO/ d{ =k, with
kK the curvature of the axis. The derivative of the cur-

vature unit vector is dk/ d€:—(;<l;0+ 77), with 77 the tor-
sion. The derivative of the torsion unit vector is d7/d¢
=7k. The Frenet unit vectors are mutually orthogonal
and satisfy by X &=7. Mercier (1964) used the Frenet unit
vectors to establish a coordinate system near an arbi-
trary magnetic axis. We shall simplify his analysis by
making the magnetic surfaces circular near the axis,
which excludes the rotational transform from helical
wobbles. That is, we choose coordinates x(r,6,€)
=xy(£)+r cosOk+rsin #7. Using the methods of gen-
eral coordinates given in the Appendix, one finds
Vr=cosfk+sin 07, V6=(-sin Ox+cosO7)/r+ 750/(1
—kr cosf), and V€=l;0/(1—/<r cosf). The magnetic field
in the absence of plasma currents has the form B

=(M0G/2w)€¢p, with G a constant. The potential ¢,
which can be interpreted as a toroidal angle, obeys

V2¢p56-€¢p:0. If the magnetic strength is constant
along the magnetic axis, then for r— 0 the toroidal angle
@,=2m({+k7sin §+--+)/L, with L the length of the
axis. For r—0, the magnetic field-line equations

are de/ngp B-Vo/B- V(,Dp—TL/ZW and dr/de,

=B-Vr/B- chp 0. Consequently, the rotational trans-
form near the axis is t=(7)L /2, with the axis average of
the torsion {(7)= ¢ rdl/$d(.

The magnetic configuration due to the coils alone is
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called the vacuum configuration. It is in principle easy to
design vacuum configurations that have magnetic sur-
faces of any desired shape, but unless the surfaces have
helical shaping the rotational transform will be zero. To
design a vacuum configuration, first assume there is an

axisymmetric toroidal field, E(P: oG @/2wR, which pro-
duces the toroidal magnetic flux. One then defines the
desired shape of an outermost magnetic surface using

(R.¢,2) X=R,(0,9)R(¢)
+7Z,(6, @)Z, by giving the appropriate Fourier-series rep-
resentation of R; and Z,. The unit normal to this surface
is A oc (9x,/ 30)(x,/ dp). Coils just outside the plasma can
in principle produce any desired normal magnetic field

on the surface x,. If the coils are designed so that they
produce a normal field equal but opposite in sign to

cylindrical  coordinates,

ii-B,, then the surface X, will be a magnetic surface,

since the magnetic-field lines do not cross it, 7-B=0.
When vacuum magnetic fields produce one magnetic
surface, the volume enclosed by that surface is generally
dominated by regions of good surfaces rather than is-
lands and stochastic regions. Practical limitations on the
design of magnetic-field configurations are discussed in
Sec. V.D.

C. Evolution of magnetic-field lines

¢ Clock time is a parameter in the Hamiltonian de-
scription of evolving magnetic-field lines. For an
evolving magnetic field, the Hamiltonian,
(4,0, ¢,1), as well as the coordinate transforma-
tion function, x(i4;, 0, ¢,t), depend on time as well as
the canonical coordinates. A magnetic field evolves
ideally (without a topology change) if the field-line
Hamiltonian can be made time independent by an
appropriate choice of the coordinate transformation
function x(,, 6, ¢,1).

e The mathematical condition for an ideal evolution of
B(x,r) is that a function ®g(x,f) exist such that
B-V®z=—F- B, where the electric field is determined

by Faraday’s law, dB/dt=—V X E. Magnetic-field lines
evolve ideally under more general conditions than
the tying together of the plasma and the field, and a
generic magnetic field always evolves ideally in a suf-
ficiently localized spatial region.

¢ The self-entanglement of magnetic-field lines is mea-
sured by the magnetic helicity K= [A-Bd>x. A spiky
current profile causes a rapid dissipation of energy
relative to magnetic helicity. If the evolution of a
magnetic field is rapid, then it must be at constant
helicity.

Ideally a fusion plasma would be in a steady state, but
the theory of the evolution of the magnetic field is im-
portant for finding the conditions for (1) establishing the
field configuration, (2) maintaining the magnetic field,
and (3) finding the conditions under which rapid changes
in the magnetic field can occur. The evolution of the
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magnetic field means the evolution of the magnetic-field
lines. The equations for the evolution of magnetic-field
lines are also of interest for the evolution of other intrin-
sically divergence-free fields such as the vorticity field of
fluid mechanics.

The evolution of a magnetic field é(f ,1) is called ideal
if it is consistent with the field’s being embedded in an
ideal, zero-resistivity fluid moving with a velocity u(x,f),
which can be interpreted as the velocity of the magnetic-
field lines. An ideal evolution does not change the topol-
ogy of the magnetic-field lines. The conditions for an
ideal evolution are obtained by noting that the electric

field E(f,t) associated with an evolving magnetic field

é()? ,1) is given by Faraday’s law to within an arbitrary
additive gradient of a potential. Mathematics implies

that an arbitrary vector E(f ,1), and hence the electric
field, can be written as

Erix BT, ve( £ 26)
2
in any region of space in which éﬁ@ is nonzero. The
function V, called the loop voltage, is constant along
each magnetic-field line and is given by
L - -
E-d¢
) -L
V=lim —

[ (2 )i
—L 21

where df is the differential distance along B. The com-

27

ponent of E parallel to B is balanced by ® and V, and

the components of E perpendicular to B are balanced by
u. If the loop voltage V is zero, the evolution is ideal.
The relation between the conservation of topological
properties and the vanishing of the loop voltage V' will
be shown in this paragraph, which can be skipped on a
first reading. The topological properties of the magnetic-
field lines are independent of time if the canonical coor-
dinates (i, 6, ¢) can evolve in such a way that the field-
line Hamiltonian does not change, (d¢,/dt).=0. The
subscript ¢ means the partial derivative is performed at a
fixed point in canonical coordinates. This conclusion fol-
lows from two statements. First, the trajectories of
magnetic-field lines in canonical coordinates are deter-
mined by the field-line Hamiltonian ¢,(y;, 0, ¢,t) alone
[Egs. (4) and (5)]. Second, topological properties are un-
changed by a continuous temporal variation in a coordi-
nate transformation function, x(i4;, 0, ¢,t). Consequently
the topological properties of field lines are determined
by the field-line Hamiltonian alone, and these properties
cannot change unless the field-line Hamiltonian changes.
The evolution equation for the magnetic-field-line
Hamiltonian is obtained from the evolution of the vec-
tor potential in canonical coordinates. Using only the
theory of general coordinates (Appendix), one can write
(Boozer, 1992) the time derivative of an arbitrary vector
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A:¢,§(G/2w)—¢p€(¢/2w)+§g in a coordinate system
defined by the function x(i, 8, ¢,t) [Eq. (A19)] as

(%)x— <[MI>V27T+14><B+VS (28)

where we have let B=V X A and introduced the velocity
of a fixed point in canonical coordinates,

a—)
IZE x(wtaev()oat). (29)
ot

The subscript X means a fixed spatial point, and the sub-
script ¢ means a fixed point in the canonical (i, 6, ¢)

coordinates. The function s=(dg/dr).—A-u, Eq. (A20), is
the generating function for infinitesimal canonical trans-
formations of Hamiltonian mechanics. Even when the

vector potential is independent of time, ((9/1/ at):=0, the
canonical coordinates can change, u # 0, using the free-
dom of infinitesimal canonical transformations s. The re-
lation between Egs. (26) and (28) can be demonstrated

using E=-JA/dt—V®. The two equations have the same
content with the identification

Y, S P i B
{(EE)C_V}VZ’]T_V{S (g - D)} (30)

If V=0, then #,(¢;,0,¢,) can be made independent of
time by the choice of infinitesimal generating function
s=Pz—®. In a system with magnetic surfaces i,(¢;,1),
the loop voltage is the change in the poloidal flux out-
side a given toroidal flux surface,

V: &¢E(¢t7t) ) (31)

ot
Remarkably, the evolution of a magnetic field is ge-
nerically ideal in a sufficiently small spatial region even
when the field is embedded in a resistive fluid or is in a
vacuum. This follows from the observation that locally

E+uX B=-V®pz; a nonzero loop voltage V is needed
only if the field lines (a) are followed an infinite distance,
(b) close on themselves, or (c) intercept surfaces on
which the potential ®5 must obey fixed boundary con-
ditions. The evolution is locally ideal (Boozer, 1992)

even near a null field, B=0, provided the matrix of first
derivatives B;=dB;/ dx/ has a nonzero determinant,
which is the generic situation at a magnetic-field null. In
other words, an arbitrarily small perturbation can make
a zero determinant of B; nonzero at a null.

The simplest model of a nonideal evolution treats the
plasma as a moving conductor. A Lorentz transforma-

tion in the nonrelativistic limit implies the electric field
in a conductor moving with VGIOCIty v(x t) is EmOV—E

+7xB.In a simple conductor EmOV 7 ], with % the re-
sistivity tensor, and Ohm’ law becomes
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E+VXB=7-]. (32)

In plasmas the resistivity tensor is diagonal but with dis-
tinct values along, 7, and across, 7, the magnetic field.
In a quiescent plasma, 7, is about twice 7, but the mi-
croturbulence that is present in most confined plasmas
enhances 7, by several orders of magnitude while leav-
ing 7, essentially unchanged (see Sec. VL.F). Substituting
Ohm’s law into the general expression for the electric
field, Eq. (26), one finds that

v€<3>+(ﬁ—ﬁ)x§=77-f+€q>3. (33)
2

The loop voltage, V=/7,,d¢/[V(e/2m)-d€, vanishes if
the parallel resistivity is zero. If the resistivity tensor is
zero, the magnetic field and the plasma move together,

1i=v, with the choices ® ;=0 and - -B=v-B.

The evolution of a magnetic field that is embedded in
a conducting fluid obeys two distinct conservation laws
when the resistivity vanishes, 7=0: (1) the ideal evolu-

tion of B, and (2) the tying of the magnetic-field lines to
the fluid, #=v. A distinction between these two laws is
rarely made in the literature, but the first holds under
more general conditions. The breaking of the ideal evo-

lution of B, which changes the magnetic-field-line topol-
ogy, is determined by the parallel resistivity #», alone.
The flow of the plasma relative to the magnetic-field
lines, v—u, depends on the perpendicular resistivity 7,
and in general on the parallel resistivity as well.

The distinction between the two conservation laws for
magnetic evolution is especially clear in a type-II super-
conductor with a melted flux lattice (Huebener, 1979).
The technically important superconductors are type-II,
which means the magnetic field can penetrate into the
material, which lowers the magnetic-field energy, but the
magnetic-field lines must lie in narrow flux tubes. These
flux tubes can form a lattice, which holds the tubes in
place, and in the technically important superconductors
the flux lattice is rigid. When the lattice is rigid, the su-
perconductor has zero resistivity. However, the flux lat-
tice can melt, which allows the flux tubes to move
through the superconductor with a velocity, i —v, pro-
portional to the applied force. This motion is equivalent
to a perpendicular resistivity 7, . Therefore a type-II su-
perconductor with a melted flux lattice has a tensor re-
sistivity with 7,=0 but n, nonzero. The first conserva-

tion law, the ideal evolution of B, holds rigorously in a
superconductor since 7=0. However, if the flux lattice
of a superconductor melts, the perpendicular resistivity
becomes large, and the second conservation law, the ty-
ing of the field lines to the superconductor, is not even
approximately valid.

On rational magnetic surfaces the rotational trans-
form is a rational number, t=n/m, and magnetic-field
lines close on themselves. On these surfaces the loop
voltage V can have a different value on each magnetic-
field line. When this occurs, the field-line Hamiltonian
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i, will develop a term that goes as e/"#% and the
rational surface will split to form islands. In a highly
conducting fluid, this is associated with the important
phenomenon of fast reconnection. The currents that
arise in a highly conducting fluid, »— 0, to preserve the
topology are surface currents, which means they are
delta functions—nonzero only on the rational surface
but infinite there. Such currents lead to rapid dissipa-
tion, so perturbations can open islands on a very short
time scale compared to the global resistive time, 7,
= (uy/ m)a?, of a plasma of radius a. The actual time scale
in a plasma is a subtle question, a question on which
recent progress has been made. See Rogers et al. (2001)
and reviews by Bhattacharjee et al. (2001) and by Priest
and Forbes (2000).

In astrophysical and space plasmas, the magnetic-field
lines often enter and leave the volume of interest. In
such systems nonideal effects in the magnetic field, such
as reconnection, are far more subtle than in systems with
two periodic directions, where reconnection is focused
onto the rational surfaces (Boozer, 2002). A nonzero
loop voltage V may be required by boundary conditions.
Nonideal effects can also arise if neighboring magnetic-
field lines separate from each other exponentially with
distance along the lines. In this case, a solution ®z(x,¢)
to E-B=-B-Vd p may exist but have poor analytic prop-
erties due to exponentially large gradients across the
field lines. Except when magnetic-field lines lie on sur-
faces, the exponential separation of neighboring lines is
a generic property. Neighboring field lines satisfy

dx/dr=B(¥) and d(¥+ 8)/dr=B(i+ ) with 5—0. Letting
B;j=0B;/dx’ and A;(€)= [(B;/B)d{, one finds the sepa-
ration between the lines at distance £ down either line is
5(€):exp(K)-50. Unless the magnitudes of all of the ei-

genvalues of A(0) are exponentially small for large ¢,
neighboring field lines separate exponentially.
Similar equations to the magnetic evolution equations

can be derived for the vorticity, ®= V X v, of a fluid. The
equivalent of Ohm’s law for the vorticity is the Navier-
Stokes equation,

v -Vi=—Vw(p) -V X @. (34)

This form of the equation assumes the density p is a
function of the pressure alone with dw(p)=dp/p(p).

The kinematic viscosity is ». The term v-Vi=—v X o
+€(v2/ 2), so the Navier-Stokes equation can be written
in a form analogous to Ohm’s law with E replaced by
A/ at,

>

v

> 1 -
EZﬁX(B—V(W+EV2)—VVXE). (35)

The Hamiltonian of the vorticity field lines can be made
time independent if the viscosity vanishes, v=0.
The rapidity of the evolution of magnetic fields is lim-
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ited by the properties of magnetic helicity (Woltjer,
1958). Magnetic helicity is defined as

K(t) = f A-Bdx. (36)

In a system with perfect magnetic surfaces, the helicity is
K, 0)= [ (o= hp)deh, with o(if,,t) =34,/ 9y, the rota-
tional transform. The helicity is a measure of the topo-
logical entanglement of the magnetic-field lines.

The importance of magnetic helicity comes from its

rate of dissipation, 2 [ B- Ed>x. If the current density in a
plasma has a large spatial variation, as it does in turbu-
lent situations, the rate of loss of magnetic energy,
Jj- Ed3x, is rapid in comparison to the rate of helicity
dissipation. It is relatively easy to change the magnetic
energy quickly compared to the resistive time scale, 7,
= (uo/ m)a?, of a plasma of radius a. However, if the mag-
netic energy changes rapidly compared to 7,, the change
must be at an essentially constant helicity.

The time derivative of the helicity can be put in a

convenient form using E=-0A/ ar—ﬁ@,

dK S -

E:—ZJB-Ed3x+SeS+S,-n. (37)
The volumetric term, —(dK/dt)dE2fl§-E?d3x, is the he-
licity dissipation. The two surface terms are the external
sources of helicity: the electrostatic source

SesE—Zj[JCI)E-d& (38)

and the inductive source
- 9A
S,»nE—éAxa—t-da. (39)

If the bounding surface is a perfect conductor, the exter-
nal sources of helicity vanish. When the bounding sur-
face is a magnetic surface, the inductive source is S;,
= dip,/dt—ip,di/di. The poloidal and toroidal loop
voltages are defined as V,= gﬁé'(ﬁf/o’*ﬁm)d 6, and V,
=4$E-(0x/dp)de, so S;,=V,+V,i,, the loop voltages
times the fluxes. The toroidal loop voltage is equal to the
loop voltage V' if the poloidal loop voltage, V,=—dy,/ dt,
is zero.

The magnetic energy, W= [(B?/2u,)d>x, has the time
derivative dWpg/dt=—[ ; .Ed®x. When the standard
Ohm’s law, Eq. (32), is used, with 7 having distinct par-
allel and perpendicular components, —dWyg/dt is the
sum of two terms: the dissipative loss of energy
(dWgldt),=f (77“]'ﬁ+ 7.j>)d*x and a nondissipative trans-
fer of energy between the magnetic field and the fluid in
which it is embedded, [v-(j X B)d®x. Retaining only the
dissipative term, —(dWg/dt),= [ W‘ﬁd%. In contrast, the
volumetric dissipation of helicity is 2[B-Ed°x
=2 nj-Bdx.

The relative rates of dissipation of energy and helicity,
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(dWB 1d1<>2

1
= —, 40
dl)df 23<2d1d (40)
’77Hde

can be demonstrated (Berger, 1984) using the Schwarz
inequality. This inequality says the average of the square
of a function is at least as large as the square of the
average of the function. The appropriate average for the
relative dissipation rates is the » average, which is de-
fined as (f),=[(nB*fd*x)/ [(7,B*d’x). The rate of mag-
netic energy  dissipation  satisfies —(dWy/dt),
= ([ 9B*d*x){(jy/ B)*),, while the rate of helicity dissipa-
tion satisfies (dK/d1),=2(f mB*d*x){j,/ B),. The Schwarz
inequality, ((ji/ B)?),=(jj/ B), then implies Eq. (40). The
greater the spatial variation in j,/B, the stronger the
Schwarz inequality becomes. In Sec. V.B.1, we shall find
that unstable, or turbulent, plasmas develop very spiky,
Dirac delta-function-like, spatial distributions of j;/B. In
such situations, the dissipation of the magnetic energy is
extremely rapid in comparison to the dissipation of he-
licity.

Magnetic energy can be dissipated rapidly compared
to helicity, so highly unstable plasmas evolve to mini-
mize their energy for fixed helicity. As Woltjer (1958)
showed, this evolution relaxes the current density to the

form f =(k/ /.Lo)é, where k is a spatial constant. This
property of the state of minimum energy with fixed he-

licity is demonstrated by varying A in J(B?/ o

—k/i-B?)d3x. The constant k, which is called a Lagrange
multiplier, is chosen to make the helicity after minimiza-

tion equal to its initial value. The terms involving SB
—VXSA are integrated by parts, and the boundary
terms 5ﬁl§>< S8A-da can be ignored if the boundary is a

perfect conductor. One finds VX B=kB.

The physical importance of helicity conservation was
demonstrated by Taylor (1974). He showed that turbu-
lent periods in the reversed-field pinch plasma confine-
ment device (Prager, 1999) lead to flattened current pro-
files with a more quiescent plasma. Since Taylor’s
important work, the relaxation of the current profile to
form a more quiescent plasma has been known as a Tay-
lor relaxation. Taylor’s work demonstrated that helicity
conservation should be a central element of any theory
of rapidly evolving magnetic fields.

A plasma can transition between two states with mag-
netic surfaces but with different helicity distributions,
K(4,), in a time short compared to the resistive time 7,.
However, when this occurs helicity conservation implies
that the magnetic surfaces must have broken in the in-
termediate state.

Spiky current profiles cause a rapid loss of magnetic

energy, | f . Ed®x. On the time scale of energy dissipation,
the magnetic helicity can be transported but not dissi-

pated. The absence of helicity dissipation implies 2E-B
must be the divergence of a flux, the helicity flux j—'h with

2E-é:€'ﬁh. Energy dissipation, which in the Schwarz
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inequality argument takes place through the parallel cur-
rent [(j,/B)B-Ed’x, implies —[F),-V(j,/B)d>x must be
positive. This condition is satisfied if F,=-\,V(j,/B)
(Boozer, 1986). The positive coefficient N\, is called the
hyper-resistivity. The gradient of j;/B is a source of free
energy, which can drive instabilities much as the pres-

sure gradient can; see Sec. V.B.1.
If a system has a large source of free energy other

than the magnetic-field energy, the helicity flux F; can
have terms that add energy to the magnetic field. Such
terms are needed in a magnetic dynamo, where mag-
netic fields are generated by taking energy from another
source, such as a fluid flow. Taylor relaxation in the
reversed-field pinch demonstrates the existence of a dis-

sipative term in the helicity flux, such as —\,V(j,/B), but
not a term that can add energy to the magnetic field,
which is needed for a dynamo. The role of helicity and
its conservation in limiting the forms of magnetic dy-
namo theories remains controversial.

The external sources of helicity, the electrostatic S,
and the inductive §;,, are important for creating the
plasma currents needed for magnetic surfaces in axisym-
metric devices. The inductive source is usually a toroidal
loop voltage V, supplied by varying the magnetic flux in
a solenoid that goes through the central hole of the torus
while an essentially constant toroidal flux is supplied by
toroidal field coils. If the loop voltage V, is small, the
plasma is relatively quiescent, and this is the mode of
operation of the tokamak. In the reversed-field pinch,
the loop voltage is made sufficiently large that the
plasma has periods of turbulence, which relax the cur-
rent profile to form transiently quiescent states. Electro-
static helicity injection S, requires magnetic-field lines
that penetrate conducting plates, or electrodes. A given
magnetic-field line goes from a plate held at one voltage
to a plate held at a different voltage with the voltage
difference @, driving a current along the magnetic-field
line. If @, is small, the magnetic-field structure is af-
fected only slightly by the presence of the voltage. When
®,, is large, the currents driven by the electric potential
difference produce a field that is large compared to the
field B), that penetrates the plates. When ®,, is large,
unstable plasma states can be created that undergo a
Taylor relaxation to plasmas that can have closed mag-
netic surfaces (Jarboe et al., 1983; Raman et al., 2003;
Tang and Boozer, 2004).

IV. CONFINEMENT SYSTEMS

e The two most prominent magnetic configurations for
confining plasmas are tokamaks and stellarators. An
ideal tokamak is axisymmetric and uses a net toroi-
dal current to produce magnetic surfaces. The toka-
mak has the most extensive database of all magnetic
confinement systems and has been the basis for a
number of proposals for experiments in which deu-
terium and tritium are burned under conditions simi-
lar to those of a fusion power plant. Stellarators use
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FIG. 8. (Color) The cross section of the NSTX spherical torus
(ST; Peng, 2000). All modern tokamaks (Fig. 9) and ST devices
have a similar plasma cross section. The field lines that go from
the bottom of the plasma to the wall form a divertor; see Sec.
VII. Figure courtesy of the Princeton Plasma Physics Labora-
tory, Princeton, NJ.

helical shaping to produce at least part of the rota-
tional transform.

e The primary control a machine designer has over the
performance of a confinement system is the shape of
the outermost plasma surface. About 50 properties
of the plasma shape can be controlled but only about
four of these are consistent with axisymmetry: aspect
ratio, ellipticity, triangularity, and squareness.

In the world research effort on magnetically confined
plasmas, the tokamak, Fig. 4, and the stellarator, Figs.
5-7, are by far the largest programs. Tokamak plasmas
are axisymmetric and carry a net toroidal current in or-
der to form the magnetic surfaces. Stellarator plasmas
have the form of a torus with helical shaping, which pro-
duces some or all of the rotational transform ¢. Of the
two, the tokamak has been studied more and more data
have been amassed concerning it. It has been the basis
for a number of proposals for experiments in which deu-
terium and tritium are burned under conditions similar
to those of a fusion power plant. In addition, the toka-
mak has a variant, the spherical torus or spherical toka-
mak (ST; Fig. 8). The ST is like a tokamak at a very tight
aspect ratio, €,=a/R,, much closer to unity, which has
physics advantages (Peng, 2000; Sykes, 2001) as well as a
smaller unit size for fusion systems. For tokamaks a tight
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aspect ratio gives the most desirable physics properties
but for stellarators the larger the aspect ratio R,/a, the
easier it is to design desirable physics properties. The
helical shaping of the stellarator allows one to design
around certain issues of the tokamak and ST. Many of
these issues are associated with the maintenance and
stability of the net plasma current, issues that can be
avoided in the stellarator.

In addition to the tokamak and stellarator, many
other magnetic configurations are being actively pursued
in the world fusion program. Sheffield (1994) has re-
viewed many of these configurations. The most promi-
nent are the reversed-field pinch (Ortolani and Schnack,
1993; Prager, 1999), the spheromak (Bellan, 2000), and
the magnetic dipole (Garnier, Kesner, and Mauel, 1999;
Kesner et al., 2001).

The largest tokamaks have been the Joint European
Torus (JET), which is at Culham, England (Keilhacker et
al., 1999, 2001); the Tokamak Fusion Test Reactor
(TFTR), which was at Princeton, NJ (Hawryluk et al.,
1998); and the Japanese Tokamak JT-60U (Kamada et
al., 1999). The largest tokamak that is operating in the
U.S. is the DIII-D tokamak at General Atomics, Fig. 9,
where an investigation is underway to make tokamak
plasmas that are better suited for high-pressure, steady-
state operation (Chan et al., 2000; Petty et al., 2000).
Both the JET and the TFTR tokamaks produced power
above the 10-megawatt level by fusing deuterium and
tritium (Hawryluk, 1998). However, as expected from
the time of their design in the early 1970s, both toka-
maks required a high level of externally injected power,
comparable to or greater than fusion power, in order to
maintain the required plasma temperature, and neither
was, therefore, what is meant by a burning plasma ex-
periment.

The largest stellarator (Yamada et al, 2001) is the
Japanese Large Helical Device (LHD; Fig. 5). A stellar-
ator of comparable scale, Wendelstein-7X (W7-X), is be-
ing constructed in Greifswald, Germany (Beidler et al.,
1990). The W7-X stellarator, Fig. 6, has essentially no
net current and an unusually small current flowing par-
allel to the magnetic-field lines. This implies that the
shape of the magnetic surfaces is similar with and with-
out plasma. The W7-X design has many innovative fea-
tures of engineering and physics, which have been stud-
ied in the smaller W7-AS stellarator (McCormick et al.,
2003) at Garching, Germany. The National Compact
Stellarator Experiment (NCSX), Fig. 7, which is under
construction at the Princeton Plasma Physics Laboratory
(Zarnstorff et al., 2001), is quasiaxisymmetric; see Sec.
VLE.1. Quasiaxisymmetry implies that the particle or-
bits closely resemble those of a tokamak even though a
large fraction of the rotational transform comes from
helical shaping. Quasiaxisymmetric stellarators have the
feature that they can be designed with an arbitrarily
small level of helical shaping, so there is a continuous
connection between quasiaxisymmetric stellarator de-
signs and tokamaks. The potential importance is that
quasisymmetry allows a minimal modification of the to-
kamak while giving the freedom to design around phys-
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FIG. 9. (Color) Cross section of the DIII-D tokamak. The
distance from the machine center line to the plasma center is
approximately 1.7 m. The plasma cross section of all modern
tokamaks is similar to that of DIII-D. The field lines that go
from the top of the plasma to the wall form a divertor; see Sec.
VII. Figure courtesy of Edward Lazarus, from Lazarus et al.,
1990.

ics issues that could potentially affect the use of the to-
kamak for practical fusion power.

The primary control that a machine designer has over
the plasma properties is the shape of the plasma. As
shown in Sec. V.A, a plasma equilibrium is specified
(Bauer, Betancourt, and Garabedian, 1984) by giving its
toroidal flux content, which is the ¢, enclosed by the
plasma surface; the rotational transform profile «(,); the
pressure profile p(y,); and the plasma shape x,
=R,(6, @)ﬁ(¢)+ZS(0,¢)Z. The optimal shape for the
plasma surface in both tokamaks and stellarators is far
from a simple torus with a circular cross section, R;
=R,+a cos 6 and Z;=—a sin 6. Since a tokamak design is
by definition axisymmetric, both R, and Z can depend
only on 6. A frequently used expression for the shape of
a tokamak plasma is R,(6)=R,+a cos(6+Asin #) and
Z(0)=—kasin 6. The parameter « is the elongation or
ellipticity, and A is the triangularity. Stellarators have a
much larger design space since R, and Z, can depend on
both the poloidal angle 6 and the toroidal angle ¢.

The number of plasma shape parameters that can be

Rev. Mod. Phys., Vol. 76, No. 4, October 2004

controlled by coils at a sufficient distance from the
plasma for a fusion power system is limited to about
four for a tokamak and about ten times that number for
a stellarator (see Sec. V.D.1). The number of free shape
parameters for the tokamak is sufficiently small that
they all have names: aspect ratio, ellipticity, triangularity,
and squareness, though squareness is not defined by an
agreed-upon shape function. The performance of toka-
maks is markedly improved by a careful choice of these
parameters relative to a circular cross section. The num-
ber of free parameters that are available to stellarator
designers is so large that extensive runs with optimiza-
tion codes are needed to choose design points. Many of
these optimization codes and techniques were devel-
oped by Jiirgen Niihrenberg and co-workers as part of
the W7-X design effort (Niithrenberg et al., 1995).

V. EFFICIENCY OF MAGNETIC CONFINEMENT

e The cost of fusion power depends on the efficiency
with which the magnetic field can be utilized and on
the fraction of the power output that must be used to
maintain the plasma and the magnetic field, which is
called the recirculating power fraction.

e The efficiency of magnetic-field utilization depends
on (1) the ratio of the pressure of the plasma to that
of the magnetic field, B=2u.p/B?, and (2) the ratio
of the magnetic field at the plasma to that at the
coils. The plasma pressure, or 3, can be limited by
equilibrium, stability, or transport issues.

e The power required to maintain the net current of a
tokamak places significant constraints on the design.

The cost of fusion power depends on the efficiency of
the confinement. Engineers tend to emphasize the ratio
of the power output of a fusion system to its mass. But
more physics-oriented efficiency measures are (1) the
field strength on the coils needed to confine a given
plasma and (2) the ratio of the power output to the
power required to sustain the current in the plasma and
coils, or more generally, the recirculating power fraction.
The power required to sustain the plasma current is dis-
cussed in Sec. VLE.3.

The magnetic field at the coils that is needed to con-
fine a given plasma depends on two numbers. The first is
the plasma beta, which is the ratio of the plasma pres-
sure to the magnetic-field pressure,

_ 2pep
B= B2 5

and the second is the ratio of the magnetic-field strength
on the coils to that in the plasma. The limits on the
plasma beta due to equilibrium considerations are dis-
cussed in Sec. V.A, and limits from the existence of un-
stable perturbations of large spatial scale are discussed
in Secs. V.B and V.C. The considerations that set the
ratio of the magnetic-field strength on the plasma to that
on the coils are discussed in Sec. V.D. Section VI will
consider limitations on plasma beta, and hence the
magnetic-field strength, due to transport.

(41)
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A. Equilibrium limits

e A plasma equilibrium is determined by the shape of
the outermost plasma surface, the toroidal flux en-
closed by that surface, and the profiles of the plasma
pressure, p(i), and rotational transform, (i)
=dy,/dy,. The rotational transform of a magnetic
field is the average number of poloidal transits of the
torus a field line makes per toroidal transit. In toka-
maks, ¢ is generally less than unity.

e The plasma B=2ugp/B? is limited by the distortions
to the plasma shape caused by the current density j
parallel to the magnetic field that arises to make
V-j=0. That is, B-V(j,/B)=
the force exerted by the plasma, Vip =X B. These
distortions can be important when beta is just a few
percent, though much higher betas can be achieved
by careful plasma design. In asymmetric plasmas,
these distortions of the plasma shape can cause the

breakup of the magnetic surfaces that are needed for
plasma confinement.

—6-]1, with jl given by

e A magnetic field that lies in surfaces, B-Vp=0, has a
simple contravariant representation, Eq. (7), which
means a representation that uses cross products of
pairs of coordinate gradients. A magnetic field asso-
ciated with a plasma equilibrium simultaneously has
a simple covariant representation, Eq. (57) or Eq.
(58), which means a representation that uses coordi-
nate gradients. Coordinates in which the magnetic
field has both a simple contravariant and a simple
covariant representation simplify the analysis of
plasmas.

If at each point in a stationary plasma the plasma is
close to thermodynamic equilibrium, then the force ex-
erted by a stationary plasrna is accurately approximated

by its pressure gradient —Vp The equlhbrlum between

the pressure and electromagnetic forces is Vp ]><B
which is known as the equilibrium equation for a
plasma.

A toroidal plasma equilibrium is specified by giving
(1) the shape of the magnetic surface that bounds the
plasma, x,(0, ¢), with § and ¢ arbitrary poloidal and to-
roidal angles, (2) the total toroidal magnetic flux in the
plasma, (3) the pressure profile p(¢,), and (4) the rota-
tional transform profile «(¢;,) (Bauer, Betancourt, and
Garabedian, 1984). This result is proven by showing that
equilibria are extrema of the energy in a toroidal region
bounded by a fixed surface x,(6,¢) when the ideal,
which means dissipationless, plasma constraints are ob-
served. The energy of the plasma plus the magnetic field
is

2
W= (B—+L)d3x, (42)
plasma 21“’0 7_1

where 7 is the adiabatic index. The variation that is car-
ried out is in the shape of the magnetic surfaces
X(,,0,9) with the shape of the outermost plasma sur-
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face x,(0, <p) held fixed. That is, x(¢,,0,0) —x(4,,0, )
+§ where g is the displacement of the surfaces with the

displacement g zero on the plasma surface.

Using the expressions that are derived below for the
variation in magnetic-field energy and the variation in
the pressure in response to a small plasma displacement

5, one finds that

oW = (Vp-jx B)- &, (43)

plasma

which means W has equilibria, V}) = f X B as its extrema.
The minimization of the energy W gives the shape

X(4,,0,¢) of all of the magnetic surfaces in the plasma.

The best-known code for finding equilibria by minimiz-
ing the energy is called VMEC (Hirshman, van Rij, and
Merkel, 1986). It should be noted that the adiabatic in-
dex vy does not appear in the equilibrium equation, so y
can be chosen arbitrarily. The choice y=0 is frequently
made because with this choice dp/dt=0. When dp/dt
=0, the pressure profile p(i,) is unchanged by variations

E in the shape of the surfaces.
This paragraph gives the derivations of the variation
in magnetic field and the plasma pressure in response to

a small plasma displacement é and can be skipped on a
first reading. These derivations have four parts:

(1) First, the relation between the total and the partial
time derivative must be explained. In fluid mechan-
ics the total time derivative dg/dt gives the rate of
change of any function g(x,) in the frame of refer-
ence of the moving fluid, while the partial time de-
rivative (dg/dt); gives the time derivative at a fixed
spatial point. The partial derivative (dg/dr); is usu-
ally written as dg/dt. The rate of change of the po-
sition vector x is the flow velocity of the fluid, v
=dx/di. The chain rule implies dg/di=dg/ot

+(dx/ dt)-ﬁg, so the total time derivative is
dg dg . =
—==—=4y-Vg. 44
w g tvVe (44)

(2) Second, the total time derivative of the canonical
coordinates must be shown to be zero in an ideal
fluid. The total time derivative is zero because the
coordinates are carried with the fluid, though the
partial time derivatives are nonzero if the fluid is
moving. This result is proven using the theory of
general coordinates (Appendix), which implies that
each canonical coordinate of the transformation
function x(¢,, 0, @,1) obeys

%— V—i)- Vi, (45)

with u=(dx/dt). [Eq. (29)]. In an ideal plasma,
=v, so the canonical coordinates satisfy d,/dt=0.
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(3) Third, the variation in the magnetic field, 5I§, in an
ideal plasma must be found for a small plasma dis-

placement é The variation is

SB=V X (£X B). (46)

This equation follows from Ohm’s law, Eq. (32),
with zero resistivity, E+vX ]§=0, plus Faraday’s
law, OB/ dt=—V X E, and J:&E/ﬁt. Actually v
=dx/ dtzﬁé/ N+v V?, but for a sufficiently small
displacement, £— 0, one has v=0&/dt. The variation
in the magnetic energy is determined using a vector
identity to write B-6B=(¢X B)-§X§+€'{(§X l§)
xé}. The divergence term makes no contribution
because the plasma surface has a fixed shape, which
means E:O on the bounding surface. As shown in
Sec. II1.C, the rotational transform retains its initial

profile, «(¢;), through all variations in the plasma
shape when the resistivity is zero.

(4) Fourth, the pressure variation and the displacement
must be related. A pressure variation in an ideal
plasma conserves the entropy per particle, which im-
plies (d Inp/df)/(d In n/dt)=-. The plasma number
density obeys the continuity equation, dn/dt
+V-(n7)=0, so dpldt=—ypV-v. This means the
change in the pressure at a fixed point in space, p
=(dp/at);ét, is

p=-&Vp-wV-& (47)
The variation in the pressure can be rewritten in a form
that makes that part of the energy variation obvious
Sp=(y-1)&Vp-V-(wé). The (y-1) term in &p cancels
the similar factor in W and the divergence term in p
makes no contribution to the change in the energy since
the change in the shape £ is zero on the plasma bound-
ary.

An important theorem of equilibrium theory is that
given an arbitrary set of magnetic surfaces, x(i;,0,¢),
and an arbitrary rotational transform profile «(¢,), the
magnetic force fz= f X B can always be written as fp

= fwi‘/fz with f,, (i, 0,¢) a known function. The angles 6
and ¢ are arbitrary poloidal and toroidal angles, but ¢, is
the toroidal magnetic flux enclosed by a magnetic sur-
face. If x(¢,,0,¢) and u(yf,) are consistent with an equi-
librium, the function f,, depends on ¢, alone, and the
oy . t . .

equilibrium pressure profile p(i,) is given by dp/dy,
= f(/,[. To prove this theorem, note that if ﬁwlx fB
E(E-ﬁw,)f— 0?-€¢,)é is zero, then ]?B=f¢,ﬁ%- Since
§-€¢,:0 by the definition of magnetic surfaces, the re-
sult is proven if the equilibrium constraint f -§¢,=0 can
be imposed. The most general divergence-free field,
V-B=0, that has the required surfaces, B-V,=0, and
rotational transform profile, «(#,), is
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R Vi, X Vo VexV
(1+@)%—+(L—@)‘p—‘/" (48)

B= ,
a0 21 do 21

which is proven using the argument that led to Eq. (7).
The constraint MJ-&%:(& X l§) . ﬁwtzﬁ-(é X §¢,)=0
determines N as the solution to a Poisson-like equation
that has derivatives only in the 6 and ¢ coordinates. Pe-
riodicity in 6 and ¢ implies that \ has a definite expres-
sion, which can be determined magnetic surface by mag-
netic surface. The function A is the difference between
the arbitrary and the magnetic poloidal angles, 6,,=60
+\, and determines how the field lines wind through the
magnetic surfaces. Once \ is determined, one has a defi-

nite expression for é, which gives the magnetic force fB.
The calculation of the curl of the magnetic field is com-
plicated but is explained in the Appendix.

The equilibrium with profiles «(¢;,) and p(¢,) has been
shown to be an extremum of W= [{(B?*/2u)-p(,)}d>x.
The extremum can also be obtained by allowing arbi-
trary variations in both the N\ function of Eq. (48) and
the shape of nested magnetic surfaces x(i,, 0, ¢) with the
outermost plasma surface held fixed. These variations,
unlike the variation in shape that led to Eq. (43), are
unconstrained and do not use Egs. (46) or (47). This
alternate method of extremizing the energy follows from
the magnetic field’s obeying the ideal constraints if ¢(¢,)
is conserved and if the ¢, surfaces of x(i,,6,¢) remain
nested. The same Poisson-like equation for \ is obtained
when [B?d>x is minimized with respect to \.

One can always minimize the energy W over any set
of shape functions x(i;,6,¢), so it may at first appear
that equilibria always exist. This is not true for two rea-
sons. First, the set of shape functions that are considered
may not be rich enough to find an extremum in which f%
is a function of ¢, alone, as is required for equilibrium.
Second, if one considers an arbitrarily rich set of shape
functions, the parallel component of the current, j

= f -BJ B, may become singular at the rational surfaces.
Rational magnetic surfaces are defined by the rotational
transform’s being the ratio of two integers, t=n/m.
These are surfaces on which the magnetic-field lines
close on themselves after m toroidal and n poloidal cir-
cuits of the torus.

The parallel current determines much of the theory of
force balance of a plasma embedded in a magnetic field.
The parallel current is given by ﬁ-f:E-VU|‘/B)+§-fL
=0, with the perpendicular current determined by the
force the magnetic field exerts on the plasma, fz= f X B.
The equation for variation of the parallel current along
the field lines is

. - - [faxXB
B-v’:v-(ﬁ*—), (49)

which is a magnetic differential equation, Eq. (12), for
the parallel current. In an equilibrium plasma, fBzﬁp.
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The subtlety of the parallel current in a plasma equi-
librium is clarified by the equation for ji/B in (i;,a, ¢)
Clebsch coordinates,

Ji dp\d 1
aqs( )_ (d¢,)aa32 (50)

On closed magnetic-field lines u=¢d¢p/B*=$dl/B
must be independent of a for a single-valued j;/B to
exist. To have a nonzero pressure gradient on a rational
surface, u must have the same value on every field line

of that surface. In (¢;,,a,¢) coordinates, B €¢
+B¢,V¢t+B Va, Eq. (11) which can be 51mphﬁed in an

equilibrium plasma to B= V¢+B¢,V¢, since VX B- Vz,//l
=0. The divergence of the perpendlcular current is

V{(BXVp)/B2 = (dp/dp){V - (Vih, x Va)}a(1/B?)/ o,
so V-j, =B*(dp/dy,)d(1/B?)/da. The divergence of the
parallel current is B-V(j,/B)=B?d(j,/B)/d¢. The con-
straint that V-j=0 gives Eq. (50).

A solution of Eq. (49) for j,/B is the sum of (1) a
special solution, which varies over the magnetic surface

and is given by any solution to the magnetic differential
equation, and (2) a homogeneous solution in which j/B

is constant along field lines, B- §U||/B)h=0. Both the spe-
cial and the homogeneous solution can be singular at
rational surfaces. A singularity of the special solution,
(ji/B)s=jps/ B, where jpg is the Pfirsch-Schliiter current
(Pfirsch and Schliiter, 1962), can arise if the pressure gra-
dient dp/diy, is nonzero at a rational surface on which
$d€/B varies. This singularity is discussed more exten-
sively below. The homogeneous solution, (ji/B),=j,./B,
where j,,; is the net current, has the form

]”‘” k(w[)+2kmn e Sy = )y (51)

with ¢,,, defined by u¢,,,)=n/m and &,—,,,), the
Dirac delta function. Each nonzero constant k,,, implies
a surface current on a rational surface, which produces a
normal magnetic field that cancels the resonant part of
the normal field due to external perturbations and pre-
vents the formation of an island.

A more complete exploration of the special solution
for j/B of Eq. (49), the Pfrisch-Schliiter current, re-

quires a covariant representation, Eq. (56), of B in gen-
eral magnetic coordinates. Magnetic coordinates are de-

fined by B having the contravariant representation,

27B =V, X Vb, + )V X Vi, (52)

which follows from Eq. (7) and ¢«=dy,/di};. The general
covariant representation can be obtained from the cova-

riant expression in Clebsch coordinates, B= V¢+B ¢V¢t»
that was used in the derivation of Eq. (50) for
d(jy/ B)! d¢. However, the derivation is almost as simple
starting from fundamental principles.

The covariant representation of the magnetic field,
Eq. (56), follows from the contravariant representation
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of the current, ; —VXB/ Mo, Eq. (53). The derivation of
the contravariant representation of the magnetic field,

Eq. (7), depended on two conditions: (1) V-B=0 and 2)

that a nonconstant function i, exist with E-V://,:O
These two conditions also hold for the current associ-
ated with a plasma equilibrium, since it is divergence-

free and in equilibrium satisfies f -Vi,=0, so the current
associated with an equilibrium must have the contravari-
ant representation

]?:_07szv<P><V¢t+imtVlﬂt><V6m’ (53)
oy, 2w o, 2w

where the radial derivatives of the total poloidal and
total toroidal current are

aGZ‘Ot — dG(l;bt) i aV(lr//t’ em’ (P) (54)
I, diy, de
and
e _dI) | 0O e) 55)
i diy 36,

The function G(¢,)=/ f -dﬁgm is the poloidal current in
the region exterior to a constant-¢, surface, which is the
current through the hole in the torus, Fig. 1, while

I(p)=[ f -da, is the toroidal current in the region interior
to a constant-y; surface, which is the current through a
cross section of the torus (Fig. 1). The contravariant rep-
resentation of the current implies the magnetic field has
the covariant repesentation

>

B=

2:

Z—{G(lﬂt)V<p+1(¢t)V9 — Wi+ V. (56)
We shall find that the function »(x) is determined by the
equilibrium equation. The function F(x) is determined

by the constraint that V-B=0 and the boundary condi-
tions on the magnetic field.

The contravariant representation of the magnetic
field, Eq. (52), is unchanged if one defines new poloidal
and toroidal angles by 6,,=6,+tw and ¢=¢,+w, where
o is any well-behaved function of position. If these
forms are substituted into the covariant representation
of the magnetic field, Eq. (56), one obtains an equation
of the same form but with v replaced by vy,=v
+(dGld+udlld)w and with F replaced by F,=F
+(G+u)w. There are two obvious choices for w. The
first makes »,=0, and the resulting coordinates are
called Hamada coordinates (¢, 0y, ¢5; Hamada, 1962),
in which

B=ZHGW)Vey+ IW)V b+ VE}. (57)

The second makes F,=0, and the resulting coordinates
are called Boozer coordinates (i, 05, ¢p; Boozer, 1981),
in which
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B=22GW)Vey+ (1) 05+ BV ). (58)
The cross product between the contravariant repre-
sentation of the current, Eq. (53), and of the magnetic
field, Eq. (52), must equal the pressure gradient. This
equality gives an equation for v, Eq. (63), and an equa-
tion for the average equilibrium on a magnetic surface,

Eq. (62). Using arbitrary magnetic coordinates
(¢ta 0m b (P)a
.- B-Ve(iG,, d,\-=
| X B:-—‘P(—"”H—"”)wl. (59)
2m Y, Y,
Since ﬁp = (dp/dcﬁ,)ﬁ b,
G al 27 d,
M+Lﬁ:_%_p_ (60)
I, iy B-V @ d /A

The contravariant form for the magnetic field, Eq. (52),
implies that the Jacobian of magnetic coordinates, 1/7

= (VX V6,) Ve, is
J=—""—"", (61)

with the volume enclosed by the magnetic surfaces
V() =[Tdy,de,de. If Eq. (60) is averaged over the po-
loidal and toroidal angles, one obtains the average equi-
librium equation (Kruskal and Kulsrud, 1958),

dG  dl dV dp
— =, (62)
dy, diy, ddi,

which is a coordinate-independent equation. The func-
tion v satisfies a magnetic differential equation,

KA N KA v n 2
(é’(p+L(90m>V_<d(//, 2m) j)dlﬂz' (63)

The function v and hence the current are singular at a
rational surface t=n/m unless either the resonant Fou-

rier term of 27w J=1/ §€¢ is zero or the pressure gradi-
ent dp/dy, is zero.

Since Eq. (63) for v holds in any set of magnetic coor-
dinates, it must hold in Hamada coordinates, in which
v=0. This means the Jacobian of Hamada coordinates is
independent of the angles, (27)>Jy=dV/di;, but also
that the coordinate transformation to Hamada coordi-
nates is singular if the function v is singular when one
uses the cylindrical angle ¢ as the toroidal angle.

The Jacobian of Boozer coordinates can be obtained
by dotting the covariant and contravariant representa-

tions of B together, Jz=uo(G+ul)/(2mB)?. The parallel
current is particularly simple in these coordinates,
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dl dG v v
o Cau lan, %6y ey
I _ t Ly B (PB. (64)
B G+ G+

The first term on the right-hand side is j,.,/B=k(,)/ no
with j,, the net current, and the second term is jps/B
with jpg the Pfirsch-Schliiter current. Equation (64) for
ji/ B is obtained from the dot product of Egs. (53) and
(58).

In axisymmetric equilibria the expression for the
Pfirsch-Schliiter current can be simplified to

irs_1_G _(av_ 27 \dp
B W GH+d\dy, B.vge)dd

(65)

with dV/dy,=$d6,,/ B-V . This equation for jpg follows
from Eq. (64) with dv/dp=0 and Eq. (63), which gives
an expression for dv/dfz. Equation (65) is written in a
form that is valid in any coordinates in which ¢ is the
toroidal angle and ¢, is the toroidal flux.

Even in simple axisymmetric equilibria, the Pfirsch-
Schliiter current jpg provides a significant limitation on
the plasma pressure. At large aspect ratio, R,/r>1, the
vacuum toroidal field is dominant, that is, G>«/, and

1/§-€¢QR2/ (R,B,). The Pfirsch-Schliiter current, Eq.
(65), is in the toroidal direction and approximated by

2(R-R,)1dp

, 66
B, rdr (66)

Jps=~—
with R—R,=rcos . If the pressure is assumed to de-

pend on the minor radius r as p=py(1-7r>/a®), one finds
the Pfirsch-Schliiter current produces a magnetic field in

the vertical or Z direction, 9B,/ IR =—pugjps, Which at
the plasma edge, (R—R,)>=a?, is 6B,~-2uopo! (1B,).
This vertical field opposes the poloidal field due to the
plasma current, B,~¢€,.B,, on the inboard side with ¢,
=a/R,. When the vertical field becomes sufficiently
strong to cancel the poloidal field on the inboard side,
the equilibrium has reached its pressure limit. In other
words, equilibria must have a volume-averaged beta,
(ﬁ)EZMO(p)/Bi with (p)=p,/2, which satisfies

1
By = Eeabz. (67)

Stability limits the average rotational transform in a to-
kamak to ¢=1/2 and the inverse aspect ratio is €,
~1/3, so (B)<4% when the magnetic surfaces are cir-
cular. Actual tokamaks with additional shaping have
achieved (B) greater than 10%, and ST plasmas have
achieved (B) approaching 50%. However, the poor scal-
ing of the beta limit with aspect ratio limits tokamaks to
having a tight aspect ratio. The weakening of the poloi-
dal field on the inboard side and the strengthening on
the outboard side cause the magnetic surfaces to shift
outward, a phenomenon called the Shafranov shift, so
the same flux passes between the plasma axis and the
inboard and outboard edges.
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The equilibrium of an axisymmetric plasma can also
be found using the Grad-Shafranov equation (Liist and
Schliiter, 1957; Shafranov, 1958; Grad and Rubin, 1959).
Using (R, ¢,Z) cylindrical coordinates, an arbitrary axi-
symmetric, divergence-free field can be written in a

mixed covariant-contravariant representation as 2wB

:MOG€¢+€¢X€¢p, which follows from ﬁ-(ﬁ@):O in
cylindrical coordinates. The curl of this mixed represen-

tation gives 2wf:€G X €¢+ e(A* )/ (uoR), where

- 1&_%) Py
A l’/,”_R(9R<R&R W7 (68)

is called the Grad-Shafranov operator and ¢ is a unit

vector of cylindrical coordinates. From X B
=(dp/ dwp)§¢p one finds G is a function of ¢, alone and
dG dp

Ay, == ugG——= — pg(2mR)*— =, (69)

which is the Grad-Shafranov equation.

Equation (49) for the variation in the parallel current
also has important implications for nontoroidal plasmas
embedded in magnetic fields. For example, the photo-
sphere of the sun becomes sufficiently tenuous with alti-
tude that the forces exerted by the magnetic field on the

plasma must be small, fBEfXB—>O. In this situation,
which is called a force-free equilibrium, the parallel cur-
rent satisfies the conservation law that j;/B be constant
along magnetic-field lines. The constancy of j;/ B implies
that stars, like the sun, with outer convective zones and
a magnetic field, must have a corona, a region in the
upper solar atmosphere of very-high-energy electrons
compared to the energy that would be expected from
thermal diffusion (Boozer, 1999). The reason is that the
current j=env, is the product of the electron charge,
number density, and streaming velocity v, of the elec-
trons relative to the ions. If the streaming velocity ex-
ceeds the electron thermal velocity v,=vT,/m,, the
electrons will break away from a Maxwellian distribu-
tion and reach whatever energy is necessary to carry the
current. This is the phenomenon of runaway electrons
(Dreicer, 1960; Connor and Hastie, 1975), which arises
from the collision frequency’s dropping as one over the
speed of a particle cubed, Eq. (134), when the speed is
larger than the thermal velocity. In the absence of a
corona in a star like the sun, the density of the atmo-
sphere  drops exponentially with height, n(z)

cexp(-z/h), due to gravitational force balance, Vp=pg,
with a scale height #~100 km. Although the fractional
ionization increases with altitude, the total number of
electrons that are potentially available to carry the cur-
rent rapidly drops. The magnetic field above the sun has
structures with a scale of 10* km, spanning a range of
atmospheric densities of e'. Since j,/B is approximately
constant due to the rapid drop in the atmospheric pres-
sure, the streaming parameter v,/v, would increase by a
factor of roughly e!®’~10* without a corona. This is of
course impossible without the streaming parameter be-
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coming greater than one and the electrons running away.
At the bottom of the photosphere, magnetic fields are
observed to have variations of 0.1 T over 10° km, so lo-
cal current densities have to be greater than j
~10”> A/m?. The current that could be carried by the
full electron density (neutral plus ionized) moving at the
electron thermal speed is of order 10'° A/m?, which is
only eight orders of magnitude larger. Actually, the local
current density on magnetic-field lines emerging from
the sun should have a value orders of magnitude larger
than the observed current density of 10> A/m?, which by
the observation process involves a spatial average. The
reason a large current density should be expected is that
when field lines are churned around in a conducting
fluid, as they are in the outer solar convective zone, they
develop strong parallel currents with very short correla-
tion distances (Thiffeault and Boozer, 2003). These cur-
rents flow all along the field lines, Eq. (49), relaxing to
their equilibrium values via shear Alfvén waves; see Sec.
VILH. Runaway electrons are not generally considered
as an explanation for the actual solar corona. Whether
the currents along the magnetic-field lines that penetrate
the solar surface have sufficient strength and shortness
of correlation length to cause the actual solar corona are
questions that are not easily answered observationally.

B. Stability limits

e A magnetically confined plasma cannot be in ther-
modynamic equilibrium, so a potential for instability
always exists. Instabilities can be driven by the pres-
sure gradient or the net current in the plasma.

e The pressure gradient is destabilizing when the cen-
ter of curvature of the magnetic-field lines, &

=b-Vb with b=B/ B, is in the direction of higher
pressure (bad curvature) and stabilizing when the
curvature has the opposite sign (good curvature).

e Stability calculations can be done by preserving the
constraints of an ideal, dissipationless, plasma evolu-
tion, which prevent islands from opening but give
singular currents, or by keeping smooth current dis-
tributions, which allow islands to open. Through lin-
ear order in the perturbation theory, there is no dis-
tinction in these two types of analyses except near
rational surfaces t=n/m. However, the ideal analysis
always predicts greater stability.

A magnetically confined plasma always has the ther-
modynamic free energy that is required for instability.
The maximum entropy state of the charged particles
that form a plasma is a Gibbs distribution, exp(—-H/T),
but the particle energy H =%mv2+qCI> is independent of

the magnetic field B(x). A plasma that is carrying a cur-
rent cannot be in a Gibbs distribution and therefore al-
ways has thermodynamic free energy. The stability of
current-carrying plasmas depends on the existence of
constraints on the plasma motion that prevent the re-
duction in the free energy.
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The free energy that is available for instabilities al-
lows toroidal plasmas to spontaneously break their sym-
metry by kinking. This kinking is driven by the gradients
in the parallel current distribution, k = wj,/ B, and in the
pressure. Both drives limit the achievable plasma beta
(ITER Physics Expert Group on Disruptions, Plasma
Control, and MHD et al, 1999). Books by Bateman
(1978) and Freidberg (1987) discuss plasma stability un-
der the assumptions of ideal magnetohydrodynamics
(MHD), which means in the absence of dissipative ef-
fects.

Instabilities driven by the gradient in the parallel cur-
rent distribution, d(j,/ B)/di,, limit the magnitude of the
poloidal magnetic field or more precisely the rotational
transform, and both equilibrium and stability limits in-
volve the strength of the poloidal magnetic field.

The pressure limit due to plasma stability for a toka-
mak plasma is approximated with remarkable success,
even for highly shaped plasmas, by the Troyon limit
(Troyon and Gruber, 1985). The volume-averaged g
=2uyp/B? can be no greater than

_Bamo I

= 0
104maB’ 70

B

where [ is the net toroidal current and a is the half-width
of the plasma in the Z=0 plane. The Troyon coefficient,
also called beta normal, is a number which is 8,~3 in
somewhat optimized plasmas but can be a factor of 2
larger. The results of tokamak experiments are often ex-
pressed by giving the 3, that was achieved.

The stability of a plasma to a pressure gradient is
largely determined by the relative orientation of the

pressure gradient ﬁp and the curvature of the magnetic

field lines, k= b- VVS, where h=B/B is a unit vector
along the magnetic field. For example, the curvature of a

circular line l;:@(go) of (R,¢,Z) cylindrical coordinates
is k=—R/R. The pressure gradient directly enters the
energy change due to a displacement é of an equilibrium
plasma through —f(é-ﬁp)(g- K)d*x [Eq. (92)]. Good cur-

vature means k-Vp<0 and bad curvature means «-Vp
>0. Good curvature is stabilizing because that geometry
compresses plasma motion down the pressure gradient.
Unfortunately, topology implies the field-line curvature
must be bad somewhere on a toroidal magnetic surface,
and pressure-driven instabilities localize in these places.
Localization is stabilizing because it implies a bending of
the magnetic field. If the bad curvature regions are suf-
ficiently localized, the pressure gradient does not desta-
bilize the equilibrium.

If the plasma is assumed to be ideal, which means zero
resistivity, then the evolution equations for the magnetic
field imply the rotational transform ¢ is a time-
independent function of ;. In the presence of a pertur-
bation, this assumption generally leads to a singular net

plasma current, ,uuf,,et:ké with B-Vk=0. One can avoid
a singular net current by assuming that the distribution
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of net current k(¢,) is independent of time instead of
(). The assumption of a fixed net current is a resistive
stability analysis.

Remarkably, linear perturbation theory makes no dis-
tinction between an ideal analysis, ¢(¢;) independent of
time, and a resistive analysis, k(¢,) independent of time,
except at resonant rational surfaces, t=n/m. In an ideal
analysis a singular current arises at resonant rational sur-
faces and in a resistive analysis an island opens. Away
from resonant rational surfaces, the change in the rota-
tional transform scales as the amplitude of the magnetic
perturbation squared and, therefore, cannot enter a lin-
ear stability analysis. To see this consider the perturbed
field-line Hamiltonian ,= pr(d/,)+ iy cos(np—m6). One
can solve for the magnetic-field lines to second order in
the perturbation ¢; and find that the rotational trans-
form is changed by an amount

n
AL(lﬂ[):ﬂ{i(;d_ﬁ)_,_mL—]z}’ (71)
4 \dy\n—umdy,) (n-un)
where '=d*u/ dz//lz. The perturbation ¢ is linear in the
perturbation amplitude for a sufficiently small perturba-
tion, so A is quadratic in the perturbation amplitude
where n—un is nonzero.

1. Current-driven instabilities

e The strongest effect of the net plasma current on
stability is near the rational surfaces, t=n/m. Defin-
ing a helical flux by dy;,=(.—n/m)dy,, a gradient in
the net current is stabilizing if d(j,/ B)/d, is positive
and destabilizing if d(j,/B)/d;, is negative.

e Only perturbations with low poloidal mode number
m can be driven unstable by the net plasma current.
These instabilities are called kinks.

e A current density proportional to a Dirac delta func-
tion generally arises on the rational surfaces, ¢
=n/m, in the presence of perturbations that conserve
the constraints of an ideal, dissipationless, plasma.
The amplitude of these delta-function currents is
proportional to the jump in the resonant Fourier
term of the radial displacement of the plasma,

The stability properties of a force-free equilibrium,
V X B=k(i)B, illustrates the effect of the distribution of
net plasma current k(i) on plasma stability. The funda-
mental results are that the net current affects stability
primarily through the gradient dk/dy, Near a rational

surface v=n/m the gradient of the net current distribu-
tion enters through the quantity

m dk

n—umdi,

(72)

which is destabilizing when positive and stabilizing when
negative. In other words, plasma stability is extremely
sensitive to the gradient in the current distribution k
= ugjy/ B near rational surfaces, but the effect on stabil-
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ity of the gradient is opposite on the two sides of the
rational surface. For example, in a tokamak, a low-order
rational surface just outside the plasma is very destabi-
lizing because dk/dy, is negative near the plasma edge
while ¢ is positive but becoming smaller, dv/dy;<0. The
destabilizing effect of the current gradient is obtained on
the plasma side of the rational surface, but there is no
current to provide a stabilizing effect on the opposite
side of the rational surface. This instability, which is
called an external kink, is particularly pronounced when
g=1/¢1s just above an integer at the plasma edge.

The stability of force-free equilibria is very sensitive
to the gradient of the current distribution k due to the
properties of the magnetic differential equation B-Vk
=0, which must hold for both the perturbed and the un-
perturbed equilibrium. In the perturbed equilibrium, k&
=ko(p,) + 6k and (§0+ 6§)-€k=0. The unperturbed equi-
librium is V Xéozko(://,)éo, and the magnetic perturba-
tion is given by VX &B=B,ok+kedB, where B-Vok
~—5B- ﬁko. That is, 6k is given by a magnetic differential
equation and is proportional to dk,/di,. The perturbed
current distribution Sk can become very large near a
resonant rational surface, «1/(n—wun), because of the
properties of the magnetic differential equation. The
largeness of ok is what allows unstable perturbations to
exist.

Instabilities due to the gradient in the net current are
driven by the parallel part of the perturbed vector po-
tential, 515“5(5-52)5 with b=B/B. This is proven by
noting that the three independent components of any
vector, including the perturbed vector potential, can be
written at each spatial point as 6/1:(5/1 B/ B)é
+0A ¢6¢,+€5g. If one chooses a gauge in which
B-Vé&g=0, then JAz=58A; and OB -Vky(y)=(V
X55|,)-€k0. This representation of SA must be used
with care. Given a change in the poloidal flux, oy,
=— 45514-{-((9)?/ dep)de, the change in the toroidal flux, dy,

:45515-(6')?/ d20)d#, is constrained if &g is a single-valued
function of € and ¢. One can satisfy the constraint
B- §5g=0 and have arbitrary changes in the poloidal and
toroidal fluxes if 8g has the form 8g=(6—tp)A(i,).

The stability of force-free equilibria can be studied
with greater simplicity when the aspect ratio is very
large, R,/r—o. In a large-aspect-ratio torus with circu-
lar magnetic surfaces, one can let ¢=z/R, replace the
unit vector ¢ by Z, and describe the magnetic field using
(r,0,z) cylindrical coordinates, }§=BO[2 +u(r)(r/R,) é],
where the rotational transform ¢ is assumed to be of
order unity. The toroidal flux is ,=7Byr?>. The impor-
tant part of the perturbed vector potential is the parallel
component, &i:b‘A”zA, so OB :€5A“X2. If the parallel
component of the vector potential is written as JA,

:Au(r,t)sin(n¢—m0), then
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R dk
o M54, (73)

6k =
rBon —um dr

and the equation VX 8B= 5k1§0 is

La(dA) wh Ko m_dky; g,
rdr\’ dr 2 rn—wmdr "

The rotational transform and the current distribution
are related by

ldrz(b -1,)

= Rk, 75)

where ¢,(r) is the rotational transform of the vacuum, or
current-free, magnetic field. In a tokamalk, ¢, is zero, but
it is nonzero in a stellarator.

Externally driven currents are required to perturb the
plasma, but it is mathematically simpler to view these as
lying just outside the plasma. To understand the need for
externally driven currents, note that solutions to Eq. (74)
should be well behaved as r— 0, which leaves only one
free boundary condition. The solution to Eq. (74) out-

side of the plasma, r>a, is A, 1/r" with the assumption
that there are no perturbing currents away from the
plasma boundary. The matching condition at the plasma

boundary at r=a is that A, be continuous. However, the

radial derivative of A, cannot also be made continuous,
for that would be a second boundary condition. The

jump in the derivative, which is denoted by [dA,/dr],
gives the current that must be externally driven at the
edge of the plasma to produce the magnetic perturba-
tion.

The stability of a magnetic perturbation to a plasma is
determined by the sign of the power that is needed to
drive the current on the plasma surface that supports the
perturbation. Positive power means stability and nega-
tive power instability. The surface current that is re-
quired to support the perturbation is

I8A, }

ar (76)

5= olr- a)i[
Mo
where it is assumed that there are no currents outside of
the plasma surface, 8A,%(a/r)™ for r>a. This follows
from Ampere’s law, V25A,=—u,&j,. The power per unit
length in z that is needed to drive the magnetic pertur-
bation is

wa ¢9AH (914”
pa=- 0 L, (17)
Mo ot or

where the quantities are to be evaluated at r=a. To
prove this, note that the power per unit volume going
into the electromagnetic fields is -E -5]?. The electric
field associated with the magnetic perturbation SB=V
X (8A,2) is obtained using Faraday’s law, E =—Z7d8A,/ o,
which implies Eq. (77). In the absence of a plasma, AH
= A(0)(r/a)™ for r<a and A;=A(r)(a/r)™ for r>a, which
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requires a power p,=(mm/uy)dA*/dt per unit length,
which is positive as one would expect. To make the
power p, negative and obtain an instability,

(PA,/r*)/ A, must be negative in some part of the

plasma. The condition that (#A4,/dr?)/ A, be negative im-
plies the stability properties of the current-driven modes
given in the discussion of Eq. (72) and that only pertur-
bations with low values of m can be unstable.

The restriction of current-driven modes to low mode
numbers comes from the stabilizing effect of the term

m*A,/r" in Eq. (74), which tends to make (4,/dr?)/ A,
positive. Although current-driven instabilities must be
low m, pressure-driven perturbations have comparable
stability properties at all m. The dominant drive for
pressure-driven instabilities is the Pfirsch-Schliiter cur-
rent that arises in the perturbed plasma state. The desta-
bilization of short-wavelength perturbations by the pres-
sure gradient is discussed in Sec. V.C.2 on ballooning
modes.

In a tokamak the vacuum transform ¢, vanishes, and a
very simple solution to Egs. (74) and (75) exists for any
ko(r) when m=1. This solution is &8A;=[ur)
—n]rAsin(n¢—60) where A is a constant. Define r, by
«(r,)=n. In an ideal stability analysis, the general m=1
solution for »<<r, can be matched to an external solution

A”—O for r>r,. The matching gives a strong surface cur-

rent, ,u(]]z_né)‘(r r,)(dInd/dlnr), A This m=1 pertur-
bation is called a sawtooth msmbzlzty, which in a simple
analysis has zero growth rate without plasma dissipation
and an infinite growth rate with dissipation. The rota-
tional transform in the center of a tokamak whose cur-
rent is maintained by a loop voltage tends to rise until it
exceeds unity. After the central transform exceeds unity,
strong m=1, n=1 kinklike relaxation oscillations occur
that maintain the central transform just above, but close
to, unity. These relaxation oscillations are called saw-
teeth due their appearance on electron temperature di-
agnostics where they were first observed. Reviews on
the m=1 mode have been written by Migliuolo (1993)
and Hastie (1997).

The location of the resonant rational surface, u«(r,,,)
=n/m, is a special radial position in the differential
equation for AH [Eq. (74)]. In ideal theory an island must
be avoided, which means 5§-f:—(m/r)/~lu cos(no—mo)
must vanish there. The surface current that arises on the
resonant surface in an ideal analysis to prevent an island
from opening is given by Eq. (76) with a replaced by r,,),.
The relaxation of this current dissipates energy and al-
lows an island to open.

A jump in the resonant component of a radial dis-

placement, & Vi, is the signature of a singular surface
current on a rational surface t=n/m in an ideal pertur-
bation analysis. The demonstration is easiest in a large-
aspect-ratio torus. The perturbed parallel component of
the vector potential A, can be replaced by the radial
component of the displacement,
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SA. (78)

The radial component means é-f, where 7=Vr. The re-
lation between §, and JA; is proven using 5B,:§0-€§,,
which follows from 8B=V X (.;E X éo), Eq. (46), and B,

= é-VﬁAH, which follows from §B=V A, X Z. The current
flowing on a rational surface, r=r,,,, Eq. (76), can then
be written in terms of the jump in the radial displace-
ment,

- rmn)[gr]‘ (79)

Much of the theory of instabilities in a cylinder, in-
cluding the existence of jumps in the radial displace-
ment, was developed by Newcomb (1960). Alan Glasser
in unpublished work during the 1990s extended New-
comb’s results to general axisymmetric equilibria. Glass-
er’s work can be easily generalized so it applies to
plasma equilibria with arbitrary scalar pressure
(Nithrenberg and Boozer, 2003).

2. Resistive stability

e The stability of a plasma with nonzero resisitivity can
be tested by considering the perturbation driven by a
delta-function current on a rational surface. If this

current increases when power is removed, [ i -Edx
>0, then the plasma is unstable to the formation of
an island with a width that increases linearly in time.
Such instabilities are called tearing modes.

e The stability of a plasma to perturbations that are
sufficiently slow for all current perturbations to relax
can be tested by making the distribution of the force-
free current a time-independent function of the tor-
oidal magnetic flux ¢,.

In the presence of a perturbation, a resonant surface
current naturally arises on each resonant surface, which
means a current density that is proportional to (¢
—n/m)cos(ng—m6). The relaxation of this singular cur-
rent density due to plasma resistivity leads to an island
and potentially to a resistive instability. The paper that
sparked research on resisitive instabilities is that of
Furth, Killeen, and Rosenbluth (1963).

Magnetic islands are produced by the resonant part of
the perturbed parallel component of the vector poten-
tial. That is,

3B-Vy, J5A H/B aéA”/B

- Mo (lr/,l) 5 (80)

= Mo (‘/’1)
3.V

with (¢;,0,¢) magnetic coordinates in which B has a
simple covariant representation [Eq. (58)]. A resonant

Fourier term in 5§-€wt/ é-ﬁ@, Eq. (14), is related to the
half-width of an island by Eq. (16). The derivation of Eq.
(80) is straightforward, using the representation for the

perturbed vector potential SA= (6Ap/ B)l§ +0A lﬁ W,
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+€8g with the gauge dg chosen so dA4;=5Ap and using
Eq. (58) for B in EAH=(5AH/B)I§. One can easily show
that a change in the gauge does not affect the resonant
components of Eq. (80).

The rate of growth of an island can be calculated us-
ing a Rutherford (1973) analysis. The component of
Ohm’ law along the resonant magnetic-field line, ¢
=n/m, is Ej=—3d0A,/dt=nJdj,. As the island grows the
force-free current near the rational surface flows on the
magnetic surfaces of the island, so the width of the cur-
rent channel J is proportional to the width of the mag-
netic island. For a slowly growing island, one can find
the correct current distribution by solving the induction
equation (Boozer, 1984a). Ampere’s law, u,dj,=—V2354,,
implies that the width & of a narrow current channel
can be defined by &j=—2A"6A,/(uydg), with

1| oA
A= —[—} (81)
A, ar

The width of the island and the current channel are pro-
portional to \|4|, so 63x|A,|, and

dé

LR _ T pr, (82)

dt
If A’>0, the width of the island grows until the current
singularity disappears, that is, A’ —0.
In the limit of a resistive analysis with no singular

currents, both A; and dA,/dr must be continuous. The
singularity of the right-hand side of the differential

equation for AH, Eq. (74), is sufficiently weak that one
can integrate straight through, even numerically, without

real difficulty, which makes both A, and JA,/dr continu-
ous. Said more precisely, the solution to f'=fx/(x>+ &) is
well behaved in the limit as 6—0. Because the relax-
ation of the singular currents that arise in an ideal analy-
sis always takes energy from the field, a perturbation
always takes more energy to drive, and is therefore
more stable, in an ideal than in a resistive analysis.

3. Robustness of magnetic surfaces

e Plasma rotation prevents an arbitrarily small exter-
nal perturbation from opening a magnetic island in-
side a plasma.

e The pressure-driven net parallel current, which is
called the bootstrap current, can make an otherwise
stable plasma unstable to the opening of an island.
This instability is called the neoclassical tearing
mode.

An arbitrarily small external magnetic perturbation
cannot force an island to open in a rotating plasma (Fitz-
patrick and Hender, 1991). To understand why, we must
first understand the equations for plasma rotation. The
force balance equation of an ion species is mny-Vv
+Vp,=qn,(E+vXB). If the plasma is rotating slowly
compared to the thermal speed, \T/m;, but rapidly com-
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pared to the ion diamagnetic speed, |Vp;/qn;B|, ion force
balance is approximated by E+v X B=0 with the electric
field given by a potential, E=-V®. The magnitude of
the diamagnetic speed is |€pi/cﬁ ~(pi/a)NT/m;. The
ion gyroradius is p;=(m;/gB)VT/m; with p;/a=1/500
under fusion conditions. The equation JXE:&D, plus
the requirement that a steady flow be divergence-free,

lead to two magnetic differential equations, B-V&=0

and é-ﬁ(wﬁB)zﬁ(VhJ X I§/B2). These equations act as
constraints on the two independent directions of plasma
rotation, poloidal and toroidal. Plasma rotation is deter-
mined by two functions that depend on only ¢,. These
functions are ®(¢,) and the solution to the homogeneous

equation B-V(v;/B)=0. The equation B-V®=0 holds
under very general conditions because of the ease with
which electrons flow along the magnetic-field lines. If
the magnetic surfaces are good and the rotation is slow
compared to the ion thermal speed, the electric potential
is accurately given by a function of the toroidal flux
alone, ® ().

Even a small stationary island forces one component
of the plasma rotation to be zero; only rotation parallel
to the resonant field lines is allowed. On the outermost
surface of an island, the separatrix, Fig. 2, the magnetic

differential equation B-Vd=0 forces d®/d ¥, to be zero.
This follows from the general result discussed at the end
of Sec. III.A that in the vicinity of an arbitrarily small

island any function ® that satisfies B-V®=0 can only
have a nonzero derivative relative to the helical flux,
which is defined by dyy,=(t—n/m)dy,. Without the is-
land @ can be an arbitrary function of ,.

The zeroing of a component of rotation on a surface,
which is required if an island is to exist, requires a
torque. If an external magnetic perturbation is not
strong enough to transport this torque to the current

that produces the perturbation, 6B, then an island can-
not open. The z component of that torque, 7, is associ-
ated with toroidal rotation. From the plasma perspec-
tive, any external magnetic perturbation in a tokamak
can be viewed as being created by a surface current that
flows in a thin axisymmetric surface that surrounds the
plasma. Torque balance between the plasma and the
perturbing external current allows an exact calculation

of the total electromagnetic torque, [x X (]?X B)d’x, that
the perturbation exerts within the plasma, by carrying
out an integral over the external current-carrying sur-
face. The z component of the torque is

1 + N
T.=—® R[B,]- @3B, da. (83)

Mo J surf
Here 61% is the field produced by currents internal to the
plasma. 6B, is the external magnetic perturbation, and
[6B,] is its jump across the current-carrying layer that
represents the external current that produces 6B,. Equa-
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tion (83) is derived by noting that the surface current
that flows in the current-carrying layer is &fs=ﬁ
X [5§x]/ Mo, Where 71 is the normal to the surface, and the
force per unit area in the torodial direction is (5;5
X 552) -@. The torque that can be exerted by the current-
carrying layer has an upper limit. Since Sl;’i for a stable

plasma is proportional to the external perturbation 6B,
(Sec. V.D.2), the maximum torque scales as (5B,)>. If the
torque that is required to introduce an island is greater
than this limit, then the island cannot open. Equation
(83) also contains the essence of the phenomenon of the
torque on a plasma due to a magnetic-field error becom-
ing much larger as a plasma approaches marginal stabil-
ity. This is because the ratio 6B;/ 6B, becomes large as
marginal stability is approached (Sec. V.D.2).

How does the torque that an island induces prevent
the island from opening? For simplicity assume the

plasma pressure is zero; then the force balance is fv,»s
:Bf X é, where ]?W-S is the viscous force exerted by the
plasma. The parallel current obeys §-€(5j||/B):—€-(§

X f..s/ B?). To prevent an external magnetic perturbation,
such as that of Eq. (14), from opening an island, the
parallel current must have the form /B
=k, (,)cos(no—mé,,) so it can cancel the perturbing field
on the rational surface. Without the viscous force this
current can only flow on the rational surface v=n/m,
which means k,(¢,) must be a delta function. With a vis-
cous force, (n—um)k,(4,) is given by the resonant Fou-
rier component of V-(B Xf,,/B?). Since (n—un) van-
ishes at the rational surface, even a small viscous force
can spread out and also maintain the current that is re-
quired to prevent an island from opening.

If a plasma is initially confined on perfect magnetic
surfaces, then it is a complicated question whether sur-
faces will split forming islands due to either instabilities
or small external perturbations. Rotational shielding of
islands, which we discussed earlier, is only one example
of several important effects. In the modern literature,
these effects are primarily discussed under the topic of
neoclassical tearing modes; see, for example, Rosenberg
et al. (2002).

A neoclassical tearing mode causes a magnetic island
to open through the formation of a strong gradient in
the net plasma current near a rational surface. An island
removes the pressure gradient near its resonant rational
surface (Sec. III.A), and zeros the bootstrap current,
which is a net parallel current due to the pressure gradi-
ent [Eq. (220)]. The zeroing of the bootstrap current in
the vicinity of the rational surface produces a large gra-
dient d(j,/B)/dyy, which is of the same sign on both
sides of the rational surface, where diyy,=(v—n/m)diy,.
Depending on the relative signs of the bootstrap current
and d./di,, this effect either strongly favors, or mitigates
against, the formation of an island (Sec. V.B.1). In a to-
kamak with ¢ peaked on axis, the formation of an island
is favored.
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Magnetic surface quality does seem to have some hys-
teresis: good surfaces tend to stay good and surfaces
split by islands tend to stay split by islands. The preser-
vation of magnetic surfaces is an important design and
operational consideration in both tokamaks and stellara-
tors.

In tokamaks instability can lead to a catastrophic loss
of surfaces, which is called a disruption (ITER Physics
Expert Group on Disruptions, ..., 1999). Disruption
avoidance is critical to the success of magnetic fusion.
Stellarators are far more immune to disruptions. There
are two reasons for this. First, the free energy in a stel-
larator equilibrium tends to be smaller because of the
contribution of the vacuum magnetic field to the rota-
tional transform. Second, the vacuum field in a stellar-
ator strongly centers the plasma in its surrounding
chamber. In a tokamak the plasma is centered in its
chamber by a vertical, z-directed, magnetic field. The
toroidal current that provides the poloidal field in a to-

kamak produces a self-force in the R direction, which is
called the hoop stress. This must be balanced by the
force of interaction with a vertical field. Changes in the
plasma equilibrium cause a change in the plasma posi-
tion, which may result in the plasma’s striking the cham-
ber walls, with a rapid loss of the plasma energy and
current. Such an event in a power plant could cause se-
vere damage to the walls.

C. Stability analyses

¢ Instability of an equilibrium can be demonstrated by

finding a plasma displacement g(f) that reduces the
energy W of the magnetic field and the plasma [Eq.
(42)].

e The two components of the plasma displacement
that lie in a magnetic surface can be expressed in

terms of the radial displacement, &= g-V://,, for dis-
placements that minimize the energy W.

e The change in the energy 6W produced by a plasma
displacement is a quadratic operator on &’ for per-
turbations that minimize the energy W.

The theory of long-wavelength plasma stability is
closely related to the theory of equilibria. Equilibria can
be found by minimizing the energy, Eq. (43), while im-
posing either torodial symmetry for tokamaks or period-
icity for stellarators, X(i,60,0+27/N,)=x(4;,0,¢),
where N, is the number of periods. These equilibria are
unstable if the energy can be lowered by a more general
shape function x(i;,, 0, ¢). Mathematically, equilibria are
extrema and stable equilibria are minima of the energy
(Lundquist, 1951; Bernstein et al, 1958). The long-
wavelength instabilities found by minimizing the energy
are called magnetohydrodynamic (MHD) instabilities as
distinct from the microinstabilities that have a wave-
length comparable to an ion gyroradius.
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1. Expressions for oW

If x, (4, 0, ¢) gives the shape of the magnetic surfaces
in an equilibrium plasma, the stability of that equilib-
rium can be tested by considering the shape function
X(,,0,0)=x,(14,,0, go)+§ with 5 a small perturbing dis-
placement. The displacement causes a change in the
magnetic field, Eq. (46), and a change in the pressure,
Eq. (47). The change in the energy, Eq. (42), due to a
small change from equilibrium, Eq. (43), is quadratic in
the displacement and given by

1 = o p 7 o 2
oW = — (Vép— 8 X B—jX 6B)-&d’x,  (84)

plasma

with 5; =V X B/ Mo- The integral is over the volume oc-

cupied by the plasma, for outside the plasma dp, 5]?, and
J are zero. The factor of 2 arises from the force operator

F¢]=Vép-
the displacement 5 Partial integrations demonstrate that
the force operator has the 1mportant property of bemg
self-adjoint, [ & F&]d3x = [ & F1&]d%x, where & and &
are two arbitrary displacements (Bernstein et al., 1958;
Bernstein, 1983). This implies that if the displacement is
expanded in a set of vectors, § Zcu;, then oW
=S¢, W,,c, where W;; is a Hermitian matrix

As shown below, Eq (84) for W can be written as the
sum of a vacuum energy and a plasma energy (Bernstein
et al., 1958),

(S]?XB?— X 5B being linearly dependent on

/’

SW =W, + 6W,,. (85)
The vacuum energy is

5B)?
W, = (9B) d’x, (86)
2
ext 0

with the integral performed over the region exterior to
the plasma. The plasma contribution is

1 - -
W, = (wﬁ +ow(V §)2>d3x, (87)
plasma
where
(5&)2 1- - - = 1- - -
We = 210 + E(V €& -Vp) - Efi - (j X 6B)

(88)

has no dependence on the parallel part of the displace-
ment, &= (5-5)13, where b=B/B. Equation (87) implies
that to minimize 6W one should choose the parallel

component of the displacement so that 6-520.
The derivation of Egs. (85)—(88) is given in this para-
graph, which can be skipped. The derivation follows

from noting that the term (5]?>< é)é in W can be inte-
grated over all of space since 5]?:0 outside of the
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plasma. One finds that [(&X B)-&d®x=—[(5B)*d®x/ o,
where the last volume integral is over all of space. Using
Eq. (47),
EVOp=—EVE TP -V (V- + (V-
(89)

Using Eq. (46) one can easily show 5§'€p:§-€(§-€p),
which implies §‘|-(,?>< 5§):—5‘-€(§-€p). The integral
over the plasma volume of a pure divergence vanishes
because the plasma pressure and pressure gradient van-
ish at the plasma edge.

Equation (88) for w; can be rewritten (Furth er al.,
1965) as

We =Wt W, (90)
where
(6B,)? B?
W, =t ——(V £, +2£, - Q> (91)
2pug  2pg

is always positive but the term

W, =- ]“<§i><B> SB, — (£, -RE -Vp)  (92)

has an indefinite sign. The curvature of the magnetic-
field lines is

k=b-Vb, (93)

where h=B/B.

The derivation of Egs. (90)—(92), which is given in this
paragraph and can be skipped, follows from an expres-
sion for the parallel component of the perturbed mag-
netic field,

B-0B=—(V-£& +2& - OB+ uoé, - Vp. (94)
The derivation of this identity uses the vector identity
B- V><(gl><13)——§l {(VxB)xB} V-(B%)) plus Am-

pere’s law, VX B= ,u(l], and force balance Vp ]><B

Force balance plus Ampere’s law imply \ L(B%+2u0p)
=2B%k. Combining results one obtains Eq. (94). The
identity of Eq. (94) can be written in a second form,
which is

(B)*> , B? £ - 1. -
=N’ + 8B, ~=(£,-Vp)A,  (95)
ZILLO 2,&0 ZB 2
where
A=V-& +2¢ - k. (96)

The last term in Eq. (88) for w, can be rewritten using
the fact that the vector triple product in three dimen-
sions is nonzero only when one of the vectors comes
from each of the three independent directions. Conse-

quently EL'(;X 5§):§L'(;H X 5§i)+§i'(fi X 5é||), which
can be rewritten as él-(fx 61?’):(;‘H/B)(‘>‘}§’l-(g?L X B)
+(6By/B)&, - Vp.
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A minimization of 6W is really a minimization of a

quadratic functional of &= 5‘61,0; that involves radial
derivatives only up to the first order. If the perturbing
displacement is written as

- waf ox >
E=¢ 0_1//+7759+’“B’ (97)

then the only place the coefficient u(i, 6, ¢) enters W is
in the positive definite term involving (6-5)2. A minimi-
zation of W makes V*E:o, which is a magnetic differ-

ential equation for u in terms of the % and &’ coeffi-
cients.

The 7 coefficient of 5 can be expressed in terms of &
for perturbations that minimize SW. A perturbation that
minimizes SW must give a perturbed equilibrium, and in

a perturbed equilbrium the current, f +V X 8B/ Mo, must
be orthogonal to the toroidal flux. At a given spatial
point the perturbation causes the toroidal flux to go
from ¢, to wl—é -V, which follows from du,/dt

=a¢t/at+(a§/at)-€¢, and the constraint that di,/dt=0 in
an ideal plasma. See the discussion of Eq. (45). There-
fore W minimizing perturbations obey the constraint
5-61&,:}6(& '€¢,), where 5;56 X 5§/M0- Now
f~€(é -W,) :6-[(§L‘6¢,)ﬂ. The normal to the surface is
ﬁEViﬁ,/N:ﬂA, so one can write j=AX(jXA) and
(&€, -Vi)j=Vi,X[(jXA)E, -A]. This implies j-V(&, - Vi)
==V VX[(jXn)¢&, -a]. Letting

C= 6B+ (&, A)ug X ) (98)
one finds that

(VXC)-Vig=V-(CXVi)=0 (99)

is the condition for the current in the perturbed equilib-
rium to lie in the perturbed flux surfaces. This constraint
can be imposed ¢, surface by ¢, surface, since the only
derivatives that arise are in 6 and ¢. The two constraints
V-£=0 and Eq. (99) determine both w(i;,6,¢) and
77('/’;» 0’ (P) iIl terms Of glp(l/jla 09 (P)

The constraint that (ﬁx é)-ﬁwt:O must vanish for a
6W minimizing perturbation can be obtained directly
from the energy principle if w, is written as

?
We = — =Wy, (100)
S 2w

where wdE(g-ﬁ)z(fX 7)-(B- V)i (Bernstein et al., 1958;
Bernstein, 1983). For a divergence-free perturbation the
only place the coefficient 7 enters the energy is through

C and there it enters only through SB. The contravari-
ant representation of the magnetic field in magnetic co-
ordinates, Eq (52), plus the dual relations 1mply

(ax/ aB)XB Vz//l/27r Consequently the part of C that
depends on 7 is C =V X (an/,)/ 2. The minimization of
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[C2d3x 20{C-V
X(énﬁwt)/ 2m}d’x. An integration by parts then gives
the desired result.

through the variation &7 gives

2. Pressure-driven ballooning modes

e Perturbations of arbitrarily large wave number can
be destabilized by a pressure gradient that is in the
same direction as the field-line curvature. These in-
stabilities are called ballooning modes since they bal-
loon out, that is, they have their largest amplitude at
the least stable place on a constant-pressure surface.

e Plasma instabilities that have a high wave number
have a short wavelength in the constant-pressure sur-
faces across the magnetic-field lines but a long wave-
length along the magnetic-field lines. For ballooning
modes this anisotropy arises to minimize the stabiliz-
ing effect of field-line bending. For microinstabilities
(Sec. VL.F), the anisotropy arises to avoid stabiliza-
tion by Landau damping (Sec. VI.C).

The expression for 6W is greatly simplified when the
perturbations that are considered have a short wave-
length across the magnetic-field lines. Such instabilities
are called ballooning modes (Todd et al., 1977; Connor,
Hastie, and Taylor, 1978). Despite their short wave-
length across the magnetic-field lines, the least stable
perturbations of this type have a long wavelength along
the magnetic field. These disparate scales can be effi-
ciently represented using a concept from geometric op-

tics, the eikonal S(«), which satisfies B-VS=0. Let

£, = E cos(S(a)), (101)
where « is a Clebsch coordinate [Eq. (9)]. For
ballooning-mode calculations it is conventional to

choose the Clebsch coordinates so é:ﬁaxﬁwp, where
i, is the poloidal magnetic flux and

2ma= ¢ = Q(¢p){9m - HO(ljlp)}a (102)
with g(¢,)=1/u4p,) =d,/di, the safety factor. The ei-
konal § could be a function of both « and #,, but this
provides no generality beyond that in the function
60o(14,). The eikonal can be written as

S=27nNa, (103)
where N is the toroidal mode number of the perturba-
tion. The short-wavelength limit means N — . The ex-
pression that one obtains is

oW _J (%a)2<§~€F>2 _dp P (.
(2mN)? 210 B d‘/’p

where the relevant component of the field-line curvature
is

(104)
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E‘éX%d

o (105)

K=
The perpendicular displacement of an unstable pertur-
bation must have the form of Eq. (108), which defines
the function F.

The derivation of the short-wavelength form for 6W is
given in this paragraph and can be skipped for those not
interested in the mathematical details. Using Eq. (101)
for the perpendicular displacement, derivatives of the
displacement enter W, Egs. (90)-(92), through

>

V£ =cos(S)V - E -sin(S)E - VS (106)

and

8B | =cos(S){V X (E X B)},. (107)

Note that 6B=cos(S)V X (E X B) —sin(S){ﬁS X (EL X é)},

but the term {ﬁSX (EL XE)}:—(EL-ﬁS)é does not con-
tribute to the magnetic perturbation perpendicular to
the field lines. When these expressions are inserted into

Egs. (90)-(92), the terms proportional to VS and hence
N appear only in a positive definite term that is propor-

tional to (ﬁé l+2§- x)%. Consequently instability is pos-
sible in the limit as N— only if one chooses é L-ﬁS
=0. By choosing a 1/N correction to é | appropriately,
one can eliminate the positive definite term (65 N

+§- k)? from SW altogether, since no other term is af-
fected in the lowest nontrivial order by the 1/N correc-
tion. The perpendicular displacement for unstable short-
wavelength modes must have the form

. BXVS
1= B2

(108)

since it must be perpendicular to both the magnetic field

and VS. One then finds él X B=FVS and B=VFXVS.
The parallel current term in Eq. (92) vanishes because
(5L X ]§) . 5§l:F€S- (VFX ViS’)zO. As discussed earlier,
the parallel current cannot be a source of instability for
short-wavelength perturbations. The perpendicular part
of the magnetic perturbation is 5B L:(l;-VélL")(BXViS‘)
with b=B/B. Putting the pieces together one obtains
Eq. (104).

The form for 6W for short-wavelength perturbations
implies that unstable modes must have a long wave-
length along the magnetic-field lines in order to mini-
mize the (é-ﬁﬂz term. If one can choose 6, in « so
kdp/dy, is positive, then SW predicts instability if the
variation of F along the field lines is not taken into ac-
count. The (}§-VﬁF)2 term can stabilize the mode in
places where «dp/diy, is positive, but the mode ampli-
tude is naturally larger there. That is, the plasma dis-
placement balloons out at the locations where «xdp/dy,
is positive.
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If the ballooning expression for W is extremized, one
obtains the differential equation

i{@zg.wg} 2% dp

——F=0,
a0 my B* 90) B.vedd,

(109)

where §'§=(§'§G)ﬁ/89 and the Jacobian of (4,,6,a)

coordinates is 1/B-V @ for any poloidal angle 6. Equa-
tion (109) predicts instability if a solution F crosses F
=0 twice. To understand why this prescription works,
note that if one of the F’s in the F? term of Eq. (104) is
replaced by the F from Eq. (109), one finds after an
integration by parts that 6W=0. Now add a term
TAF2d #,dBdal?2 to both sides of the ballooning expres-
sion for SW/(2mN)?, Eq. (104), with A, a constant. Tak-
ing W,/ (2mwN)?=6W/(Q2mwN)*+ [AF*di,d6dal2 to its
extreme, one finds that Eq. (109) is modified by the zero
on the right-hand side becoming A F. One solves this
modified equation. If the solution has two places where
F=0 when A;>0, one replaces an F in the modified
equation, éW,,/(2mwN)?, with the F from the differential
equation. One then finds 6&W,,/(2@N)?’=0, so
SW/(2wN)?*=-[AF?dy,d 6da/2, which is negative. That
is, one has found a perturbation that reduces the energy,
so instability is predicted.

3. Minimization of éW

Given any positive definite normalization of the dis-
placement, ||&, a plasma is unstable if one can find a
displacement such that

_w
1€°]

is negative. The sign of \ is independent of the normal-
ization. However, different normalizations provide dif-
ferent types of information. Three normalizations will
be discussed, the kinetic-energy norm, the £ norm, and
the surface norm.

The conventional normalization of the displacement is
the kinetic-energy norm, ||&,= fp&d>x/2, which makes
\,m the growth rate of the instability. This norm is
poorly behaved when the plasma is stable because then
a minimization of X can mean a maximization of ||&s.
As we have seen, the coefficient u of the displacement,
Eq. (97), is determined by a magnetic differential equa-
tion, which means the Fourier component of u that reso-
nates with a rational surface can be made arbitrarily
large in that neighborhood with little change in 6W.
That is, one can always find a continuum of modes that
makes A — 0 for an essentially fixed W. The existence
of this continuum (Grad, 1973; Goedbloed, 1998) makes
it difficult to find the points of marginal stability. Even in
the unstable region, the displacement that minimizes W
is usually not the perturbation that minimizes . Conse-
quently a minimization of \ using displacements that are

(110)

divergence-free and satisfy (V x é)-§¢t=0 does not give
the correct growth rate for unstable modes.
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The singularity of the displacement é near rational
surfaces is particularly important for the theory of per-
turbations that are rotating relative to the plasma. A
singular plasma displacement rotating through a plasma
gives an infinite correction to the energy. This singularity
can be resolved (Betti and Freidberg, 1995), but at the
cost of an imaginary contribution to the energy, which
represents the torque between the perturbation and the
plasma. Though not noted by Betti and Freidberg
(1995), the resolution of the singularity also changes the
real part of the energy (Boozer, 2003), which implies that
the critical value of the plasma parameters required for
the stability of the perturbation are very sensitive to ro-
tation.

A second choice for the normalization of the displace-
ment is similar to the kinetic energy except only the
component & is retained, [&],=/p(£)?d’x/2. The
quantity A has no special interpretation, but the con-
tinuum problem in finding points of marginal stability is
eliminated.

A third choice of normalization uses & but only its
value on the plasma surface, ||&,=$(£")*wdbde, with
w(0,9) >0 an arbitrary weight function. This normaliza-
tion has pathological features for internal plasma modes,
which have a displacement that reduces the energy while
keeping the plasma boundary fixed. For these modes \
— —o. However, if the minimizing \ is bounded, the dis-
placements &’ of the plasma surface that are associated
with a spectrum of \’s give the modified equilibria of the
plasma in the presence of external perturbations.

An instability with a negative but bounded \ with a
fixed perturbation of the surface shape, the [|£[; norm, is
called an external mode. External modes would be sta-
bilized if a perfect conductor were close enough to the
plasma surface. A magnetic perturbation cannot pen-
etrate a perfect conductor, so the component of the

magnetic-field line displacement é that is normal to the
conductor must vanish. Actual plasmas are surrounded
by chamber walls, which are conductors. An instability
that would be stabilized if these conducting structures
were perfectly conducting is called a wall mode. Wall
modes can grow on the resistive time scale of the con-
ducting structures, which is many orders of magnitude
slower than the growth rate determined by plasma iner-
tia. Due to their slow growth, resistive wall modes can
be stabilized by plasma rotation and by feedback (Sec.
V.D.2). The stabilization of wall modes is considered an
important topic for tokamak and ST plasmas that have
the profile of net current that is required for steady-state
operation.

When one uses a fixed perturbation of the boundary,
the ||&|, norm, the Fourier coefficient of & in magnetic
coordinates can jump at each resonant rational surface,
t=n/m, and the magnitude of the jump gives the magni-
tude of the surface current on the rational surface. Once
the expansion coefficients » and u of the displacement,
Eq. (97), have been eliminated from W in favor of &,
radial derivatives of the displacement arise only in the
form ob/di, where
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SB-Vy,

b=——F—.
B-Vo

(111)

Equation (46), SB=V X (éx éo), implies that b=(d/d¢
+13136,,)€”. 1f one allows the resonant Fourier coeffi-
cient of ¢/, to change by a fixed amount over a distance
oy, about a rational surface t=n/m, the resonant Fou-
rier coefficient of db/dy, has a well-defined limit on each
side of the rational surface as di¢,— 0. One can show that
the jump in the resonant coefficient of & or in db/dy, is
proportional to the surface current on the rational sur-
face (Nuhrenberg and Boozer, 2003). For a large-aspect-
ratio torus, this was shown in the derivation of Eq. (79).
The amplitude of the jumps in & at rational surfaces
gives a measure of the width of the islands that would
open in the absence of a singular current. For a large-
aspect-ratio torus with circular surfaces, i,%r* with r the
minor radius, one can easily show that the half width of
the island that would arise in the absence of the singular
current is

(= \/ ’ 2Lanp ey, |
m

One can use an ideal 6W method to assess and improve
the quality of equilibria and to find the required pertur-
bations to the plasma surface to remove islands
(Niithrenberg and Boozer, 2003).

(112)

D. Interaction of plasmas with coils
e Between the plasma and the surrounding coils, the

magnetic field has the form B=V¢. Since V-B=0,
the interaction of a plasma with currents outside the
plasma must be through solutions to Laplace’s equa-
tion, V2¢=0, which greatly constrains the form of the
interaction.

* Practical coils can control only a certain number Ny
of features of the plasma shape. For axisymmetric
systems Ny~4, but for stellarators Ny~ 50.

e Important long-wavelength instabilities of tokamaks
would be stabilized if the surrounding chamber walls
were perfectly conducting. Such instabilities are
called resistive wall modes since the instabilities can
grow on a time scale determined by the resistivity of
the chamber walls. Their slow growth permits feed-
back stabilization. The interaction of the plasma with
the perturbing currents in walls and in feedback coils
can be calculated by coupled circuit equations. The
plasma circuit elements have a determinate response
to changes in the other circuit elements.

The external coils that are required for the magnetic
confinement of a plasma have two distinct functions.
First, they provide the required toroidal magnetic flux

. Second, they ensure B-7 is zero on the plasma sur-
face. These two functions are separated in tokamak coil
design: the toroidal field coils provide the flux and the
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poloidal field coils ensure B-i=0 (Fig. 4). However, in
stellarators these functions are often coupled in a single
coil set (Fig. 6). Nevertheless, in discussions of the effi-
ciency and practicality of stellarator coils, it is often use-
ful to separate the two functions.

Critical issues in coil design are the ratio of the mag-
netic field at the coils to that on the plasma, the com-
plexity and the forces associated with the required coil
currents, and the production of a field with the required
symmetry while providing for ports, for plasma access,
and for discrete coils.

A point that is often emphasized in the magnetic fu-
sion literature is that, if all else is equal, the power pro-
duced by a fusion plant scales as the square of S
=2uop/B%. A point less frequently made is that, under
the same assumptions as those that give the S scaling,
the power production scales as the fourth power of the
ratio of the magnetic field on the plasma to that on the
coils. If the plasma g is limited, then the optimal plasma
temperature is the one that maximizes the fusion power
production at a fixed plasma pressure p=nT. The power
from the fusion of deuterium and tritium scales as ppr
=n’fp7(T), with n the plasma number density and f, a
function of the plasma temperature. The maximum of
ppr at fixed pressure occurs at d(fpy/T?)/dT=0. This
condition implies that near the optimal temperature,
which is about 20 keV, the fusion power density pp7 is
proportional to the pressure squared, or equivalently, to
B.

Between the coils and the plasma, the magnetic field
is curl-free,

B=Vé, (113)
as well as divergence-free, so
V2¢=0. (114)

The interactions of the coils with the plasma must occur
through solutions to Laplace’s equation, which places
strong constraints on the form of this interaction. Much
of the theory of coil design, such as the work of Merkel
(1987, 1988) on the coil design for the W7-X stellarator,
is an application of the theory of Laplace’s equation.

1. Freedom of coil design

The choice of plasma shape is the major determinant
of the quality of a confined plasma. Unfortunately, the
theory of Laplacians says that a general plasma shape
cannot be supported by distant coils. What can be done,
through the design of coils, is to enforce a certain num-
ber of conditions on the plasma shape. This number,
which is the number of degrees of freedom in the coil
design Ny, is in practice about four for tokamaks and
about 50 for stellarators.

The theory of Laplace’s equation implies that it is
mathematically impossible for a distant coil set to pro-

vide a generic normal magnetic field B-#i on the plasma

surface, even when B-7 is a smooth analytic function.
This statement is proven by giving a generic normal field
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that cannot be produced by distant coils. Consider the
cylindrical problem in which the radial magnetic field
that must be produced by coils, B,(6)=2B,, cos(mb), is
given on the surface r=a. Between the coils and the
plasma the magnetic field obeys Egs. (113) and (114), so
¢=3(aB,,/m)(r/a)™ cos(m6). In general, a maximum
value of r/a exists for which this Fourier series con-
verges, which means there is a maximum value of r/a for
which a solution exists. To find this maximum, consider
the convergence properties of the Fourier coefficients
B,,=[B.(6)cos(mb)dé/ . If B, is an analytic function of
0 this integral can be performed using the method of
residues of complex analysis. If 6, is the distance of the
nearest pole of B,(#) from the real axis, then as m— oo
the Fourier coefficients have the form B,
=B_exp(-m#,). In other words, the Fourier coefficients
of a generic function B,(6) decay exponentially as
m—oo, Now consider the coefficients B,,(r/a)”. As
these coefficients are proportional to
exp{m[In(r/a)-6,]}, which means they diverge exponen-
tially with m if r/a>exp(6,).

Even when distant coils can in principle produce the
required magnetic field on the plasma surface, practical
coils may not exist. Laplace’s equation implies that the
intrinsic difficulty of distant coils is exponentially depen-
dent on the wave number k of the distribution of the
normal magnetic field that they are producing on the
plasma surface. The number of independent distribu-
tions of magnetic field that can be produced by practical
coils is comparable to the number of Fourier compo-
nents of the magnetic potential ¢, Eq. (113), that have a
wave number smaller than some critical value k,,. In a
large-aspect-ratio circular tokamak, k=m/a and the ra-
tio of magnetic field on the coils at r=>b to that on the
plasma at r=a is (b/a)"™ V. For a practical separation
between the coils and the plasma in a fusion power
plant, b/a=1.7, the ratio of the field at the coil to that
on the plasma is five to one for m=4. Practical tokamak
coils can control about four properties of the plasma,
corresponding crudely to the poloidal Fourier harmonics
up to M,,,=4, so tokamak coil designs have four degrees
of freedom, Ny=4. For stellarators the wave number of a
magnetic-field distribution is k=+/(m/a)’+(n/R,)*,
where a is the minor and R, is the major radius of the
torus. To preserve the N,-fold periodicity of the stellar-
ator, the toroidal mode number of a field distribution
must satisfy n=n,N,, where n;, is an integer. Summing
over the possible combinations of m and n;, that satisfy
k<M, /a, one finds that the number of degrees of free-
dom of stellarator coils is

nm — o0

M2
Ny~ 18—,
€

(115)

where the inverse aspect ratio per period of the stellar-
ator €, ENpﬂ/Ro- Typically €,~1/2, so with M,,=4, stel-
larator coils have about 50 degrees of freedom.
Efficient coils for stellarators should exist, since the
number of degrees of freedom in stellarator coil design,
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Ny=50, is larger than the number of shape parameters
N; that are needed to achieve reasonably optimized
plasma shapes. The COILOPT code (Strickler, Berry, and
Hirshman, 2002) tackles this problem directly by varying
parameters that define the coils until a combined opti-
mum is found for the coils and the plasma. However, the
large number of degrees of freedom and the nonlinear-
ity of the optimization process means the design of stel-
larator coils for optimal plasmas is extremely subtle, and
it is important to understand the choices that are made
during this optimization.

The fundamental choices in the optimization of a stel-
larator are those of the plasma shape and the coils. The
optimized plasma shapes, x,(6, ¢), are found using a set
of N, parameters (Niithrenberg et al., 1995; Neilson et al.,
2000). For example, the shape parameters could be the
Fourier coefficients of R,(6,¢) and Z,(60,¢) of a repre-
sentation of the surface in (R, ¢,Z) cylindrical coordi-
nates. The optimization process for the plasma shape
determines N, shape parameters, so plasma optimization
can only determine N; constraints on the coils. Practical
limits exist on the number of shape parameters that can
be determined. These limits arise not only from the in-
creasing difficulty of optimization with additional pa-
rameters, but also from the numerical accuracy of the
codes that determine the physics properties associated
with a given plasma shape. The constraints on the coils
should be chosen to ensure the N, known shape param-
eters have their desired values but with no constraints
imposed for fitting unknown shape parameters. This can
be done by studying the relation between changes in the
plasma shape and small changes in the fields due to the
coils, which is discussed in Sec. V.D.2.

2. Plasma response to coil changes

The relation between perturbations to the plasma
shape and small changes in the magnetic field due to the
coils is important for stellarator coil design, the elimina-
tion of islands due to magnetic-field errors, and the de-
sign of feedback systems for resistive wall modes in to-
kamaks.

A small change in the plasma shape is equivalent to a

normal displacement é -7 of the plasma surface and has a
simple and unique relation to the normal component of
the perturbed magnetic field on the original plasma sur-

face B-#. To prove this, we first note that a tangential
displacement, which means §&-77=0 but ¢#0 with

)ZS(G,cp)—>)?S(6,go)+§(0, ¢), does not change the plasma
shape but does change the (6, ¢) coordinate system that
describes that shape. In an ideal plasma 5§:§(§X é),
Eq. (46), and 61?-61/;;5-6(5-&1#,), which relates éﬁ
and SB-#i since the normal to the plasma surface is 7
=V i/ |V Actually the equation B=V X (£ B) holds
whether or not the magnetic field is embedded in a per-

fectly conducting plasma, provided the rotational trans-
form on the surface is an irrational number. The reason
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is SB=V X 5A. But any vector, including the perturbed
vector potential, can be written in the form 5/}:5 X B
+€5g provided a function 8g(X) exists that satisfies the
magnetic differential equation é-ﬁég:ﬁ SA. This
equation for &g is solvable when the rotational trans-
form ¢ is an irrational number and the perturbation does
not include a loop voltage. A loop voltage was consid-
ered by Liist and Martensen (1960); also see the discus-
sion of Eq. (26). The general validity of SB=V X (5 X é)
on irrational surfaces is another way of stating that the
rotational transform is not changed in linear order by a

perturbation 5 except near a rational surface [Eq. (17)].
Functions of # and ¢, such as the magnetic-field per-

turbation normal to the original plasma surface SB-A,
are conveniently expressed using orthonormal functions.
A set of dimensionless functions fi(#,¢) on the plasma
surface are orthonormal if

ﬂgfif;wda = &,

where w >0 is an arbitrary weight function and da is the
area element of the plasma surface. The normal compo-
nent of the magnetic perturbation on the original plasma
surface is expanded in the f;’s in the form

(116)

5é-ﬁ:wz¢if7. (117)
The expansion coefficients have units of flux
P, = ff; £,6B - iida. (118)

The derivation of the N, constraints on stellarator
coils that are required to fit N; parameters in the plasma
shape illustrates a response analysis. A small change in
each of the N, shape parameters produces a small
change in the plasma shape, which is a normal displace-

ment gs-ﬁ of the plasma surface, and determines a small
change in the normal magnetic field 8I§S~ﬁ. The N func-

tions ﬁs(ﬁ,go)zﬁés-ﬁ can be transformed into a set of
not more than N, orthonormal functions f,(4,¢) by a

Gram-Schmidt process such that any of the 5§S-ﬁ can be
expanded in terms of the f;’s [Eq. (117)]. The constraints

on the coils, ¢f,B-ida=0, then ensure that through lin-
ear order in the field error the N, plasma shape param-
eters are reproduced but with no constraints on the coils
from unknown shape parameters. Good stellarator coils
exist if the N, field distributions that are needed are in
the solution space of the N field distributions that effi-
cient stellarator coils can produce.

In a number of problems involving coils, it is neces-
sary to know the change in the normal magnetic field on

the plasma surface due to the coils, &g’x-ﬁ, that is re-
quired to produce a given normal magnetic field on the

plasma surface, SB-#. The difference between 8B-7 and
5§x-ﬁ is the normal field produced by the perturbed
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plasma current 5I§i-ﬁ. The decomposition of SB-7 into a
part produced by coil currents and a part produced by
internal plasma currents can be carried out if there is
enough information to solve Laplace’s equation for the
magnetic potential ¢ between the plasma and the con-
ducting structures. Two boundary conditions are re-
quired. In a cylinder, a solution to Laplace’s equation
has the form ¢={p;(a/r)"+ ¢, (r/a)"}cos(mb) and
boundary conditions must determine both ¢; which
gives the effect of currents inside the plasma, and ¢,,
which gives the effect of currents outside the plasma.
The response of the plasma to perturbations deter-
mines the relation between the perturbed normal field

due to external current, 5]§x-ﬁ, and the normal field due

to the internal perturbed plasma currents, B; 7. Since
only two boundary conditions are required to determine
a unique solution to Laplace’s equation, any two inde-
pendent pieces of information will suffice. One example
is the relation between the perturbed normal and tan-
gential magnetic-field components. This information is

contained in 8B at the location of the unperturbed
plasma surface. Since JB is continuous at the plasma

surface, but 5§=€¢ outside the plasma, the vector 5B
gives two functions of information on the plasma sur-

face, ¢ and 7i-V¢p=11- 6B, and not three as one might first
assume.

Given a plasma model, a linear relation exists at the
location of the orginal plasma surface between a small
change in the normal component of the magnetic field

produced by external currents 5]§x-ﬁ and the perturbed

normal field 8B-7. This linear relation is conveniently
expressed using matrices. The fluxes that are the expan-
sion coefficients of the perturbed normal field on the

plasma surface form a matrix vector dgzgsf(éé-ﬁ)da.

The matrix vector f has the same functions f(8, ¢) as its
components. Analogously, the fluxes that are the expan-
sion coefficients of the normal field on the plasma sur-
face due to perturbed coil currents form a matrix vector

®,. The linear relation between 5]§x-ﬁ and SB-/i deter-
mines the permeability matrix,
=P D, (119)

The permeability matrix Pisa property of the plasma
and for an ideal plasma can be determined using a 6W

stability code. Once Pis known, it is straightforward to
uniquely relate any small perturbation in the plasma
shape to the change in the normal magnetic field on
plasma surface that is produced by the coils.

Tokamak and stellarator plasmas are particularly sen-
sitive to magnetic perturbations that resonate with low-
order rational surfaces and cause islands to open. The
coils can be modified to eliminate the islands in one
plasma state (Hudson et al., 2002), though error correc-
tion or trim coils may be needed to eliminate islands
over a broad range of plasma states. The issue of islands
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would not exist in a tokamak with perfect axisymmetry,
but it does exist even for an ideal stellarator if the num-
ber of periods is small, N,<6. As the plasma equilib-
rium changes, a magnetic field that was nonresonant can
develop resonant components. However, there are a
relatively small number N, of low-order rational sur-
faces that are consistent with the periodicity of a stellar-
ator. This means that any set of trim coils that obeys the
periodicity of the stellarator and has N, sets of leads can
control the islands provided the matrix between the
fields produced by the trim coils and the resonant fields
is nonsingular. In practice, tokamaks are not precisely
axisymmetric and stellarators are not precisely periodic,
so additional coils may be needed to correct field errors
that break these symmetries.

The information required to determine whether a
given set of trim coils can control the islands of a plasma
equilibrium can be found using an ideal 6W stability
code. As discussed in Sec. V.C.3, perturbations at the
edge of an ideal plasma, g-ﬁ, can cause a jump in E-Vlﬂ[
at the rational surfaces. These jumps imply islands
would open in a resistive plasma with the island width
proportional to the square root of the jump. If there are
N, sets of integers n/m that give the rational numbers
associated with these jumps, then there are N, specific

forms for E-ﬁ on the plasma surface that are propor-
tional to the jumps but otherwise have the smallest pos-

sible amplitude, 56(§-ﬁ)2wda. All other small displace-
ments of the plasma edge cause no jumps and, therefore,

no islands. These N, specific forms for éﬁ on the plasma
surface give N, distributions of normal magnetic field,

5§,-ﬁ=ﬁ-€¢,, and have N, associated perturbed tan-
gential fields on the plasma surface, which give the mag-
netic scalar potentials ¢, there. From the ¢, and the

ﬁ-€¢r, one can construct the N, orthonormal functions
f(0,¢) that give the externally produced fluxes

95f,51§x-ﬁda that control the islands. These fluxes are lin-
early related to the currents in the trim coils. If there are
N, independent sets of trim coils, which means indepen-
dent currents /,, then the fluxes required for island con-

trol obey ¢f,.0B,-Aida=%,M, ], with the mutual induc-
tance matrix M,, an N, X N, matrix. If this matrix has N,
nonzero eigenvalues, the trim coils can control the
island-causing resonances, though practicality requires
that none of the N, eigenvalues be excessively small.

In tokamaks, important kinklike instabilities, the re-
sistive wall modes, can be stabilized by conducting struc-
tures, such as the chamber wall that surrounds the
plasma; see Sec. V.C.3. These instabilities grow on the
resistive time scale of the wall and can be feedback sta-

bilized using external coils. The permeability matrix P
contains all of the plasma information that is needed for
calculating the stability and the feedback of wall modes.
The circuit representation of the plasma that is associ-
ated with the permeability matrix has been used to de-
sign and interpret feedback systems for a number of ma-
jor tokamak experiments (Bialek et al, 2001). Prior to
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the development of the circuit representation of resistive
wall modes, Lazarus, Lister, and Neilson (1990) devel-
oped a closely related theory for the feedback of the
vertical instability of tokamaks. The vertical instability

causes a Z motion of the plasma and limits the degree to
which tokamak plasmas can be shaped to achieve higher
beta operation. A number of groups have developed
methods for studying feedback of resistive wall modes,
starting with the early work of Bishop (1989). Recent
discussions of feedback techniques have been given by
Fitzpatrick (2001), Bondeson et al. (2002), Chance et al.
(2002), and Boozer (2003).

The energy that is required to drive resistive wall
modes comes from the plasma, so a representation of
the effects of the perturbed plasma current on the exter-
nal circuits is critical. Since these effects must be propa-
gated through a solution to Laplace’s equation, the ef-
fects can be represented by the magnetic field normal to
the plasma surface that is produced by the perturbed

currents inside the plasma, 5]§,~-ﬁ. This means the effects
of the perturbed plasma current can be represented by a
surface current flowing on the plasma surface that pro-
duces the same normal field at the location of the unper-
turbed plasma surface as the perturbed plasma current.

A surface current can be represented as a matrix vec-
tor with elements that are discrete currents J;. The nor-
mal field on the surface due to these currents is linear, so
it can be represented using Eq. (118) as a magnetic-flux

matrix vector <f>,=Lp~j. The matrix E[, is called the
plasma inductance and depends only on the geometric
shape and the size of the surface. The surface current
that gives the same normal field on the unperturbed
plasma surface as the perturbed plasma current is

I S
I,=L, - (P-1)-®,. (120)
The representation of a surface current by a matrix vec-

tor J is demonstrated by noting that the current flowing
on a surface ;= has the form

o= 8 = )V & X Vil (121)
This is the most general vector that is divergence-free,

lies in the surface ﬁ-ﬁwt:O, and is zero except in the
surface i,=y,. The current potential (6, ¢) can be ex-
panded in the orthogonal functions, x=J,f/(6,¢). Each

element J; of the matrix vector J has units of amperes
and can be viewed as a current in a circuit. Actually, the
general expression for the current potential (6, ¢) is the
sum of the single-valued current potential 3J;f; plus two
non-single-valued terms. One of these terms is
—0I,/(2), which gives the net toroidal current I in the
surface, and the other is ¢G,/(27), which gives the net
poloidal current G in the surface. The currents /; and
G, are not usually retained in analyses of wall modes.

When the plasma is ideal, the permeability matrix P
has real eigenvalues that are customarily written as —1/s;
(Boozer, 2003). The stability coefficients s; are propor-
tional to the energy required to drive the perturbation
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with a positive s; implying a negative energy. An un-
stable wall mode arises if the matrix P has a negative
eigenvalue, which means a positive s;. The relation be-

tween P and the energy is demonstrated by considering

the power required to drive a perturbing current Jona
surface infinitesimally outside of the plasma. That power

is P,=—[j.- SEd’x. Using Eq. (121), Py=—$x(V
X 8E)-dd. Since 96B/it=-V X SE, the power is P,
=J'-d®/dt. The flux and the current are proportional to

each other, qS:F-Zp-f, so the energy 6W required to
drive the perturbation, P,=déW/dt, has the explicitly

real form 5W=i(ﬁ-<f>+<f>*-j). Since the inductance ma-
trix L, is a positive Hermitian matrix, the energy W is

negative only if the permeability P has a negative eigen-
value.

The circuit equations for wall modes are particularly
simple in the case of primary importance, a single mode
passing through marginal stability, which means one sta-
bility coefficient s passing through zero. Because of the
singularity of the permeability matrix at s=0, only the
marginal mode is important, so the matrix vectors can
be approximated by a single matrix element, the ele-
ment that represents the marginally stable perturbation.
For this problem, ®=-®,/s, ®,=M,,I,, &,=L,I,
+M,,I,, and d®, /di=-R,I,. P, is the magnetic flux
that penetrates the wall, 1,, is the current in the wall, L,,
is the wall inductance, M,,=M,,, is the mutual induc-
tance between the wall and the plasma, and R,, is the
wall resistivity. Simple algebra demonstrates that the
flux through the wall is

1+sM,,M
®, = Lw{l - —S—M}IW. (122)

s L,L,

When the effective inductance of the wall, ®,/1,, is
negative, the wall mode grows at a rate proportional to
R,. By adding sensors and actively driven coils to the
circuit equations, one can stabilize the wall mode by
feedback.

In a rotating tokamak plasma, the eigenvalues of the
permeability matrix (Boozer, 2003) are complex num-
bers 1/(-s;+ia;). The quantity «; gives the toroidal
torque between the plasma and the mode i. The toroidal
torque exerted by an axisymmetric surface that carries a
surface current j, is given by T,=—f (j. X 8B)- (0%/ dg)d°x,
which implies 7,=i(N/2)(JT-®-®"-J) when the ¢ de-
pendence of f; is written as exp(—iN¢). When an exter-
nal perturbation is applied to a rotating tokamak
plasma, the perturbation on the plasma surface can be
amplified and can have a toroidal phase shift. The am-
plification and the phase shift are given by s; and ¢«;
(Boozer, 2003). Plasma rotation can stabilize the resis-
tive wall mode by dragging the mode toroidally at too
rapid a rate for it to penetrate the wall.
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VI. RADIATION AND TRANSPORT

e A fusion burn of deuterium and tritium requires that
the characteristic time for loss of energy from the
plasma satisfy 7p~4X10?!/n,T, where 7 is in sec-
onds, n; is the number of deuterium-tritium ions per
cubic meter, and 7 is the plasma temperature in ki-
lovolts. The characteristic energy confinement time
of a plasma with few impurities and a temperature of
about 20 keV is predominately due to thermal en-
ergy transport by plasma processes, not electromag-
netic radiation.

e Energy transport determines the minimum size and
hence the cost of an experiment to study plasmas
that burn deuterium and tritium. For a power plant,
the level of transport must be consistent with the
required system parameters; see Sec. II.

e The energy confinement time 7z of proposed experi-
ments is estimated using empirical power-law scal-
ings, which have the fundamental assumption that no
critical values are crossed of the parameters that en-
ter the power law.

The scaling of the energy confinement time of toroi-
dally confined plasmas is a primary issue in the feasibil-
ity and cost of a burning plasma experiment (ITER
Physics Expert Group on Confinement ..., 1999). By
definition a burning plasma experiment burns deuterium
and tritium while requiring little external power. The
loss of energy from a fusing plasma at 20 keV with few
impurities is dominated by plasma processes, called en-
ergy transport, not electromagnetic radiation. The focus
on proposals for burning plasma experiments has meant
that energy transport has been a major topic for plasma
research.

Energy transport is also an issue for the feasibility of
fusion power, but differences exist between the transport
issues for fusion power and those for a burning plasma
experiment. The size of a burning plasma experiment is
essentially determined by the magnitude of the energy
transport: the smaller the transport, the smaller and
cheaper the required experiment. However, the basic
size of a power plant is determined by issues that have
little to do with plasma transport coefficients. The criti-
cal issues in a power plant are whether the energy trans-
port is consistent with what is required to maintain a
steady burn—neither too large nor too small—and
whether the particle transport is sufficiently large to re-
move alpha-particle ash. In addition, the feasibility of
steady-state tokamak power plants is dependent upon
the natural profiles that the temperature, density, and
current take in a fusion plasma. The performance of
stellarator power plants is far less dependent on the is-
sue of profiles.

Energy transport can provide an upper limit on the
plasma beta, S=2up/B?, because transport for given
plasma conditions is generally larger, the smaller the
magnetic field.

Predictions of the energy confinement times of experi-
ments are usually based on empirical scaling relations
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(ITER Physics Expert Group on Confinement ..., 1999).
Empirical scaling relations generally assume the math-
ematical form of a power law,

TE(X1, X, .. ) = agx{ixg? e, (123)

so each parameter of the set (x;,x,,...) enters multipli-
catively. The constants (ag,a;,...) are chosen to obtain
the best fit to the data. Mathematics implies that power-
law scaling is a precise description if and only if the
parameters (x;,X,,...) have no characteristic values or
scale. A function is independent of the scale s if f(x/s)
=f(1/s)f(x), which implies f(x)«x? All other functions
have a scale, and the properties of the function depend
on the size of x relative to s. For example, the scale of
sin x is 2. The constants of a power law (aya;,...) are
easily fit to data by a linear regression of the logarithm
of 75 against the logarithms of the parameters.

The most commonly used scaling relations are power
laws based on experimental parameters such as input
power, plasma current, and plasma size. Less used but
more scientifically appealing scaling relations are based
on dimensionless parameters (Connor, 1984). The di-
mensionless energy confinement time is the confinement
time times the cyclotron frequency of deuterium, ()
=eB/m, Important dimensionless parameters are (a)
the gyroradius of deuterium, pE(ﬁ%)/ (eB), divided
by the plasma radius, which is called p-; (b) the number
of bounces between collisions a deuterium ion makes
when trapped in the variation in the magnetic-field
strength on a magnetic surface, a ratio called 1/v«; and
(c) B=uop!/B?). In terms of these parameters,

O 7 = agpierivBes. (124)

A. Electromagnetic radiation

¢ Although electromagnetic radiation is usually a sub-
dominant energy-loss mechanism for deuterium-
tritium (DT) fusion systems, electromagnetic radia-
tion limits the feasibility of non-DT fusion fuels and
the tolerable level of impurities in all fusion systems.

e The most important types of radiative losses from
magnetically confined plasmas are bremsstrahlung,
cyclotron, and atomic.

Electromagnetic radiation is a subdominant energy-
loss mechanism in a deuterium-tritium (DT) fusion
plasma operating at 20 keV with a low level of impuri-
ties. However, electromagnetic radiation limits the toler-
able level of impurities, the range of temperatures, and
the types of fuel (Nevins, 1998) for which fusion energy
is feasible. Three types of radiative losses are important:
bremsstrahlung, cyclotron, and atomic.

Electromagnetic radiation arises when the current

density f has both a nonzero curl and a time derivative.
The time derivative of the current density of a single

particle is f(f):qﬁ 8(x—x,), where x,(¢) is the position of

the particle, a=d’x,/dr* is its acceleration, and &(---) is
the Dirac delta function. The rate at which a nonrelativ-
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istic particle of charge ¢ loses energy H through electro-
magnetic radiation is given by the Larmor formula,

dH _
dt 6w’

q2a2

(125)

which is derived in the standard electrodynamics texts.

Bremsstrahlung, which in German means radiation
due to deceleration, arises from the electrostatic scatter-
ing of one charged particle by another. The power loss
due to bremsstrahlung is dominated by the scattering of
electrons by ions. The power loss per unit volume due to
scattering by ions of charge Ze with a number density 7,
is proportional to Z?n,n\T,. The typical photon emit-
ted in bremsstrahlung has an energy equal to the elec-
tron temperature. In plasmas of fusion interest there is
negligible reabsorption of bremsstrahlung radiation be-
cause the total radiated power is far below the black-
body level. An accurate derivation of bremsstrahlung is
given by Karzas and Latter (1961).

The basic dependences and power loss of bremsstrah-
lung can be understood starting with the expression for
the acceleration of one charged particle by another, a;
=(q1q,/4meym;)(x;—X,)/|X,—%,>. The maximum accel-
eration occurs at the point of closest approach of the
two particles, b=min(|x,-x,|). The characteristic fre-
quency of the bremsstrahlung radiation is w=v/b, where
v is the particle velocity, which implies the characteristic
wave number satisfies kb=v/c. For nonrelativistic par-
ticles, v/c<1, the wavelength of the radiation is long
compared to the distance between the radiating par-
ticles. The time derivative of the current density of two

particles is j(¥)=q,d,8(X—%,)+qad,8(f—%,). Since the
wavelength of the radiation is long compared to the dis-
tance between the radiating particles, one can ignore

5

that distance and let ]:()?):(ql/ml—qz/mz)mlﬁl(S(f—fl)
using Newton’s third law to write m,d,=-ma,. The ex-

pression for f implies that radiation from electron-
electron scattering vanishes in the nonrelativistic limit
and that bremsstrahlung is primarily a result of electron-
ion scattering.

The change in energy of an electron with speed v that
passes by an ion that has a charge Ze at a distance b is
6H=(dH/dt)(b/v), where dH/dt is given by the Larmor
formula, Eq. (125), with the acceleration a
~(Ze*/4mweym,)/ b*. The bremsstrahlung power p, emit-
ted per unit volume is given by the number of electrons
per unit volume times the number of ions the electrons
pass per unit time. The number of ions of charge Z that
the electrons pass per unit time at a range between b
and b+db is n,v2wbdb, so py=n.n,[ SHv2mwbdb. This
integral is proportional to 1/b,,;, with b,,;, the distance
of closest possible approach. In classical mechanics the
distance of closest possible approach is given by
(Ze*l4mey) ! b yin=m,v?/2, but for electrons that have en-
ergies of importance for fusion systems this distance is
much smaller than the limit set by quantum mechanics,
which is b,,;,,m,v=#f. Quantum effects determine the
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closest possible approach when v/c>2Za, where the
fine-structure constant a=e?/(4meych)~1/137. The
typical energy of an emitted photon is Aw=#v/b,,,
~m,?~T. The basic dependences of the emitted
power, Zznzne\«"—e, are obtained by combining the re-
sults.

Cyclotron radiation results from the acceleration of

electrons with velocity v by the magnetic field, a

=—(e/m,)v X B. The characteristic frequency of the asso-
ciated motion is the electron cyclotron frequency (2,
=eB/m,, and this is the frequency at which cyclotron
radiation is emitted by an electron. A straightforward
application of the Larmor formula, Eq. (125), gives the
power emitted per unit volume due to the cyclotron mo-
tion of Maxwellian electrons, pczwf,eQzT/ (37c?). Since
(mv? /2) is the energy in two independent components
of velocity, and the energy in three independent compo-
nents is %T, one has (mv* /2/)=T. The plasma frequency

is w,,=\e’n,/(m,€), which is the frequency with which
the electrons would oscillate if displaced en masse from
the ions. Thermodynamics implies that the emission of
electromagnetic waves due to the cyclotron motion can-
not exceed the energy flux leaving a blackbody in the
relevant frequency range. The energy flux leaving a
blackbody at frequencies less than o is Fp,
=w’T/(127°c?) provided the energy per photon is far
less than the temperature, hw<<T. This is the Rayleigh-
Jeans limit, which is the relevant limit when w~(},. To
be consistent with thermodynamics, the plasma must re-
absorb the radiated power within a distance L,
=47 Fpp/pe=(Q,/ wpe)(c/w,,), which is a fraction of a
millimeter in a fusion plasma. Due to relativistic effects,
electrons also emit radiation at harmonics of the cyclo-
tron frequency with the emission at each higher har-
monic reduced by a factor T/(m,c?) compared to the
previous harmonic. The power emitted by a region is
comparable to the blackbody flux F;;, up to a frequency
o that is set by the first cyclotron harmonic for which the
power can leave the plasma without strong reabsorption.
Accurate calculations of the power losses due to cyclo-
tron emission are complicated. Albajar, Bornatici, and
Engelmann (2002) give recent results and historical ref-
erences.

Atomic radiation arises from electrons switching
atomic levels and from the capture of free electrons into
bound states. Significant atomic radiation only arises if
the electron temperature is low enough for the atom or
ion to have bound electrons. The atomic radiation from
an element with a number density n, has the form p,
=nn,R,(T), with R_(T) a function that is large at elec-
tron temperatures at which ionization occurs. The func-
tion R,(7) for a single element can have large variations
with multiple peaks. Under fusion conditions R (7) is
negligible except for elements with high atomic num-
bers, such as iron. Functions R, (7) have been given by
Post et al. (1977).

At a given impurity level, the power losses due to
bremsstrahlung and atomic radiation depend quadrati-
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cally on the plasma density, as does the nuclear power
input, so the nuclear power input minus the radiative
losses due to bremsstrahlung and atomic radiation can
be viewed as an effective power input, peff:nzfeﬁ(T).
The power loss due to cyclotron emission and absorp-
tion is more complicated and in some features resembles
a diffusive transport process.

Fusion power is feasible only at low impurity levels. In
addition to the enhancement of electromagnetic radia-
tion, the ionization of impurities adds many electrons to
the plasma. These electrons exert a pressure and trans-
port energy but are unrelated to the production of fu-
sion power.

B. Kinetic theory

¢ Kinetic theory is needed to calculate transport coef-
ficients such as particle diffusivities, thermal conduc-
tivities, and bootstrap currents.

¢ Collisions in plasmas change the trajectories of par-
ticles diffusively. This is in contrast to collisions in
ordinary gases, which produce large abrupt changes
in the particle trajectories.

e Plasma confinement forces the distribution functions
of the particles to deviate from local Maxwellians.
The rate of entropy production that is required to
hold the distribution functions away from local Max-
wellians allows a simple calculation of transport co-
efficients in the low-collisionality limit.

Transport calculations are carried out using kinetic
theory. The fundamental quantity in kinetic theory is the
distribution function f(x,p,f), which describes the evolu-
tion of a large group of identical particles. In a plasma,
there is a distribution function for the electrons and for
each of the ion species. The distribution function is the
density of particles in phase or momentum space (x,p).
In other words, the number of particles in a region of
momentum p and ordinary space X is the integral of the
distribution function over that region, [fd°pdx. A more
detailed treatment of kinetic theory than that given here
can be found in Helander and Sigmar (2002) and in most
plasma textbooks.

The evolution of the distribution function is given by
the kinetic equation

df

o (126)

=C(,
where C(f) is the collision operator. The total time de-
rivative of kinetic theory is an extension of the concept
of the total time derivative of fluid mechanics, Eq. (44),
which operates on functions g(x,7) in ordinary space, to
functions f(x,p,¢) in phase space,

df _of d5 of dp of

= - -, (127)
dt o dt ox dt dp

where df/ ox= V}. Equation (127) can also be written as
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ar_of i(d_) ﬁ.(di)
dt "o ok dtf+aﬁ a) (128)

If p is the canonical momentum of Hamiltonian mechan-
ics, Eq. (128) follows from Eq. (127) because of Hamil-
ton’s equations dx/dt=0H/dp and dp/di=—oH/dx. In
the presence of a magnetic field, the canonical momen-

tum is ﬁ:m17+q/-{ [Eq. (191)]. If p=mv, Eq. (128) fol-
lows because x=p/m and p=q(E+pXB/m), so
(9/0%)-x=0 and the momentum space divergence of p is
zero, (3/9p)-p=0.

Without collisions, the kinetic equation is called the
Vlasov equation, df/dt=0. The Vlasov equation is easily
understood. Given the distribution function at r=t¢,, the
distribution function at t=t,+ &t is obtained by advancing
each particle in the distribution along its trajectory, X
:)Zo-i-(d.f/dl‘)&[ and [;Zﬁo-i—(d];/d[)at. If f()?o,[;o) is the
given distribution, then for an infinitesimal interval
of time, &r=r—t,, the distribution function is f(x
—(dx/dt)ét,p—(dp/dr) o), which  implies afl o
=—(dx/dt)-of1 x—(dp/dt)- 9f1 dp. The Vlasov equation is
a hyperbolic, partial differential equation that has one
characteristic. That characteristic is the trajectory of a

particle.
The collision operator is the momentum-space diver-

gence of a flux Fof particles through phase space (x,p),

C(}‘)z—%-]-". (129)
ap

Collisions are caused by the graininess of the plasma, an

effect that is not directly described by the distribution
function f(x,p).

The graininess of the plasma leads to complicated

electric fields that scatter particles and cause the colli-

sional flux F. The electric field at position x due to a
charge ¢ at x; is
N ik .-
E(x,x))=- 4 f —zelk'(x_xl
€ k

3
| &k

o (130)

which is demonstrated by checking that ﬁ-éz(q/ €)0(x
-x1), VX E=0, and E(x —»,x;)=0. Note the Dirac delta
function has the representation
) d’k

Qm?*

X —%)) = f ek -5y (131)
The electric field that is obtained from a uniform density

n of charges, <E)Ef§(f,fl)nd3x1, is zero. However, the
root-mean-square electric field from a uniform density
of charge is not zero,

(B = f E(Z,%) - E(%,3)nd’,, (132)

and can be written as
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5 g\’ [ 1 &k

* >_”<eo) f K2 Qm
This electric field causes accelerations Ac?z(q/m)é of
the particles, which for a fast-moving particle persist for
a time Ar=1/kv with v the speed of the particle. That is,
a particle has essentially random changes in its velocity,
Av=(Aa)(Ar), separated by time intervals of order At.
These random changes scatter the velocity at an average
rate v=((Av)?/At)/v?. That is, v={(q/m)>E*At)/v?, which
can be written as

SRN R
g mze(z)v3 Q)

The integral over wave numbers is logarithmically diver-
gent without a cutoff at large or at small wave numbers,

3
InA= f d_k2 =1n<km“x).
Amk Konin
The cutoff at large wave numbers k,,,, is given by the
distance of closest possible approach of two charged par-
ticles, b,,;,,=1/k, .. As shown in the discussion of
bremsstrahlung, Sec. VI.A, b,,;, is determined by quan-
tum effects at fusion temperatures, b,,;,=%/(mv). The
cutoff at small wave numbers is given by the Debye
length, k,,;,,=1/Ap. The Debye Ilength 1is \p
=& T/(ng?. The Coulomb logarithm is InA=~17 in
laboratory plasmas.
The Debye length, \p=\/€,T/(ng?), is the shielding
distance for the electrostatic potential of a charge. What
is meant by this? Let @ be the potential due to a charge

(133)

(134)

(135)

Q that is placed in a plasma. The electric force —qnﬁ@
on a species with charge ¢ and number density # is bal-

anced by the pressure force of that species V(nT). In
equilibrium the temperature is constant, so the equilib-
rium density is n=n., exp(—q®/T). The Poisson equation
for the potential is then

VZq) - _ 25()2) _ %(equ)/T_ 1)
€ €

(136)

Far from the charge, g®/7T<1, and Poisson’s equation
becomes V2d=d/\3. Consequently, for 7> \ p, the elec-
tric potential of a charge in a plasma is

)
Q&

€ r

b= (137)

Conservation laws place three conditions on the colli-
sion operator C(f), and the thermodynamic law of en-
tropy increase places a fourth condition. The discussion
of these conditions is simpler using phase-space coordi-
nates in which the momentum is p=mv rather than the
canonical momentum, p=mv+qA, of Hamiltonian me-
chanics, so these are the phase-space coordinates that
will be used. The three conservation laws are for the
particle,
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n(x) = f fdp; (138)
momentum,
i) = | pep: (139
and energy conservation,
»?
€(x) = J —fd’p. (140)
2m
The entropy per unit volume is
s=- f fin(Hdp. (141)

This definition of the kinetic entropy is shown below to
give results that are in agreement with the thermody-
namic entropy

The Maxwellian distribution f3, has the maximum en-
tropy per unit volume s, with a fixed number of particles
per unit volume n, momentum per unit volume nmu,
and energy per unit volume, €= %nmu2+%n T, which de-
fines the temperature 7,

@—m@w

142
2mT (142)

N n
fu(x,p) = (277T/m)3/2 eXp<_

That is, one takes s+X\;n+\,-nmii +\z€ to its extreme by
considering variations in the distribution function &f
while treating the \’s as constants. When the \’s, which
are called Lagrange multipliers, are chosen to obtain the
correct density, momentum, and energy, the Maxwellian
is obtained. To be consistent with thermodynamics, a
collision operator must cause the entropy to increase
except when the distribution function is a local Maxwell-
ian.
A collision operator, C(f)=-(d/dp)-F, that is simple
but obeys the four conditions has the phase-space flux
ﬁz—z-{(ﬁ—mﬁ)f+mTa—]j}. (143)
2 op

The collision frequency v in this simple collision opera-
tor is momentum independent. The correct collision op-
erator is considerably more complicated and in particu-
lar the collision frequency v is dependent on the energy
of the particles being scattered [Eq. (134)].

The simplified collision operator of Eq. (143) is useful
for illustrating the diffusive nature of collisions in plas-
mas. A distribution function that develops complicated
structures in momentum space can be smoothed arbi-
trarily quickly. More precisely, if the distribution func-
tion changes over a range of momenta Ap then that
change is smoothed out at a rate of order v(p/Ap)?.

The change in the entropy density s(x,¢) at each point

in a plasma is due to an entropy flux ]?S and the creation
of entropy by collisions s.. A differentiation of the en-
tropy density s(x,r), Eq. (141), with the use of df/dt
=C(f) and Eq. (128), implies
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Js =
—+V- Se.

py (144)

The entropy flux is Z,=—[v(In f)fd’p where v=p/m, and
the rate of entropy production by collisions is

—J In(AC(Hd°p. (145)

The definition of entropy per unit volume s(x,7), Eq.
(141), is consistent with the thermodynamic entropy if
and only if it satisfies three conditions.

(1) The entropy, fsd>x, must be additive. That is, en-
tropy in a region that consists of two parts must be
the sum of the two entropies, a condition that s sat-
isfies.

(2) The entropy of an isolated system cannot decrease.
This condition implies s.=0 and is a constraint on
the collision operator. If the distribution function is
written in the form f=f;, exp(f) with f,, defined so its
n(x), u(x), and €(x) are the same as those of f, then
Eq. (143) for simplified collisional flux gives a posi-
tive entropy production as long as v is a positive
matrix,

. f .. of
s"_zfaﬁ f

(3) The change in the energy due to a transfer of heat is
TéS.

By taking the time derivative of the energy per unit vol-
ume €(x,t)=[(p?/2m)fd®p, one can show, using Eq.
(128) and df/dt=C(f) to eliminate Jf/dr, that the energy
flux is the sum of two parts: a part proportional to the

(146)

fluid velocity u and a part equal to the heat flux ]?h

= [im(V—ii)*fd’p, where v=p/m. The entropy flux F,is
also the sum of two parts when the plasma is near ther-

modynamic equilibrium, which means f=f, exp(f) with
[f| <1. One part of the entropy flux is proportional to

the fluid velocity u and the other part is 7,/ T. In a con-
tinuum system the temperature is well defined only near
thermodynamic equilibrium, and in that limit the third
condition on the entropy is satisfied.

Thermodynamics gives a simple but rigorous expres-
sion for the heating power P required to maintain a sta-
tionary, =0, steady-state plasma,

P() = T(4h) J Sedx, (147)

where the volume integral is over a region enclosed by a
flux surface ¢, and P(i,) is the total heating power in
that region. To prove this equation, note that the power
per unit volume that must be added to balance the heat
flux is €,=V-F;, while the entropy created by collisions

must satisfy jczﬁ-(ﬁh/ 7).

Rev. Mod. Phys., Vol. 76, No. 4, October 2004

Equation (147) coupled with Eq. (146) implies the dis-
tribution functions must be close to local Maxwellians
on each pressure surface to obtain the confinement
needed for fusion ignition. The required energy confine-
ment time in a fusion power plant is about 10? ion colli-
sion times and 10* electron collision times. The mainte-
nance of near Maxwellians requires the trajectories of
charged particles to remain close to constant-pressure
surfaces during the time between collisions.

Thermodynamics relates the collisional entropy pro-
duction s, and the plasma transport in an even more
complete form. Given s., one can read off the transport
coefficients. For simplicity, assume that at each point in
the plasma the distribution function is well approxi-
mated by a stationary Maxwellian, so the flow velocity
1=0. The textbook thermodynamic equation, dU=TdS
—pdV+ udN, relates thermodynamic quantities of an en-
tire system. Plasma studies use the energy e=U/V, the
entropy s=S5/V, and the number of particles n=N/V
per unit volume. Substituting these definitions into the
thermodynamic equation yields (de—Tds—udn)V=-(e
—Ts+p—un)dV. The thermodynamic properties of a
plasma are independent of the plasma volume V, so
both sides of this equation must be zero. The chemical
potential u can be evaluated for a Maxwellian using w
=(e-Ts+p)/n, and one finds

y72
?— c0+ln< T3/2>

with ¢j a constant. Consequently, a stationary Maxwell-
ian has the form

(148)

—mv32
w) (149)

fu=cm exp( T

where ¢, is a constant. The thermodynamic equation
de=Tds+ pudn implies that the time rate of change of the
entropy density is ds/dt=(1/T)de/ dt— (! T)on/dt. Now

gnld=-V-T' with T the diffusive particle flux, and
del gt=—V - F, with F, the heat flux. Therefore

N R T

The divergence term on the right-hand side of Eq. (150)
is the divergence of the entropy flux, but the other terms
are due to the irreversible production of entropy, which
means production by collisions. Since the chemical po-
tential and the temperature depend only on the ¢, coor-
dinate, the collisional entropy production is

) 1,d,u,/T 7 a1t (151)
SC= _7
dy, " dy,

with FEF'VIJII and fhzﬁh-ﬁw,. The quantities

—d(u/T)/dy, and d(1/T)/dy, are called thermodynamic
forces, and F;, and I' are the conjugate fluxes. Near ther-
modynamic equilibrium, the fluxes are proportional to
the forces, I'=-D,d(u/T)/dy,—D.d(1/T)/dy, and F,
=D d(u/T)/d,+Dd(1/T)/dy,.. The cross terms, the
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terms proportional to D, have the same coefficient due
to the symmetry of the collision operator, or more gen-
erally due to Onsager symmetry (Onsager, 1931). Conse-
quently

d,LL/T)z dulTd1/T
¢ +
dlzbt d‘ﬂt dlﬂl

By calculating s., one can obtain all three independent
transport coefficients.

Much freedom exists in the choice of variables & that
are used to describe the distribution function. The left-
hand side of the kinetic equation df/dt=C(f) becomes
dfldt=ofl at+32(df1 908)(d&/dr). All that is needed is
knowledge of how each of the variables changes along
the trajectory of a particle, d¢/dr. For example, f is a
solution of the collisionless kinetic equation df/dt=0,
the Vlasov equation, if and only if its variables are con-
stants of the motion of the particles, d&/dt=0. In a sys-
tem that is independent of time, f(H) is a solution to the
Vlasov equation where H is the Hamiltonian or energy
of a particle.

The calculation of density perturbations using kinetic
theory is subtle when the unperturbed distribution func-
tion is given as a function of a constant of the motion
such as the Hamiltonian, fy(H). Consider a collisionless
plasma that is perturbed by a change in the electric po-
tential, 6®. The distribution function in the presence of
the perturbation is f=f,(H)+ &f. The density perturba-
tion that is caused by the perturbation &® is not [8fd’v,
but én=[&fd*v+[qéP(dfy/dH)d?v. That is, the total
change in the distribution function is

dfo

Af= 6f+ qoD—22.
f=6f+q JH

d1iT
T

2
m ) . (152)

(153)

To understand the reason, suppose the plasma is per-

turbed by an electric potential 5&=® sin(kx—wt). The
kinetic equation of a collisionless plasma, df/dt=0, can
be solved in two ways, and a subscript of v or H will be
placed on &f to indicate which set of variables, (x,v,f) or
(x,H 1), is used to find the solution. First, using variables
(x,v,t) one can write dd&f,/dt=dd8f,/d+vadf,lox
=—(qE/m)df,/dv since dv/dt=qE/m. This equation im-
plies

_k 45 dfo

= . 154
kv—w m dv (154)

o,
Second, using variables (x,H,f) one can write ddfy/dt
=98fy! dt+vadSfyl dx=—(dfy/dH)dH/dt where the change
in the energy of a particle is dH/dt=qdé®/dt. The solu-
tion is

d

. 1
kv—wq dH (155)

O =

These two solutions are not equal, even after making the
substitution  dfy/dv=(dfy/dH)mv. Indeed, ©&f,=dfy
+q6Pdfy/dH. The resolution of this paradox is that the
unperturbed Hamiltonian H, goes to H=H,+qéP. A
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first-order Taylor expansion implies fo(H)=f,(H,)
+q6®dfy/dH,. The term qoé®df,/dH is called the adia-
batic part of the plasma response.

C. Landau damping and quasilinear diffusion

e A collisionless, but unidirectional, transfer of energy
can occur between a wave and the particles that form
a plasma. The sign of this transfer, which is called
Landau damping, is determined by the sign of the
velocity derivative of the distribution function at the
place where the particle velocity equals the phase
velocity, w/k, of the wave.

e If the energy density of waves has a continuous de-
pendence on their phase velocity, w/k, the waves
cause a collisionless diffusion of the particles whose
velocities resonate with the phase velocities of the
waves. This is called quasilinear diffusion.

In fusion, and many other plasmas of interest, the col-
lision frequency is small compared to the time it takes a
charged particle to cross a distance comparable to the
plasma size. Since collisional effects are weak, it is natu-
ral to study the Vlasov equation, df/dt=0. This hyper-
bolic partial differential equation has the particle trajec-
tories as its single characteristic. In other words, the
distribution function is carried along by the particle mo-
tion, so any function of the constants of motion is a so-
lution to the Vlasov equation.

Since the Vlasov equation, df/dt=0, contains only in-
formation about the particle trajectories, which are time
reversible, it is natural to assume that its solutions are
themselves time reversible. This turns out to be false in
practice, with the sense of time determined by the na-
ture of the initial conditions. Solutions to the Vlasov
equation can evolve from smooth initial conditions into
functions with arbitrarily complicated structures. Plasma
observations have finite resolution, and the averaging
that is implicit in the observation process leads to irre-
versibility. These time-irreversible collisionless effects
are important in plasma physics for the damping of ex-
ternally driven waves, which gives plasma heating, and
for amplifying plasma waves, which gives instabilities.
The two collisionless phenomena that will be discussed
are Landau damping (Landau, 1946) and quasilinear dif-
fusion (Vedenov, Velikhov, and Sagdeev, 1961; Drum-
mond and Pines, 1962).

Landau damping is a collisionless, but unidirectional,
transfer of energy between an electromagnetic wave and
a plasma. It is central to the theory of plasma heating by
waves and the destabilization of electromagnetic pertur-
bations by non-Maxwellian distributions of the plasma
species.

To understand Landau damping, assume that at r=0
the distribution function of a plasma species is indepen-
dent of position, fy(v), but a weak electric field is intro-
duced that for >0 has the form
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E = E; cos(kx — wt). (156)

The problem has only one spatial coordinate x and one
velocity coordinate, which is v, but will be denoted by v
for simplicity. The perturbed Vlasov equation, df/dt=0,
with f=f,+df, is

aSf 38 g
9of 9 a o (157)
at ox m v

The solution for the perturbed distribution function Jf
that obeys the initial condition that §f=0 is

B q_Ekﬂ_fo sin(kx — wt) — sin(kx — kvt)

J) , 158
/ m v w—kv (158)
which is nonsingular though growing at v=w/k,
IfoqE
() v=wik =~ ﬁq_f- (159)
v m

Particles moving at the phase velocity of the perturba-
tion, v=w/k, see a time-independent electric field and
are accelerated by it. A spatial average is defined by the
limit as L goes to infinity of (g(x))=(1/2L)f ffgdx. The
spatially averaged power going to the plasma is

(P):Jv(qEﬁf)dv. (160)

Using the trigonometric identity sin(kx—kvt)=sin(kx
—wt)cos[ (w—kv)t]+cos(kx — wt)sin[ (w—kv)t], one has

qZE,zc Iy sin[(w — kv)t]
2m '

(QEdf) =~ (161)

w—kv

The velocity integral that must be performed to ob-
tain the power, Egs. (160) and (161), has the form

f F(v)—sm[c(uw__k]iv)t]dv = f F{%(l + i)] Sir; §|d?§|,

(162)

where &= (kv-w)t. The integral of sin(¢)/& from minus
to plus infinity is 7, so when wt— o

F(wlk)

sin[(w — kv)t] dv e

li F = 163
lim | FO)= ™ (163)
The spatially averaged power is then
2Er (0
Y S (1) B (164)
2mlk|\" v /i

Power is transferred to the plasma (positive power) if
there are fewer particles at high energy than low and to
the electric perturbation (an incipient instability) if there
are more particles at high energy than low.

One can simplify some of the analysis of Landau
damping by writing it in the form &f=fexp[i(kx— wt)].
The critical step in Landau damping is then the determi-
nation of the imaginary part of what appears to be a real
integral. The theory of Laplace transforms implies the
imaginary part of the integral, the Landau integral, is
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) ) _.m (g)
( w—kvdv e l|k|f ) (165)
Landau damping is closely related to a second phe-
nomenon, quasilinear diffusion, which is important for
understanding the interaction of waves with plasmas and
the effect of short-wavelength perturbations on the
plasma. If one identifies the distribution function f;, of
the Landau damping discussion with the spatially aver-
aged distribution function, f,=(f), then a spatial average
of the Vlasov equation, df/dt=0 [Eq. (128)] with p
=mv, gives

9 d

dho__ —< 1E5f>.

ot ov\m
Equation (161) gives an expression for (¢gEdf), which is

proportional to dfy/dv. Therefore

Yo _ 9

(166)

o
Dv)—, 167
ot v v) ov (167)
where the velocity diffusion coefficient is
2Exsin[(w — kv)t
D q 2ksm[(w V) ]. (168)

2m w—kv

This expression for the velocity-space diffusion is not
useful unless there is a spectrum of perturbations with
different k’s. The spatially averaged energy density of a
single wave is (ey/2)(E%=(e)/4)E;. If [E(w/k)dk is the
energy per unit volume of a spectrum of waves, one can

integrate Eq. (168) over k using the integration formula
of Eq. (163) to obtain

_ 2 E0)

Cgm?® v

(169)

The quantity w(k)/k is the phase velocity of the electric
perturbation, so a perturbation diffuses particles that
have a velocity equal to the phase velocity.

Quasilinear diffusion is closely related to the stochas-
ticity of magnetic-field lines that was discussed in Sec.
IIILA. In principle, the equations of mechanics are re-
versible. However, when stochastic, trajectories that
have an infinitesimal initial separation increase that
separation exponentially with distance along the trajec-
tories. If the trajectories are resolved to finite accuracy,
then the information is quickly lost that would be
needed to launch the time-reversed trajectories.

The spatial averaging that is involved in deriving the
quasilinear diffusion coefficient, destroys information
and allows an entropylike quantity so=—/f, In fyd’p to
increase. However, s, is not the entropy density, nor
even the spatial average of the entropy density, s
=—[fIn fd®p. The spatially averaged entropy density (s)
cannot change if f is a solution to the Vlasov equation,

df/dt=0 [Eq. (144)]. Let f=f, exp(f), then (exp())=1
since (f)=f,. Assuming f is small, the relation between
(s) and s is <s>:s0—% J{P)fod3p. Consequently s, must
increase if the magnitude of f does, to avoid a change in
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(s). Actually, the complicated velocity-space structure
that f develops, coupled with the diffusive nature of

plasma collisions, means that f may not reach a large
amplitude even when the fractional change in the
volume-averaged entropy density is of order unity.

Quasilinear diffusion can represent the heating of a
plasma by a fluctuating electric field even in steady state.
Of course for a steady state in the presence of heating,
there must be a cooling term in the kinetic equation,
such as dfy/dt=d(vvfy)/dv, where 2v.(v) is the cooling
rate. For this cooling term, the volume-averaged distri-
bution function relaxes to dIn f,/d(v?/2)=-v,/D, which
has the shape of a Maxwellian with an effective tem-
perature T,/m="D/v. in velocity regions where D/, is
independent of velocity.

D. Drift kinetic theory

e The single characteristic of the Vlasov operator,
dfldt [Eq. (127)], is the trajectories of the particles.
Consequently, one can use approximations to the
particle trajectories to simplify kinetic calculations.

e Charged particles make a circular gyration about
magnetic-field lines. When the radius of gyration is
small compared to the spatial variation of the electric
and magnetic fields, the magnetic moment, u
=mv? /2B, is a constant of the motion.

e When the gyration radius is small, the particle trajec-
tory can be accurately approximated by tracking the
center of the circle, x,, about which the particle gy-
rates, the guiding center. The guiding center drifts at
a velocity v, given by Eq. (181). The equation of mo-
tion is first order, dx,/dt=v,, and not the usual
second-order equation, md?%/dt?, equal to a force.

e The drift velocity of the gyrocenters is also given by
a Hamiltonian, Eq. (195), which has only four ca-
nonical variables (6,¢,pg.p,), Egs. (199) and (200),
instead of the six canonical variables of the full tra-
jectories. The form of the Hamiltonian for the drift
motion demonstrates that variation in the magnetic-
field strength on the magnetic surfaces is the primary
determinant of the confinement properties of the
particle trajectories.

e Particles with a sufficiently small ratio of their veloc-
ity parallel to the magnetic field, v, to their total
velocity v are trapped between maxima of the
magnetic-field strength along a magnetic-field line.
These trapped particles drift from one field line to
another conserving their action, J=$mvd¢.

The Vlasov operator df/dt in the kinetic equation is
determined by the trajectories of the particles, and the
determination of these trajectories is a major difficulty
in solving the kinetic equation. Charged particles in a
magnetic field move in circles with a gyration frequency
O =gB/m, Fig. 10, which makes a direct calculation in-
efficient when the circles are small, as they are in a fu-
sion plasma. In addition to being inefficient, a direct cal-
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(a) %5

(b)
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FIG. 10. (Color) Orbit of a charged particle and its guiding
center: (a) A charged particle gyrates in a circle about a
straight magnetic-field line while moving along the line; (b) the
instantaneous center of this circle is the guiding center x,, and
the difference between the position of the particle x and the
guiding center is the vector gyroradius p; (c) a uniform electric
field perpendicular to the magnetic field causes the particle
velocity, and hence its gyroradius, to be slightly larger on one
side of its gyro-orbit than the other, causing a drift across the
magnetic-field lines.

culation obscures fundamental properties of the
trajectories. For example, the confinement properties of
particle trajectories are essentially determined by the
variation of the magnetic-field strength on the constant-
pressure surfaces.

This section derives the asymptotic expressions for the
particle trajectories (Alfvén, 1940) as well as the associ-
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ated kinetic theory, which holds when the circles made
by charged-particle orbits in a magnetic field are smaller
than the scale of field variations. The basic results are as
follows: (1) the magnetic moment,

2
mv

2B’

M= (170)

is a constant of the motion with v, the magnitude of the

velocity components perpendicular to B. The invariance
properties of w, which is an adiabatic invariant, are dis-
cussed in Sec. VI.D.2. (2) The center of the circle, fg,
about which a particle gyrates (Fig. 10), drifts at a veloc-
ity v,=dx,/dt. This velocity is called the guiding-center
or drift velocity, and dx,/dt=v, gives a first-order ordi-
nary differential equation for the center’s trajectories.
The guiding-center velocity is given by Eq. (181) as well
as by a drift Hamiltonian, Eq. (195). The Hamiltonian of
the drift motion, Sec. VI.D.3, has only four canonical
variables (6, ¢,p4,p,)—the poloidal and toroidal angles
of Boozer coordinates, Eq. (58) and their conjugate mo-
menta [Eqgs. (199) and (200); Boozer, 1984b]. This Hamil-
tonian formulation was utilized in a code by White and
Chance (1984). Their code has been the basis of numer-
ous investigations of phenomena that depend on particle
drift. In addition to the canonical formulation of the
drift equations, which is emphasized here, Littlejohn
(1981) has given an important noncanonical, though
Hamiltonian, treatment based on Lie theory.

The velocity-space coordinates of the guiding-center
motion, which simplify the kinetic equation, df/dt
=C(f), are the Hamiltonian H, which is the energy, and
the magnetic moment u, where H :mvﬁ/ 2+ uB+q®P. An
average over the phase angle 9 of the circular gyromo-
tion of the particles gives the drift equations. The
velocity-space volume element in cylindrical velocity-

space  coordinates is d’v=v,dv,dddv, Using
(H,u,9,x) as coordinates, dH=mvdv,, so
B < dHdudd
dv="5> % 171)
+ Vi

where the 2, means that the sum is taken over the sign
of velocity along the magnetic field, v,. In drift kinetic
theory, one can integrate over the gyrophase ¥, which is
equivalent to replacing d¥ in Eq. (171) by 2. The drift
kinetic equation is obtained by calculating
df(H,u,x,t)/dt and setting dx/dt=v,, the drift velocity
of the guiding centers,

af of . -  dH If
—==+v, - Vf+ ———=C(f), 172
dr&tvl’fdtaH " (172)
where the energy exchange between the particles and
the electromagnetic fields, dH/dt, is given by Eq. (196).
The use of drift kinetic theory to calculate flows re-
quires care. The current density is not g [ Jgfd3v, as one

would naively expect, but

f:qu*gfd%—% X (BfﬂdeV).
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FIG. 11. (Color) Magnetization drift: The magnetic field is out
of the figure. In the presence of a density gradient, the number
of particles moving in one direction perpendicular to both the
magnetic field and density gradient differs from the number of
particles moving in the opposite direction. This leads to a
divergence-free flow of the particles in the BXVn direction
even if all the particles are moving in perfect circles. This flow
is called the magnetization drift.

The second term is called the magnetization current and
arises, as does a magnetization current in a solid, from
the magnetic moments of the particles that constitute
the medium (Jackson, 1999; see Fig. 11). The actual mag-
netic moment produced by the circular gyromotion is

m=—ub. (174)

The definition of the magnetic moment of a current dis-
tribution is m= % J XX jd3x, which for a charged particle
moving in a gyro-orbit is m=(g/2)p X v with p the vector
gyroradius [Eq. (177)].

1. Alfvén’s guiding-center velocity

Alfvén (1940) derived an expression for the guiding-
center or drift velocity that follows from the expression
for the trajectories of a charged particle in given electric
and magnetic fields,



Allen H. Boozer: Physics of magnetically confined plasmas 1115

-

dv > L -
—=q(E+v X B).

T

(175)

The position of the particle is given by dx/dt=v. In a
uniform magnetic field with no electric field, a particle
moves in a circle at the frequency

qB

Q=-—, (176)
m
with the circle having a radius (Fig. 10)
bx7v
b= , 177
P="9 (177)

where b=B/|B|. The center of the circle %,, which is
called the guiding center, moves with a velocity v

=b-v parallel to the magnetic field. The position of the
charged particle is (Fig. 10)
(178)

The addition of a constant electric field perpendicular
to the magnetic field causes the guiding centers to drift

in the E X B direction (Fig. 10). Let

X=X, +p.

EX B

VExp = 5 (179)

which is independent of position and time if E and B
are. If E-E:O, Eq. (175) can be written as m(d/dt)(v

—Vexp)=q(v—VExp) X B. The motion of a charged par-
ticle in a constant electric field that is perpendicular to
the magnetic field lines is identical to the motion without
the electric field in a frame of reference moving with the
velocity v=E X B/B2.

The properties of the trajectories become far more
complicated when the particles move in electric and
magnetic fields that depend on position and time. How-
ever, Eq. (178) can be viewed as defining the guiding
center of a particle in arbitrary magnetic and electric
fields, and the exact motion of the guiding center,

—£ = V”b +
dt B dt
is obtained using Egs. (175), (177), and (178).

When the spatial variation of the electric and mag-
netic fields is on a scale much longer than the gyroradius
|p|, particles can be tracked by following the velocity of
the guiding center averaged over the rapid gyromotion,

Ve=(dx,/dt). The expression for the guiding-center ve-
locity is (Alfvén, 1940)

dx . EXb _ d[b
= ( ) (180)

b vi VB EXB
I~ t 5 5 )t 2 s
a 2 B B
(181)

.. b .
vg:va+5>< vﬁK+v

where the curvature of the magnetic-field lines is
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>

k=b-Vb, (182)

with b=B/|B|. The curvature of a pure toroidal field
B=(uyG/27R) is k=—R/R since d¢/de=—R. The term
involving b/t in the guiding-center velocity is usually

dropped, since it is small if the time scale 7" over which b
varies is long compared to the characteristic time for a
particle to cross the system R/v.

In time-independent magnetic and electric fields,
Alvén’s expression for the guiding-center velocity can be
written in an alternative form, which simplifies the
theory of particle confinement. One can easily show
(Morozov and Solov’ev, 1966) that

v, =V X (A + p,B) (183)

&=

has the same drift across the magnetic field as Eq. (181).
The parallel gyroradius is defined by

Vi
b

Q (184)

pII(H»/-'Laf) =

where the energy H :%mvﬁ+,uB+q(I) and the magnetic
moment u are treated as constants. That is, the curl of v,
is calculated holding the energy H and the magnetic mo-
ment u constant. The trajectories are obtained by solv-
ing first-order equations for the guiding-center position,
dx,/dt=v,. The only difficulty in the integration is at
turning points of the parallel motion, where v, passes
through zero and changes its sign. This difficulty can be
removed by the Hamiltonian formulation; see Sec.
VI.D.3.

The terms in Alfvén’s expression for the drift of the
guiding center can be understood by analogy to the E

X B drift [Eq. (179)]. If a force Fis applied to a charged
particle gyrating in a magnetic field, then the same argu-
ment that led to the E X B drift yields a drift velocity

JFXBEIE X B/ (gB?). If the magnetic-field lines have a

nonzero curvature «, the centrifugal force, I;C:—mvﬁf?,
gives the curvature drift. If the magnetic-field strength
varies, the quantity wB acts like a potential energy, giv-

ing the VB force, ﬁVB:—MﬁB, and an associated drift.
The only part of the derivation of the guiding-center
velocity, Eq. (181), that is not obvious is the part of 17g

perpendicular to B that follows from the last term in Eq.
(180). This part of v, is given by

L) db o~ d(b d(b
XYvX—\=|(=vb-—\=|-vi—| =]
b {V dt(Q)} v dt(Q) th(Q) (185

One can let d/dt=a/dt+vh-V+v, -V, for b=B/|B| and
QO =¢gB/m have no velocity dependence. Since b is a unit
vector, b-db/dt=0 and
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vdb

. 186
Q dt (186)

o ala)f i)
vX —\—|(=v,—| <]~
dr\ Q Tdi\Q
The direction of the velocity perpendicular to the mag-

netic field changes over a gyroperiod, so (v, )=0 in low-
est order, and

(187)
The gyrophase average is thus
N 5 .
vidb\ vis e o
=—b-Vb+—-— 188
<Q dt> R (188)

2. Magnetic-moment conservation

The integration of the guiding-center velocity, Eq.
(181), to obtain x, is greatly simplified by the existence
of an adiabatic invariant, the magnetic moment, which
has the approximate form ,u:mvi/ 2B.

An important general principle of Hamiltonian me-
chanics, which is rarely taught in mechanics courses, is
that if the parameters that define a periodic motion of a
particle change sufficiently slowly, then the action of the
periodic motion is conserved. If p, are oscillating com-
ponents of the canonical momentum of the particle
Hamiltonian and x, are the conjugate canonical coordi-
nates, then the action is given by an integration over the
periodic motion, $pq-(dxy/dr)dt. Such invariants are
called adiabatic invariants, and the magnetic moment u
is an example. The conservation properties of adiabatic
invariants is a complicated subject (Kruskal, 1962),
closely related to the existence of a magnetic surface
(see Sec. III.A). The basic result is that if the parameters
of a Hamiltonian are changed on a time scale 7, which is
slow compared to the frequency ) of a periodic motion,
then the action of that motion is conserved with expo-
nential accuracy. That is, the variation of the action is of
order exp(-QT).

Canonical momenta are defined using the Lagrangian
formulation of the equations of motion. The Lagrangian
of a particle in electric and magnetic fields is

L(x)?)—ﬂ qf-zi—q‘l’,

5 (189)

where ¥=di/dt, B=V X A, and E=—dA/dt—V®. The ca-

nonical momenta are defined by

p= (190)

QB 1)
¢|P‘

The time derivatives of the canonical momenta are ﬁ
=dL/dx.

The Lagrangian gives the standard equations of mo-
tion, Eq. (175), in Cartesian coordinates. In these coor-
dinates, the canonical momentum, p=dL/dv, is
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p=mv+qA, (191)

where v=x. The gradient of the Lagrangian is dL/d<
=q€(§-ﬁ)—q€®. A vector identity implies 6(5-/1):17
X (5 ></§)+1? ﬁg where v is not differentiated since it is
an independent coordinate in a Lagranglan analysis.

Now, dp/dt= mdv/dt+q&A/r9t+v VA

equivalent to mdv/dtzq(E+v X B).

The beauty of the Lagrangian approach is the ease of
finding the equations of motion in arbitrary (¢, 8, ¢) co-
ordinates, x(i;,6,¢,t). If L is independent of a coordi-
nate ¢, as it is in axisymmetric plasmas, then p, is a
constant of the motion, p,=dL/Jdp=0. The ¢ component
of the canonical momentum is

so p=dL/ix is

. X - ox
Do=mv:-—+qA-—

. 192
Py o (192)

This equation is obtained from p,=dJL/d¢ using dx/dt
=0x/dt+ (%) )+ -+, which implies (dxX/dr)/d¢
=0x/d¢. The poloidal flux is z,/fp:—ZaTA-(&f/ dp) using
Eq. (6) for A with the gauge g=0. The constancy of p,,
ensures the confinement of particles of sufficiently small
velocity. Particles cannot cross the field lines by a dis-
tance greater than their gyroradius in the poloidal field,
BPE€(¢/27) X Vi,, alone.

The definition of the adiabatic invariant that is known
as the magnetic moment is the integral

q 1 N de

p= L5

193
m2m dt (193)

over a gyroperiod where p is the canonical momentum,
p=mv+qA. The quantity mu/q is the action of the gy-
romotion.

The approximate expression for the adiabatic invari-
ant, ,u:mvi/ 2B, which is correct to lowest order in the
gyroradius to system size, is obtained from Eq. (193)

using $V, - (dx, /dDdi=Q2m/ Q> and $A-(d¥, /di)dt
=—$A-dx,. The minus sign arises because a positive

charge moves about its circular orbit in a clockwise di-
rection, while the convention for a line integral is coun-

terclockwise. The integral $A-dx, = [B-da=mB|p|>. The
approximate expression for the magnetic moment, u
=mv? /2B, follows.

The magnetic moment is proportional to the magnetic
flux enclosed by the circular gyromotion, so magnetic-
moment conservation can be viewed as flux conserva-
tion. The conservation of the magnetic moment is also
equivalent to a fixed Landau level of the quantum
theory of particle motion in a magnetic field. That is, the
adiabatic invariance of u follows from the adiabatic ap-
proximation of quantum mechanics. The lowest-order
conservation of u can also be demonstrated by differen-
tiating the expression for u of Eq. (170) with respect to
time.
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Just as magnetic surfaces can only be broken by reso-
nant perturbations, the invariant x can only be broken if
there is a resonance between the time variation of the
gyromotion and the gyromotion itself. The Fourier
transform of an analytic function [f(¢) exp(-iQ¢)dt
~exp(-QT), where T is the distance of the closest pole
of f(¢) from the real axis; see Sec. V.D.1. T is the charac-
teristic time scale for variations. It is sometimes said that
the magnetic moment is conserved to all orders in e
=1/Q¢. What is meant is that if the function exp(-1/e€) is
Taylor expanded in € about =0, then every term in the
Taylor series is zero. The function exp(—1/¢) is the most
important example in physics of a function that is not
zero but has a Taylor series that is identically zero. It
serves as a warning that an expansion in a small param-
eter can be subtle. A complicated variation in the mag-
netic and electric fields across the field lines is irrelevant
to u conservation if the total time derivatives of these

fields, d/dt=d/dt+ vHIS-V, are small compared to the gy-
rofrequency (). The irrelevance of variations across the
magnetic field to the conservation of u is important for
the validity of gyrokinetic theory, which is discussed in
Sec. VI.G.

The constancy of the magnetic moment implies that
the number of independent variables in a guiding-center
calculation is four instead of the six required for the full
particle motion. The four variables can be taken to be
the three components of the guiding-center position and
the energy. The energy, or Hamiltonian, of a charged
particle is

H=-mv*+qd. (194)

N | =

Magnetic-moment conservation implies the energy can
also be written as

1
H= zmvﬁ + uB +q®. (195)

As shown below, the gyrophase averaged change in the
energy is

dH J dA,
— ) =—(uB+q®)-v—,
<dt> ﬁt(M +q®P) -v, ot

(196)
which can be integrated along with )Zg to obtain the en-
ergy H. The parallel velocity is given by the energy and
magnetic moment,

vi= = \2m(H - uB - q®). (197)

Equation (196) for the gyrophase averaged energy
change can be derived by writing the Hamiltonian in its
canonical variables, H(p,x,t)=(p—qA)?/(2m)+q®, with
the particle velocity v=(5—gA)/m. Hamilton’s equa-
tions imply that dH/dt=0H/dt, so
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dH ob  _ 9A
=52, (198)
ot ot

The only subtle term in the derivation of Eq. (196) is
(qv L-&A/ dty. This term is calculated using the same
technique as that for gﬁfi L -(dx, /dt)dt in the magnetic
moment. That is, (17L-&A/0[):—(9/2)(03/0t)|ﬁ|2.

3. The drift Hamiltonian

When the scale of the spatial and temporal variation
of the magnetic and electric fields is long compared to
the gyroradius and the gyrofrequency of a particle, the
motion of the particle can be tracked using the drift
Hamiltonian, which is the Hamiltonian for the guiding-
center motion. This Hamiltonian is the energy, Eq. (195),
H(pe,pqo,G,Q,t)z%mvﬁ+,uB+qd>. The canonical mo-
menta of the drift Hamiltonian are

Mol q
Po=5_Zmvit ot (199)
and
oG q
. 2;)TBmvH 2ot (200)

The (¢,, 0, ¢) coordinate system is the Boozer coordinate
system, Eq. (58), with the subscripts omitted to simplify
the notation.

To obtain the drift Hamiltonian and its canonical co-
ordinates, we start with a Lagrangian for the guiding-
center motion that was given by Taylor (1964),

o1 .. .-
Ly(x,x) = Em(f' b)*+qx-A—(uB +q®d), (201)

where b=B/B. To lowest order in the ratio of gyrora-
dius to system size, its trajectories agree with those given
by Alfvén’s expression for the guiding-center motion
[Eq. (181)]. The validity of the Taylor Lagrangian is
demonstrated by an explicit calculation. The canonical

momentum p=JLy/dk is p=mvb +q/§. The energy or
Hamiltonian is H=pj-x— Ly, which gives Eq. (195). The
time derivative of the canonical momentum is dp/dt
=mv,b+mv,db/di+qdA/dt, but db/di=ab/ot+v,k with
#=b-Vb, and dA/dt=JA/dt+v-VA. The equations of
motion in Lagrangian dynamics are dp/dt=3dLy/dx. The
gradient of the first term in L7 is zero, that is, 6(17 -b)
=(). This follows from 6(\7-13):17>< (ﬁx B)+§-V7§, but b
X (6 X b)=—k and ﬁ-ﬁﬁzv“ﬁ. Using 6(\7-/]):17>< B
+7-VA, one has ﬁLTz qv X §+q§-§ﬁ —6(,uB+q<1>).
Putting the pieces together, mv”l;+mvu((91; | 3t+vK)
+qﬁfi/&t2qﬁ><§—ﬂ,u3+qd>). The component of the
equations of motion that is along the magnetic field is
then mv= M5'€B+qE,‘, which is consistent with Eq.
(196) for the gyrophase averaged energy change. The
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components of the velocity that are perpendicular to the
magnetic field agree with Eq. (181) for v,.

Given a Lagrangian, it is usually trivial to obtain a
Hamiltonian description of trajectories. However, a
subtlety exists in obtaining a Hamiltonian description of
guiding-center motion from the Taylor Lagrangian. The
canonical momenta plus the coordinates of the Taylor
Lagrangian depend on only four independent variables,
which can be taken to be (x,v)). Consequently the
Hamiltonian can have only four variables, two canonical
coordinates and two canonical momenta.

The canonical coordinates of the drift Hamiltonian
are closely related to the Boozer magnetic coordinates,
Eq. (58), so one needs to transform the Taylor Lagrang-
ian into these coordinates. The expression is

$0— i,
2

m G¢+Ié ?
Ly=7\ 1o +q

—uB—-q®d
> 2B M q4®Pm,

(202)

where ®@,,=®+s. The function s is determined using Eq.
(28) and gives the effect of the motion of the magnetic
coordinate system. Usually the distinction between ®,,
and @ is negligible, and so it will not be retained. The
most difficult and subtle point in the transformation of
the Taylor Lagrangian into Boozer coordinates is the
parallel velocity, v-B=B-dx(i,,0,¢,t)/dt, which gives
vi=(uo/27B)G () ¢+ 1(1) 6]. To prove this, use the
chain rule to write d¥/dt=0%/dt+(0%/ )+ The

term B-dx/ é’t:é-ﬁ, Eq. (29), can be taken to be zero,
because the flow of the canonical coordinates along the
field lines can always be chosen to be zero. The time

derivatives 6= (v,/ B)B-V6 and ¢ are larger by the ratio
of the gyroradius to the system size than the derivative

lﬂt, so one can let v-B= (B &x/06)0+(B x/d¢)@. The
transformation of - A=A -1+ (,/27) 6— (¢h,/2m) ¢, while
A-ii=—s with the choice of gauge g=0 [Eq. (A20)].
Combining the results, one obtains Eq. (202).

Given the Taylor Lagragian in magnetic coordinates,
Eq. (202), the determination of the canonical momenta
and the drift Hamiltonian are straightforward. The ca-
nonical momenta are p,=dJL/ 96, which gives Eq. (199)
and p,=dL/d¢, which gives Eq. (200).

It is also useful to have the Hamiltonian for the
guiding-center motion in Clebsch coordinates (¢, «, ¢).
In these coordinates the magnetic field has the contra-
variant representation B=V x (zﬁVa) Eq. (9) and the co-

variant representation B= V¢+B Va+B wV(ﬁ Eq. (11).
Dotting the two representations together, one finds that

the inverse of the coordinate Jacobian is B- V}b:B? The
Taylor Lagrangian is transformed into Clebsch coordi-

nates by noting that v-B=B-(dx/dp)dp=¢ and v-A
=(dx/ d)-A= . The canonical momenta are
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FIG. 12. (Color) Trapped and passing particles: A particle is
trapped or passing depending on its energy H relative to the
energy wB, . Bay 1 the maximum of the field strength along
a magnetic-field line, and u is the adiabatically conserved mag-
netic moment. The distance along the line is €. The electric
potential @ is ignored for simplicity.

=qy (203)
and

Py=mv/B=qp;. (204)

The Hamiltonian is the energy [Eq. (195)],

B?
H(p op gt ) = p¢ +uB +q®. (205)
A comparison of the trajectories given by the drift
Hamiltonian in Clebsch coordinates with those obtained

from Eq. (183) is instructive. Equation (183) implies

dy . - ( dp 9B aPn>
G, Vy=vp| P el
ar VeV PEBLG, ad

The first of these two terms is reproduced by the Hamil-
tonian formulation, but the second is not. The change in
¢ as the particle moves along its trajectory due to the
term —v Bd(B,p))/dp=vd(B.p)/d is given by ¢
=-B,p;. This follows from d¢=Bd¢{, with € the distance

along é, and dt=d{/v,. B, has dimensions of the mag-
netic field times a length, which means a length of order
a, the scale of the plasma. Consequently, the maximal
deviation of ¢ along a trajectory is approximately
oyl Y= p,/a, which can be viewed as a redefinition of the
guiding-center position, not a systematic drift. The loca-
tion of the guiding center is a question of definition to
within a distance of order a gyroradius. That arbitrari-
ness can be used to simplify the equations for the
guiding-center motion.

(206)

4., The action invariant J

The conservation of the magnetic moment w causes
the parallel velocity of a particle to pass through zero
and change sign at a point where H=uB +q®. Particles
that are trapped between two such points of high mag-
netic field or electric potential are called trapped par-
ticles (see Fig. 12). They have a periodic oscillation be-
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tween the points and hence an adiabatic invariant, which
is customarily written as

J= § mV”dg.

J is called the action invariant (Northrop, 1963). In
Clebsch coordinates (¢, a, @), Egs. (9) and (11), the ac-
tion is J(H, u, ¥, @) = $p 4d p= $mv\d€ [Eq. (204)], which
means J is an action in the standard sense of Hamil-
tonian mechanics.

The derivatives of the action, J(H, u, ¥, @) give impor-
tant information about the long-term trajectories of
trapped particles. The derivative with respect to the en-
ergy gives the bounce time 7, the time to go from one
turning point to the other. Equation (197) for the paral-
lel velocity implies dvy/dH=1/mv, so

(207)

208
oH Vi ( )

Writing J=q § pjd » makes the ¢ and « derivatives easier
to evaluate. Equation (206) implies

dp_ Ve Vo oABup)

(209)
Jda VHB &d)
Therefore
al v,V
2_yg 35 Ye' VY 10— 20ny. (210)
Jda V”

where Ay is the change in ¢ going from one turning
point to the next. Similarly,

a
— =-2qAa.
b
The long-term motion of a trapped particle consists of a
radial drift,

(211)

dy 14l
v _toe (12)
dt qdlloH

and a precession,
d 1 alld
da 220§ (213)
dt q dJloH

E. Particle trajectories and transport

e Particles that have a sufficiently large ratio of the
velocity parallel to the magnetic field, v, to the total
velocity v can move all along the field lines (Fig. 12)
and are generally well confined when magnetic sur-
faces exist. Such particles are called passing particles.

e Particles with a small ratio of v|/v are trapped be-
tween maxima of the field strength (Fig. 12) and are
well confined only when stringent conditions are met
on the variation of the magnetic-field strength in the
magnetic surfaces. The trapped particles can be well
confined if the field strength depends on only one
angle in the magnetic surface, as is the case in axi-
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symmetry, or if the magnetic-field strength is the
same at all minima of the field strength in a magnetic
surface.

e The electric potential in a confined plasma, with a
temperature T, has the characteristic magnitude |P|
~T/e. The reason is that one species is generally
more poorly confined, so that a species preferentially
leaves the plasma until its pressure gradient is bal-

anced by the electric field |Vp|=|enE|. Only a tiny
fraction of the particles are lost while setting up this
electric field, which is called the ambipolar field, so
the plasma is approximately quasineutral.

e A pressure gradient drives a net current along the
magnetic-field lines. This current is called the boot-
strap current.

In a confined fusion plasma, particles can move a dis-
tance more than a thousand times the size of the plasma
between collisions. Plasma confinement for times long
compared to the collision time requires that the trajec-
tories of all particles that form a Maxwellian distribution
stay close to the constant-pressure surfaces. In addition,
the alpha particles that are produced by the fusion reac-
tion must remain confined as they slow from their birth
energy of 3.5 MeV and heat the plasma (ITER Physics
Expert Group on Energetic Particle, ..., 1999a). Two
questions need to be addressed: (1) Do the trajectories
of high-energy particles remain in the plasma? (2) What
effect does the straying of near-thermal particles from
the pressure surfaces have on the transport coefficients?

Before discussing the motion of particles and the as-
sociated transport phenomena, it is useful to have an
estimate of the radial electric field in a plasma. The char-
acteristic change in the electric potential across a con-
fined plasma is |qA®/T| of order unity. This potential
difference is associated with only a small net charge den-
sity gn, with n,/n<<1. That is, a confined plasma is gen-
erally quasineutral. The reason for the potential differ-
ence A®d is that one species, ions or electrons, is more
poorly confined than the other. The more poorly con-
fined species leaves the plasma until the electric poten-
tial becomes sufficiently strong to provide confinement
for that species d In p/dy,=—qnd®/dy,. If the tempera-
ture were constant, the density and potential would be
related by nocexp(—q®/T). Even a substantial density
drop is associated with a modest change in g®/T. The
net charge density gn, associated with this potential is
given by Gauss’s law, V’®=—qn,/€,, which implies gn,
~ €, A®/a* with a the minor radius of the plasma. The
fractional charge imbalance can be written as n)/n
~(\p/a)?, where the Debye length is A\p,=1¢,T/g’n. In
a fusion plasma, the Debye length is of order a tenth of
a millimeter, so the charge imbalance between electrons
and ions n,/n is extremely small, and the plasma is said
to be quasineutral. The electric force exerted on the

overall plasma, anE, is also a factor of (\p/a)? smaller

than the pressure force V»p.
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A related concept to quasineutrality is ambipolarity,
which means the electrons and the ions diffuse at the
same rate so there is no radial current. In steady-state
situations, plasma transport is generally ambipolar for
otherwise the plasma would lose either all of the ions or
all of the electrons.

1. Confinement of particle trajectories

The confinement of individual particles is strongly de-
pendent on whether a particle is trapped or passing (Fig.
12). If B,,..(#,) is the maximum magnetic-field strength
on the magnetic surface that contains toroidal flux ¢,
then a particle is trapped if uB,,,.=H-q®(¢,). If a par-
ticle is not trapped then it is said to be passing. For
passing particles, the parallel velocity retains a given
sign between collisions, v;>0 or v <0, and is never zero.
For a barely trapped particle, the conservation of u im-
plies ,uBmax:,uBm,»n+mvﬁ/ 2, where v, is the parallel ve-
locity at the location of the minimum of the magnetic-
field strength. If one defines 2e=(B,,..— Bnin)! Bmaxs
then at the magnetic-field minimum v,/ v=12¢ for a
barely trapped particle. In a circular-cross-section toka-
mak, e=r/R,,.

The confinement of passing particles is rarely a prob-
lem unless magnetic surfaces are lost. The confinement
of passing particles is easily derived using the form for
the guiding-center velocity of Eq. (183). Since the paral-
lel velocity never vanishes, the motion of a passing par-

ticle is along an effective magnetic field é*(H LX) =B
+V X (p,B), where the energy H and the magnetic mo-
ment u are constants of the motion. The field B is di-

vergence free and differs from the magnetic field B only
by a small term that is proportional to the gyroradius to

the system size. If B has magnetic surfaces, then the

surface quality of the B field can be investigated using
the methods of Sec. IIL.A.

The confinement of trapped particles in toroidal plas-
mas is more difficult than that of passing particles, and
constrains the design of confinement systems. In prin-
ciple, the guiding-center drifts can carry a trapped par-
ticle out of the plasma after it has traveled a distance of
order (R/p)a, where R is the radius of curvature of the
field lines, p is the gyroradius, and a is the minor radius
of the plasma. This distance is too short for confining
fusion plasmas. The time constant that is associated with
unbounded drift motion is 7=aR/(pv), which is of order
the time for Bohm diffusion [Eq (229)].

Trapped particles are well confined if the magnetic-
field strength along the magnetic-field lines satisfies pe-
riodicity, B(€)=B(€+ L), where ¢ is the distance along a
field line and L is a constant along that line. Magnetic
configurations that satisfy this constraint are called qua-
sisymmetric. If the field strength is given in Boozer co-
ordinates, Eq. (58), then periodicity implies the field
strength can depend on the poloidal and toroidal angles
only though the linear combination 6,= 6+ N,¢, where
N, is an integer. That is, the field strength has the form
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B(i,,6,). The helical canonical momentum, p,
=p-(3x/d¢)y,, of the Taylor Lagrangian, Eq. (202), is
conserved,

G-N,l
27B

lﬁp +Nh¢t

o (214)

Pn= M myv,—q

The expression for p, is obtained using (dx/ 9¢)g,
=(0x/d¢) g— N;,x1 96, s0 p,=p ,—Nyp, The conservation
of p, means the excursions that trapped particles make
from the magnetic surfaces are proportional to the gyro-
radius.

An axisymmetric tokamak satisfies the condition of
quasisymmetry with N,=0. But the condition of quasi-
symmetry can also be satisfied to high accuracy in stel-
larators in which the magnetic surfaces are not symmet-
ric in ¢. The Quasi-Helically Symmetric stellarator at
the University of Wisconsin, the first operating quasi-
symmetric stellarator, has four periods, N,=4 and N,
=4 (Talmadge et al., 2001). The NCSX stellarator, which
is being constructed at Princeton (Zarnstorff et al., 2001)
is quasi-axisymmetric, N,=0, just as is a tokamak, but
has three periods, N,=3 (Fig. 7). Garren and Boozer
(1991a, 1991b) have shown that quasisymmetry cannot
be precisely achieved except in perfect axisymmetry.
However, the required breaking of quasisymmetry,
which is of order the local inverse aspect ratio cubed,
(r/R)?, can be very small.

A different method than quasisymmetry for obtaining
trapped-particle confinement can be derived starting
with the requirement that a deeply trapped particle re-
main close to a flux surface. A condition for good con-
finement of deeply trapped particles is that all the
minima of the field strength B,,;,, along each field line
occur at essentially the same value of B (Mynick et al.,
1982). Field minima satisfy dB/d¢(=0 and #B/d>>0,
where € is the distance along a magnetic-field line.
Deeply trapped particles have (v/v,)><1 even when
they are near the minimum of the field strength and
have esentially zero action, J=¢mvd€=0 [Eq. (207)].
Since the action is conserved, the particles must remain
deeply trapped throughout their drift motion. That is,
they must remain at a minimum of the field strength.
The guiding-center drift, Eq. (181), for a deeply trapped
particle is Jg:(B/qBZ) XV(uB+q®) so the particles
drift on surfaces of constant uB +¢g®. Since the potential
is a function of the toroidal flux, ®(¢,) (Sec. V.B.3), the
deeply trapped particles stay on a flux surface if
B, da=0. The derivative dB,,;,/ da is zero at minima
if all minima of the magnetic field on a ¢, surface have
the same value.

If deeply trapped particles are confined to the mag-
netic surfaces, then it is relatively easy to shape the
variation in magnetic-field strength along the field lines
to confine most of the trapped particles. However, par-
ticles near the boundary between trapped and passing
tend to have bad orbits unless all field maxima are at the
same field strength (Cary and Shasharina, 1997). The
condition of all field maxima being at the same field



Allen H. Boozer: Physics of magnetically confined plasmas 1121

strength is not as important because a radial varia-
tion in the average field strength, B(#)
=\[B?>Jdbde/ [ Jdbde, and the electric potential (i)
cause particles to drift in a way that converts particles
near the trapped-passing boundary into either trapped
or passing particles. In addition, collisions in a plasma
are a diffusive phenomenon, and thermal particles near
the trapped-passing boundary switch rapidly between
the two types of orbits, which means they slowly diffuse
rather than rapidly drift out of the confinement region.

The W7-X stellarator is designed (Niithrenberg et al.,
1995) to make the minima of the field strength on a
magnetic surface have the same value. This is accom-
plished by the plasma’s having a pentagonal shape when
viewed along the z axis (Fig. 6). Each magnetic surface
has five straight sections where the field strength is low
and five high-curvature corners where the field strength
is high. It is easy to design all field minima to have the
same field strength, since they occur in the straight sec-
tions. The maxima of the field strength occur in the cor-
ners of the pentagonal shape. The fractional variation in
the field strength at the maxima is approximately
28R/ R, where 6R is the half-width of the plasma along
the major radius at the corners, and JR is very narrow in
W7-X, 6R/R=1/20. The pressure balance in W7-X ap-
proximately satisfies p(,)+B3(t,)/2u, const, so at the
design beta value (2uop/B?)=5% the radial variation in
B, is sufficient to confine most particles near the
trapped-passing boundary. The principle used to confine
particle orbits in W7-X has been given many names:
linked mirrors, quasi-isodynamic, quasi-omnigenious,
and most recently quasipoloidal symmetry. Quasipoloi-
dal symmetry is broken by the strong curvature in the
corners to first order in the inverse aspect ratio r/R,
while quasisymmetry in its more traditional usage is bro-
ken in third order, (r/R)>.

A tokamak with too few toroidal field coils offers an
example of the bad particle confinement that occurs
when the field strength minima on a magnetic surface
have differing values. The field minima are created by
the space between the individual coils. Even when these
minima are shallow, dB,,;,/da is large and the particles
trapped in these minima drift out of the device on a
relatively short time scale aR/(pv). The fractional varia-
tion in the magnetic field due to toroidal asymmetry is
called the toroidal ripple . The approximate expression
for the field strength is B(i;,6,9)=By{1—(r/R,)cos 8
+8cos(Ne)} [Eq. (19)]. Unless the toroidal ripple satis-
fies §<(r/R,)(¢/N) it causes a large number of second-
ary minima at varying values of the field strength.

When the minima of the magnetic field on a pressure
surface are not all at the same field strength, the colli-
sionless drift trajectories generally cross a large fraction
of the pressure surfaces. From the conservation of ac-
tion, Sec. VI.D.4, one has
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Since « is the Clebsch angle with a characteristic range
of unity, the radial excursion of particles A¢; is approxi-
mately (3J/da)/(J/d¢,). This can be reduced by enhanc-
ing the precession, which is the change in the Clebsch
angle per bounce, Aa=—(dJ/dy)/2q [Eq. (211)]. The
precession of the deeply trapped particles is propor-
tional to d(uB+q®)/dy,, which for thermal particles is
generally dominated by the radial variation of the po-
tential, d®/dy, with either sign of the radial electric field

E=—(d®/dy,)V i, enhancing the confinement of drift or-
bits. However, for superthermal particles a precession
zero, or resonance, can occur in which d(uB+q®)/dy,
=0. Frequently, dB/diy,<0 for deeply trapped particles,
which means they are in a region of bad field-line curva-
ture. In this case, an electric field that tends to push a
charge species out, g(d®/dy,) <0, cannot have preces-
sion resonance and provides better confinement of the
individual trajectories than an electric field that pulls
that species in. For very-high-energy particles, such as
fusion a particles, u=(mv>/2)/B is sufficiently large
that only the term wdB/dy; in the precession is impor-
tant.

The action J is only an adiabatic invariant and is not
conserved if the integrand of Eq. (207) varies on the
time scale of the bounce motion 7,. Even in the absence
of collisions, the action invariant can be broken in two
ways. First, the drift motion of a particle can take it to a
place where the local minimum in which it is trapped no
longer confines particles with the action that that par-
ticle has. Each region in which a particle can be trapped
has a maximum value of the action, J,,,, that it can
confine. As the particle drifts from one field line to an-
other, the maximum action varies, and if the action J
exceeds J,,,, the particle escapes from the region where
it has been trapped. A particle can also be captured by
local minima if it drifts so that J,,,, is increasing.

The second way the action J is broken by the particle
drift motion is if a particle drifts a sufficient distance in a
full bounce that the magnetic field near a turning point
changes significantly from one bounce to the next. This
is particularly important for finding the effect of toroidal
ripple on trapped alpha particles in tokamaks and can
determine the required limitation on ripple. The change
in ¢, per full bounce of a particle is 2A,(4;, ) =dJ | dax. If
the change in « during a full bounce, which is -24//dy,,
is sufficiently large, the sign of 2A,(¢;, a) is essentially
random with each full bounce, and the particle diffuses
collisionlessly with a diffusion rate that is approximately
(Ay)?/ 7, which is proportional to the square of the
ripple amplitude &. This effect (Goldston et al., 1981)
can occur at arbitrarily small ripple, even ripple that is
too small to cause secondary minima §<(r/R,)(¢/N), if
the precession rate of the alphas is sufficiently large in
the axisymmetric field.

The breaking of the conservation of the action J due
to particle drift motion can give trapped-particle trajec-
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tories a complexity that can only be studied by numeri-
cally integrating the guiding-center equations of motion.

2. Transport at low collisionality

The deviation of trapped-particle trajectories from the
pressure surfaces leads to enhanced transport and to a
net parallel current that is proportional to the pressure
gradient, the bootstrap current. The transport phenom-
ena associated with the deviation of the particle drift
trajectories from the pressure surfaces are known as
neoclassical transport.

Usually the transport rates for particles and energy in
tokamak plasmas are much larger than their neoclassical
values because of microturbulence (see Sec. VL.F), so
the neoclassical transport theory is not as important as
one might think. However, the bootstrap current is im-
portant for steady-state tokamaks and can be a compli-
cation in the design of stellarators. The theory of neo-
classical transport in tokamaks has been reviewed by
Hinton and Hazeltine (1976), and a book on the theory
of collisional transport in toroidal plasmas has been
written by Helander and Sigmar (2002).

To understand neoclassical transport, suppose the
typical deviation of a trapped particle from a pressure
surface is a distance (Ar),. In a low-collisionality limit,
the distribution function must be consistent with the
Vlasov equation, df/dt=0. Since the overall confinement
is long compared to a collision time, the distribution
function must also be close to a local Maxwellian, f),
o<n(r)e”™'T"_ The deviation from a local Maxwellian is

A

f=(Ar),d1n(fy,)/dr. If this is inserted into Eq. (146) for
the entropy production, ignoring the temperature gradi-
ent for simplicity, one finds that

2
§.= %(Arﬁ(M) , (216)
V2e

dr

where \2¢ is the fraction of trapped particles. For circu-
lar magnetic surfaces, e=r/R,, the inverse aspect ratio.
Actually there are two factors of \2€ in this equation for
the entropy production. The first factor is an enhanced
effective collision rate v/(2€) because the collision op-
erator is diffusive, and particles need to be scattered
through velocity space by a distance of only y2ev to
move all the way across the trapped-particle part of ve-
locity space and become passing particles. The second
factor of \2e comes from the trapped particles’ being the
only particles that have a large deviation from the pres-
sure surfaces (Sec. VI.LE.1). The rate of entropy produc-
tion is also [d In(n)/dr]* times the diffusion coefficient,
Eq. (1_52), so the diffusion coefficient is D
=~ (v/ \5'26)(Ar)[2.

For quasisymmetric confinement systems, the devia-
tion of the trapped-particle trajectories from a constant-
pressure surface can be calculated using the conserva-
tion of the helical canonical momentum pj, [Eq. (214)].
The deviation of a particle from a magnetic surface de-
pends on the variation in its parallel velocity v, which is
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maximized by the barely trapped particles. For a barely
trapped particle, v;/v==+y2e. Consequently a barely
trapped particle deviates by an amount

~ G—NhI

Ay =\2e€pg P (217)
L+ Nh

on either side of the flux surface on which its turning
points are located, where p=mv/gB is the gyroradius.
At large aspect ratio, ¢,=mwBr’, I<G=2mR,B/u,, and
the deviation of a barely trapped particle is

2 p
A = \/j .
(Ar)s €L+ N,

This deviation of trapped particles is called a banana
orbit because of its shape when projected on a constant-
¢ plane. The diffusion, D= (v/ V’Te)(Ar)?, is then ap-
proximately

2
D~ L(L) ,
€%\ 1+ N,

which is called the neoclassical diffusion coefficient (Ga-

leev and Sagdeev, 1968). In tokamaks and quasi-

axisymmetric stellarators, N,=0, but N, is nonzero in

quasihelically symmetric stellarators (Talmadge et al.,
2001).

As shown by Kovrizhnikh (1969), the statement that
Eq. (219) gives the neoclassical diffusion in a quasisym-
metric system is misleading. This equation is approxi-
mately correct for the diffusion of heat, but the diffusion
of particles in a quasisymmetric system can only arise
from unlike particle collisions. The reason is the
momentum-conserving properties of the collision opera-
tor. Three expressions are important: (1) the collisional
entropy production, Eq. (145), (2) the relation between
the collisional entropy production and the transport co-

efficients, Eq. (152), and (3) f=(A¢)d In(fy,)/ 9. The de-
viation of a particle from a magnetic surface, Ay;, is cal-
culated using p, conservation, Eq. (214), which for a

(218)

(219)

density gradient implies foc(dn/dy,)mv,. The momen-
tum conservation properties of the collision operator
then make the entropy production zero, s.=0, so no par-

ticle transport occurs. For a temperature gradient, f has
additional factors of the velocity, so the entropy produc-
tion s, is nonzero, and the diffusion of heat is approxi-
mated by Eq. (219). Particle transport does not vanish in
quasisymmetric systems because ions and electrons can
exchange momentum. For ions this rate of momentum
exchange is a factor of approximately \m,/m; smaller
than the rate of ion-ion collisions, though for electrons
the rates of momentum exchange with like and unlike
particles are comparable. Momentum conservation
means that the transport of ions and electrons must be
at the same rate, to lowest nontrivial order in
gyroradius-to-system-size ratio, independent of the ra-
dial electric field. This phenomenon is called intrinsic
ambipolarity.
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FIG. 13. (Color) Trapping of particles: In the presence of a
density gradient, the number of trapped particles with a paral-
lel velocity greater than zero differs from the number with a
parallel velocity less than zero. This variation in density is
transmitted to the passing particles by the diffusive property of
collisions in a plasma. A particle is trapped if —v2e<v/v
<\2€ at the minimum of the magnetic-field strength along a
magnetic-field line with e the variation in the field strength.
Otherwise the particle is passing.

In systems that are not quasisymmetric, the constraint
of ambipolarity sets the radial electric field. In quasisym-
metric systems, the radial electric field, and hence the
rate of toroidal rotation, are only weakly affected by
neoclassical transport.

One neoclassical effect that is very important for
steady-state tokamaks is the bootstrap current (Bicker-
ton et al., 1971). The conservation of p,, Eq. (214), im-
plies that the deviation of a trapped-particle trajectory
from the pressure surface has one sign, say positive,
(Ar),>0, when the parallel velocity is positive and an-
other, say negative, when the parallel velocity is nega-
tive. In the presence of a density gradient, dn/dr<0,
this implies that at a fixed radius there are more barely
trapped particles with a positive than with a negative
parallel velocity. The passing particles that have a posi-
tive parallel velocity interact through a diffusive colli-
sion operator with passing particles that have a negative
parallel velocity only through the trapped particles. This
and the fact that there are more trapped particles mov-
ing in the positive direction along the magnetic-field
lines than in the negative direction leads to an excess of
passing particles moving in the positive direction (see
Fig. 13). The excess of passing particles moving in the
positive direction produces a net parallel current j,
~qv(Ar)dn/dr, where vy= \VT/m is the thermal speed.
That is,

a1 (220)
I \;”;B L+ Nh dr’

The calculation of transport coefficients in non-
quasisymmetric configurations is complicated. Transport
coefficients as well as the effect of collisions on the par-
ticle trajectories can be determined using the Monte
Carlo equivalent to the collision operator (Boozer and
Kuo-Petravic, 1981). The Monte Carlo collision operator
represents the effects of collisions during a time step by
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a change of the velocity coordinates that has a random
component for each particle. The simplest Monte Carlo
collision operator represents the Lorentz collision op-
erator,

v d af
CH=5—0-M—, 221
" 2 (9)\( )(9)\ 22D
where A=v;/v is the pitch of the particle relative to the
magnetic field. The Monte Carlo equivalent is

A= (1= v\, = V(1 - \2)vr, (222)

where A, and A, are the new and the old values of the
pitch with the change caused by collisions during a time
interval 7. The symbol = means the sign is chosen at
random. Since the particle trajectories are the character-
istics of the operator df/dt, the inclusion of effects of
collisions by Monte Carlo methods means one can find
the solution f to the equation df/dt—C(f)=g by the
method of characteristics. This is the basis of §f Monte
Carlo studies of transport (Lin et al., 1995; Sasinowski
and Boozer, 1995), in which one calculates transport co-
efficients by using Monte Carlo methods to determine
the deviations from a local Maxwellian of the particle
distribution functions. An alternative to the Monte
Carlo codes for numerical evaluation of transport coef-
ficients is the DKES code (van Rij and Hirshman, 1989)
which solves an approximate form of the drift kinetic
equation by a variational principle.

3. Power required for maintaining fields

e The net current in a tokamak can be maintained in
steady state wusing externally produced radio-
frequency waves. However, the required power is un-
acceptably large for practical fusion power if more
than about a third of the total current is wave driven.

e Tokamaks can be designed so that more than two-
thirds of the net plasma current is maintained by the
bootstrap current, which is the net current driven by
the pressure gradient. The requirement of a large
bootstrap current makes the feasibility of steady-
state tokamaks more sensitive to the pressure profile
given by plasma transport processes than is a steady-
state stellarator.

An important issue for steady-state tokamaks is the
power that is required for maintaining the plasma cur-
rent (Fisch, 1987; ITER Physics Expert Group on Ener-
getic Particles, ..., 1999b). The traditional way to main-
tain the current in a tokamak is to have a solenoid
within the central hole of the torus. A change in the
magnetic flux in this solenoid produces a loop voltage,
V=ay,/dt, Eq. (31), which drives the current. A loop
voltage can only be maintained transiently, so a different
method must be adopted for long-pulse or steady-state
tokamaks.

The most developed method of steady-state current
drive uses waves to maintain a distribution of electrons
in which more electrons are moving in the direction re-
quired for the current than in the opposite direction.
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Unfortunately, too much power is required to maintain
the full tokamak current. However, the total current
need not be externally driven because a pressure gradi-
ent drives a net toroidal current, the bootstrap current
[Eq. (220)]. From the point of view of nonequilibrium
thermodynamics, the bootstrap current arises from a
cross term in the transport matrix. The bootstrap current
can provide most of the current in a tokamak, but the
magnitude and profile of this current is dependent on
the plasma pressure and density profiles. Since plasma
profiles are difficult to control in the absence of external
input power, the requirement of a large bootstrap cur-
rent places an additional uncertainty on the feasibility of
steady-state tokamaks, an uncertainty that does not exist
for steady-state stellarators.

Waves in various frequency ranges can provide the
power to maintain a current. In the frequency range of
the so-called lower hybrid waves, this power was derived
by Fisch (1978) and in the electron cyclotron frequency
range by Ohkawa (1970) and Fisch and Boozer (1980).
The required power to maintain a current using waves
can be approximated by a simple argument (Boozer,
1988). The most efficient steady-state current drive has
the current carried by high-energy, mildly relativistic
electrons that form a tail on the background Maxwell-
ian. The current density is j=en,c, where n, is the num-
ber of the tail electrons per unit volume and c is the
speed of light. The power per unit volume that is re-
quired to maintain this current cannot be smaller than
the power required to maintain the tail, p,=(y
—1)nm,c*v(y), where y=1/\1-v*/c* and u(y) is the
slowing-down rate of electrons with kinetic energy (y
—1)m,c?. The power per unit volume p,, is proportional
to a driven current of density j. The quantity &, =p,./j
has units of volts per meter. For electrons at y=2, which
is the most efficient energy for current drive, &,=¢&,
where

eln(A) _ ( (223)

=% o 087X> 1
T 47reg(clwp,)? ' 10

m
10—
m

the background electron density is n, the electron
plasma frequency is w,,=\ne’/eym,, and In(A)=17 is
the Coulomb logarithm [Eq. (135)]. Equation (223) is
obtained within a numerical factor if one uses the colli-
sion frequency v of Eq. (134) in the calculation of &,
=p,/j with v=c.

The power required to maintain a current using sub-
relativistic electrons can be calculated by similar argu-
ments, with the current density j=en,v and the power
per unit volume p,,=(n,m,v?/2)v(v). The rate of slowing
of high-energy particles »(v) is proportional to 1/v°, Eq.
(134), so

(224)

The total power to maintain the current is obtained by
multiplying &, by 27R, where R is the average major
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radius on a magnetic surface, to obtain, V,,=2nRE,,
which has units of voltage. The power is P,
=V, (p)(dI]diy)ds,, where I(i) is the net toroidal cur-
rent inside a magnetic surface that contains toroidal flux
.. The quantity V,, can be tens of volts, which makes the
power requirements for driving the total current—more
than ten megamperes—unacceptable.

The power required to maintain a current using waves
scales differently than p,= Eyj;, the power required using
a loop voltage, which means an electric field E;= nj;. The
power required for maintaining a current with waves,
Pw» is proportional to the driven current, while p,, scales
as the current squared. For the total current, the ratio
p,}/pwz(mgc2/T){(c/wpe)/a}/v‘E, where wf,eEnqz/eome
is the square of the electron plasma frequency and B,
=2up/ B%, is the plasma beta in the poloidal field alone.
For small tokamaks p,/p,, can be larger than one, and
currents are efficiently carried by high-energy electrons,
such as runaway electrons. In a power-plant-scale device
P, is much less than p,,. The more important ratio is the
ratio of p, to the fusion power, which is wvprp(T/
my?)(clw,,)!(a By, where vy is the collision frequency
of thermal electrons and 7 is the energy confinement
time. In a power plant, this ratio is comparable to unity.

F. Microstability

¢ Confined plasmas are generally unstable to perturba-
tions that have a wavelength across the magnetic
field comparable to, or smaller than, the ion gyrora-
dius p;, but with a wavelength along the field lines
that is comparable to the overall system size. For
near-Maxwellian plasmas, the characteristic growth
rates and frequencies of microinstabilities are C/a,
where C;=+/(T,+T;)/m; is the sound speed and a is
the plasma radius.

e Microinstabilities lead to microturbulence with an
associated particle diffusion of order the gyro-Bohm
rate, Dg:pl-zCS/ a. The relative amplitude of the fluc-
tuations in microturbulence is small, roughly equal to
the ratio of the ion gyroradius to system size, én/n
=~ p;/a.

e The most prominent microinstabilities in the modern
literature are the ion and the electron temperature
gradient modes. They are called the ITG or 7; mode
and the ETG or 7, mode.

e The logarithmic temperature gradients, dIn 7/dr,
can have critical values at which the transport greatly
increases. Plasma temperature gradients may remain
close to these critical values, which makes the tem-
perature throughout the plasma proportional to the
temperature near the plasma edge.

Even when a plasma is stable to perturbations that
have a wavelength comparable to the plasma size, the
plasma may be unstable to perturbations with wave-
lengths comparable to or smaller than the gyroradius of
the ions, p;. Such instabilities are called microinstabili-
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ties. Microinstabilities do not cause a sudden loss of the
plasma equilibrium but can greatly enhance the plasma
transport across the magnetic-field lines. Long-
wavelength instabilities, such as the instabilities dis-
cussed in Sec. V, can be so catastrophic in their effect
that the only issue of interest is whether they are stable
or not. With microinstabilities the primary issue is the
nonlinear, or saturated, state, which is generally turbu-
lent. In other words, the primary issue is the transport
caused by the microturbulence. Unlike the large fluctua-
tions associated with turbulence in ordinary fluids, the
fluctuations associated with plasma microturbulence are
small, én/n=p;/a~1/500. Horton (1999) has reviewed
the theory of microinstabilities associated with drift
waves, which is the type of microinstability of most rel-
evance to toroidal plasmas. Yoshizawa et al. (2001) have
reviewed the theory of turbulence in fluids and plasmas
with an emphasis on plasma microturbulence.

Although collisions play an important role in some
microinstabilities, generally the issue is whether the Vla-
sov equation, df/dt=0, is consistent with the growth of
electromagnetic perturbations. Gardner’s theorem
(Gardner, 1963) gives a condition under which the
Vlasov-Maxwell equations can have no unstable solu-
tions. Unfortunately, this condition is violated in
current-carrying plasmas, such as magnetically confined
plasmas. Gardner (1963) noted that the distribution
function in the Vlasov equation is the density of a con-
served fluid in phase space (x,p). If f(x,p) has a form
such that the plasma energy is increased by the inter-
change of any packets of this fluid, then no energy can
be removed from the plasma to support electromagnetic
fluctuations, and the system must be stable. If the distri-
bution function of a single plasma species in the direc-
tion 7 is

Ry = [ o7 5o, 225
Gardner’s theorem says the Vlasov-Maxwell equations
have no unstable solutions if a v, exists such that
udF/du<0 for all species, for all values of u, and for all
directions 7. Distribution functions can be far from local
Maxwellians and satisfy Gardner’s condition for stability.
Unfortunately, Gardner’s condition is not satisfied for a
current-carrying plasma, so microinstabilities are an is-
sue in magnetic confinement.

Rosenbluth and Rutherford (1981) argued that only
low-frequency microinstabilities are energetically pos-
sible when the source of their free energy is the pressure
gradient. By low frequency they mean no higher than
approximately C,/a, where C;=\T,/m;, T, is the sum of
the electron and ion temperatures, a is the plasma ra-
dius, and m;, is the ion mass. The energy per unit volume
associated with the oscillations of an instability is
roughly nm,(wA)? with o the frequency and A the spatial
scale of the microinstability. The maximum energy that
the oscillation can tap from the pressure gradient is ap-
proximately nTy(A/a)?, where a is the plasma radius.
The first-order term n7T,A/a vanishes because the aver-
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age motion of the plasma (A) is zero in an oscillation.
The instability is not energetically favored unless
nmiwA)><nTy(Ala)?, or |w|<C,/a.

A heuristic model clarifies some of the properties of
the plasma transport caused by the turbulence associ-
ated with fully developed microinstabilities. The per-
turbed electric potential 6® of a fully developed micro-
instability has a scale across the magnetic-field lines in
the magnetic surface of 1/k, and A in the radial direc-
tion. The variation of the potential 6O along the
magnetic-field lines is very weak, k;/k, <1, in order to
avoid Landau damping (Sec. VI.C). The variation in the

electric potential causes a drift velocity EXB/B The
magnitude of the radial component of this velocity is
ov,~k, 6®/B. Let 7, be the correlation time of the mi-
croturbulence, which means the time scale over which
significant changes in the pattern of the perturbed po-
tential P occur. If §,<A, then during a correlation time
particles in the plasma take a radial step, §,= év,7,., with
equal probability of the step’s being inwards or out-
wards. The random steps cause diffusion with the diffu-
sion coefficient D~ &’/,, which can be rewritten as D
~ k> (6®/B)*r,.

The correlation time of microturbulence has different
values in two limits. If the microturbulence is extremely
weak the correlation time is determined by the growth
rate of the underlying microinstability, and the theory is
essentially that of quasilinear diffusion (Sec. VI.C).
However, when the microturbulence is fully developed
the correlation time is determined by the turbulence it-
self changing the potential 6®. In this strong-turbulence
limit, the correlation time is determined by how long it
takes particles to diffuse across the potential contours,
T~ 1/(k2le). The diffusion coefficient D; is the coeffi-
cient for diffusion in the magnetic surfaces across the
field lines. In this direction, the EX B velocity is dv;
~(6®/A)/B, so the diffusion in the magnetic surfaces is
related to diffusion across the surfaces by D
~D/(k,A)*. The correlation time is 7,~A?/D, and the
radial step is §,~A. Inserting this expression for 7, into
D =~k*(6®/B)*r,, one finds

5D
DzkiA‘E‘. (226)

In strong microturbulence the particle diffusion is linear
in the perturbation amplitude rather than quadratic as it
is in quasilinear diffusion.

The perturbation amplitude that is reached in a mi-

croturbulent plasma is bounded by |V én|~|Va|. That is,
the microturbulence cannot create steeper gradients
than the ambient gradient while transferring energy
from the gradients. If one of the species is responding
adiabatically, which means e5®/7T=dn/n, the bound on
the fluctuation amplitude is
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edd on 1

~ , 227
T n ka (227)

where 1/a=d In (n)/dr is the scale of the ambient den-
sity gradient. The radial diffusion coefficient is then
AT

D==—

228
aeB’ (228)

where T'/(eB)=p;C,, which is the ion gyroradius times
the speed of sound.

The transport caused by microturbulence is depen-
dent on the radial extent A of the constant 6® contours.
There are two extreme assumptions about A. The more
pessimistic is that A is proportional to the size of the
plasma, Aca. This assumption makes the diffusion pro-
portional to the Bohm diffusion coefficient, which in the
modern literature is usually defined as

T

— 229
B’ (229)

DB =
although David Bohm’s unpublished work, which first
gave this coefficient, included an unjustified factor of %
The confinement time given by Bohm diffusion, 75
~a?/Dg, is similar to the time it takes particles to drift
out of a torus due to unconfined particle trajectories,
74=alv,, where a is the plasma radius and v,~(p;/a)C;
is the guiding-center drift velocity. The more optimistic
assumption is that A is of order the ion gyroradius p;.
The assumption that A= p; gives the gyro-Bohm rate,

2
pi T piCy
=L~ _ . 230
¢ aeB a (230)
The Bohm time is far too short for a fusion power plant.
The gyro-Bohm confinement time, ngaz/ D,, is mar-
ginal,

7 a’B?
~Tms————5,
s (T/10 keV)??

where the plasma radius is in meters and the magnetic
field is in tesla.

What sets the radial scale A of the perturbed potential
6®? First, consider a microinstability, such as the ion
temperature gradient (ITG) instability discussed below,
in which the electrons have an adiabatic response, which
means An/n=e®/T, but the ions behave nonadiabati-
cally. In linear theory, A can be much larger than the ion
gyroradius. However, the long radial contours of the po-
tential are broken up in the nonlinear microturbulent
state by what are known as zonal flows (Diamond and
Kim, 1991). These flows come from the £ X B drift in the
part of potential perturbation that has a nonzero aver-

age over the magnetic surface, 6D (y,,t)=(5D). The

surface-averaged fluctuation in the potential, 5<I_D(¢t,t),
cannot be damped by electrons flowing along the field
lines, unlike the rest of the variation in the potential,

(231)

50— 5. Indeed, the adiabatic response of the electrons,
if written correctly, is on/n=e(5®—5b)/ T. The drive for
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the zonal flows is the surface-averaged inertial force of
the fluctuating E X B velocity. The left-hand side, or in-
ertial part, of the Navier-Stokes equation is p(av/dr
+§-€5)=&(p5)/&t+€-(p\75), where the continuity equa-
tion dp/ az+€-(pﬁ)=0 was used to place the inertial

terms in the second form. The force that drives the zonal
flows is the average over the magnetic surfaces of
(V-(pvv)), where v=(B x Véd)/B? is the EX B velocity
of the plasma in the turbulence. The tensor pvv is known
as the Reynolds stress tensor, so zonal flows are driven
by the Reynolds stresses. When the microturbulence is
strong, the zonal flows are sufficiently robust to make
A=1/k,. When the ions are the nonadiabatic species,
the perpendicular wave number &k, tends to be compa-
rable to the ion gyroradius p;. The reason is that when
k| <1/p; the instability grows faster the larger k . How-
ever, when k, >1/p; the ions respond adiabatically to
changes in the potential by moving across the field lines
(Sec. VI.G), which removes the drive for the instability.
The typical fluctuation amplitude, Eq. (227), is of order
the ion gyroradius to system size, p;/a.

Microinstabilities, such as the electron temperature
gradient (ETG) mode that is discussed below, also exist
in which the ions respond adiabatically but electrons
nonadiabatically. The ions behave adiabatically when
the wave number of the perturbations satisfies k|, p;>1,
so the ions are free to cross the field lines in response to
changes in the potential. For this case zonal flows are
not important because the adiabatic ion response, on/n
~—ed®/T,1is to the full variation in the electric potential
and not just the part that varies on the magnetic sur-
faces, as is the case with adiabatic electrons. The radial
extent A of the constant-potential contours is still lim-
ited by the ion gyroradius p; because otherwise the ions
could not respond adiabatically, although the perpen-
dicular wave number for the ETG mode is comparable
to the electron gyroradius, k, p,~1. Because of the
great anisotropy, k A= p;/p,, ETG microturbulence can
produce transport comparable to ITG microturbulence
with zonal flows (Dorland et al., 2000; Jenko et al., 2000).
For both, the diffusion is comparable to the gyro-Bohm
rate. However, it should be noted that a number of ex-
periments see a reduction in the diffusion with ion mass
rather than the increase that would be expected from
gyro-Bohm diffusion. This effect, which is discussed by
Bessenrodt-Weberpals et al. (1993), is not understood
theoretically.

An important feature of recent experiments has been
the observation of transport barriers, which are narrow
regions in which transport is greatly reduced. This topic
has been recently reviewed (Terry, 2000; Wolf, 2003).
Despite the narrowness of the transport barriers, the re-
duction in transport is sufficiently great to significantly
enhance the overall plasma confinement. The theoretical
explanation (Biglari et al., 1990) is a stabilization of the
microturbulence by a strong radial gradient, or shear, in
the EX B flow in the magnetic surfaces. The shearing

rate of the flow is y,= |d[(E X B)/ B¥]/dr|. If the shearing
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rate v, is greater than the growth rate of a microinsta-
bility, the instability is stabilized by being torn apart by
the sheared flow and is stabilized. Since the jump in the
potential across a shear layer cannot be greater than
roughly A®=T;/e, and the typical growth rate is C,/a,
one finds the width of a shear layer is roughly &,~ Vap;.
Neoclassical diffusion in a tokamak, Eq. (219), divided
by the gyro-Bohm diffusion, Eq. (230), is

D 22 C
ok = ‘T; (232)

which is roughly 107 in a fusion plasma. A simple esti-
mate of the temperature drop that one can obtain across
a transport barrier AT/T is (&/a)(D,/D,.). Since
(8/a)(Dg/D,,) is generally greater than unity under fu-
sion conditions, one can obtain a large temperature drop
across a transport barrier. The difference between zonal
flows and transport barriers is that zonal flows have a
radial scale and a time variation determined by the mi-
croturbulence. Transport barriers are quasistatic fea-
tures with the strong variation in the electric potential
related to the strong variation in the pressure, through

the tendency in plasmas for |Vp|=|enE| for one of the
two species.

The diffusion coefficients that have been discussed are
more properly considered transport coefficients for heat
than coefficients for particles. The reason is that if either
species responds adiabatically there can be no particle
transport. Radial particle transport averaged over a
magnetic surface is I',=((n+ én) év,). For an adiabatic re-

sponse, dn/n=+e5P/T while v,=7-(B X 66@)/B2, SO on
and v, are out of phase, which means their average over
the surface is zero. Although individual particles of the
nonadiabatic species diffuse, so that heat can be trans-
ported, the electric field arranges itself so the net par-
ticle flux is zero in order to preserve quasineutrality,
qn;=en,.

Neither species responds fully adiabatically in fully
developed microturbulence, so microturbulence gener-
ally leads to particle transport across the magnetic-field
lines, which is effectively an enhancement of the perpen-
dicular component of the resistivity tensor 7, [Eq. (32)].
The component of the resistivity along the magnetic
field, 7, is, however, rarely enhanced by microturbu-
lence, for two reasons. First, the parallel component of
the fluctuating electric field 0E,=-ik;é® is small com-
pared to the electric field across the magnetic-field lines
because |k,/k, |<1, so little scattering of the parallel
motion of the particles occurs. Second, if any group of
ions and electrons can diffuse rapidly across the
magnetic-field lines, then 7, is enhanced, but if any
group of electrons can flow freely along the magnetic-
field lines, then 7, remains close to its quiescent plasma
value.

Our discussion of microturbulence has assumed that
only the electric potential is perturbed. Microturbulence
couples to shear Alfvén modes (Sec. VI.LH), when the
Alfvén frequency, wy=v 4t/ R, is comparable to that of
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microinstabilities, C,/a. Since the Alfvén velocity is v,4
=B2/ i ;
=\B*/ugm;n, the coupling occurs when the plasma
pressure satisfies S=2uop/B>>(at/R,)?. Alfvén cou-
pling means that the component of the vector potential
parallel to the magnetic field, dA,, is perturbed. If 6A,/B
is Fourier decomposed in magnetic coordinates that
have a simple covariant form, Eq. (58), then the mag-
netic surfaces are broken to form an island unless each
Fourier component (J8A,;/B),,, vanishes at its rational
surface, t=n/m [Eq. (80)]. It is unclear whether the reso-
nant components of (4,/B),,, are nonzero under stan-
dard plasma conditions, but if they were nonzero they
would produce a qualitative change in the microturbu-
lence due to electron transport along the stochastic
magnetic-field lines. On the other hand, if the Fourier
components (6A,/B),,, exactly vanish at their resonant
rational surfaces, then the effect of the coupling of the
microturbulence to the shear Alfvén modes would be to
cause the magnetic surfaces to wobble, which makes cal-
culations more difficult but causes no qualitatively new
physical effects.

The microinstability that has received the most atten-
tion in recent years is the ion temperature gradient
(ITG) instability, also called the 7; mode,

_dIn(T)

~ din(n)’ (233)

7i

where T(y,) is the ion temperature and n(y,) is the ion
density. The ITG mode, which has been reviewed by
Horton (1999), appears to be responsible for the en-
hanced transport of heat by ions in tokamak plasmas
and can be viewed as a kinetic version of sound waves
that are destabilized by the ion temperature gradient.
The simplest version of the ITG instability (Kadomt-
sev and Pogutse, 1970) occurs in a uniform magnetic

field B=BZ with the plasma having temperature and
density gradients in the x direction. The fluctuations de-
pend on y, z, and time as expli(k,y+k,z—wt)] and only
weakly on x. In a fluid model, the ions obey the conti-

nuity equation, dn/ g+V- (nv)=0, with the perpendicular

components of the velocity given by v l:é X B/ B2 Us-
ing a tilde to denote perturbed quantities, the continuity
equation implies

(234)

The parallel component of the velocity is given by force
balance along the field lines, nmdv,/dt=—dp/dz
—end®/dz, or

wmnv, = k,(p + en®d). (235)
The ions are assumed to respond adiabatically, which
means p/n>? is carried with the flow, d(p/n>3)/ot

+7-V(p/n3)=0, and
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b Sk d
bt —r-23)
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. (236)

The electrons are of sufficiently low mass that they can
move rapidly along the magnetic-field lines and remain
in thermodynamic equilibrium,
n_ed (237)
n T,
which is called an adiabatic response. In giving the elec-
tron response we have assumed that the perturbation
has a long spatial scale compared to the Debye length,
which implies the electron and ion densities are essen-
tially equal in both the unperturbed and the perturbed
states. In other words, the perturbed plasma is quasineu-
tral. Combining results, one finds

we [k \°T)T, 5 s 2
T-—C= (=) —y=+>+ ni-=|(, (238)
1) o/ m|T 3 o 3

where the electron drift frequency is

k.T.dInn
o, = — A —— 239
Wre eB dx (239)

If the frequency, w, of the perturbation is high compared
to the drift frequency ws,, then Eq. (238) gives sound
waves
T,+3T
W= =12 (240)
m;

However, when the frequency of the perturbation is low
compared to the drift frequency, w<< w-,, the frequency
of the perturbation is

T (2 ,
o= ;(5 - m)kz,

i

(241)

which has an exponentially growing I'TG mode for 7;
>2/3. In a plasma such as a fusion plasma in which
collisions are weak, neither the sound wave nor the ITG
mode are treated realistically in this analysis unless
w/ k> VT/m;, because otherwise strong-ion Landau
damping (Sec. VI.C) implies that only decaying solutions
exist. In other words, the analysis is only realistic for
sound waves if 7/T,<1 and for the ITG mode if 7> 1.
To the extent the electrons respond adiabatically, the #;
mode causes ion heat transport but no electron trans-
port and, because of quasineutrality, no particle trans-
port.

Here we have ignored not only kinetic effects, but
also two other important determinants of ITG stability,

shear and the BX VB drift. Magnetic shear, the change
in direction of magnetic-field lines from one pressure
surface to another, is stabilizing. Magnetic shear effects
will be considered in the discussion of Alfvén instabili-

ties in Sec. VI.LH.2. The BX VB drift destabilizes the
ITG drift in regions of bad magnetic-field-line curvature,
which means the center of curvature is on the higher-
pressure side of the field lines. This destabilization of the
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ITG mode is closely related to the destabilization of bal-
looning modes by bad curvature (Sec. V.C.2). The ver-
sion of the ITG mode in which curvature effects domi-
nate is called the toroidal branch, and the version in
which curvature effects are subdominant is called the
slab branch.

An important feature of ITG turbulence is that it be-
comes strong only when a critical gradient is reached. In
the simplest version of the theory, the critical gradient is
a critical value of 7, When curvature effects are re-
tained, turbulence can arise when the radius of curva-
ture R times 1/L;=|d In T/dr| exceeds a critical value.
The R/Lry critical gradient is counterintuitive, since the
weaker the curvature the easier it is for curvature to
destabilize the mode. However, the growth rate of the
mode and the maximum rate of transport become small
when R is large. In many experiments, in particular
those with a high ion temperature, the plasma is thought
to operate just above the critical gradient. In this situa-
tion, the logarithmic ion temperature gradient,
dlIn T/dr, is given by the critical gradient with the mag-
nitude of the heat flux determined by conditions at the
plasma edge. That is, the ion temperature throughout
the plasma is proportional to the ion temperature near
the plasma edge. A similar phenomenon occurs in the
earth’s atmosphere where the temperature profile is de-
termined by the critical gradient for convection,
dIn(p)/d In(n) =7y, with the magnitude of the heat flux
determined by the boundaries of the convection zone.

A second instability, the electron temperature gradi-
ent (ETG) mode, has very similar physics, only the role
of the electrons and ions is reversed. The ETG mode has
wave numbers comparable to the electron gyroradius p,.
On this scale the ions have only weak magnetic effects,
pi=60p,, and the ions respond adiabatically, dn/n
=—e®/T. The ETG mode may be responsible for the
enhancement of the electron heat transport above its
neoclassical value (Dorland et al, 2000; Jenko et al.,
2000), and the combination of the ITG and the ETG
modes may give the enhanced particle transport that is
observed in experiments.

G. Gyrokinetic theory

e The simplification of the particle trajectories and ki-
netic theory that occurs when the gyroradius p is
small compared to the system size can be extended
to include perturbations of the magnetic and electric
fields that have arbitrarily large wave numbers per-
pendicular to the magnetic field, k , p arbitrary. This
approximate kinetic theory is called gyrokinetic
theory.

Computational studies of microinstabilities, which are
on the scale of the gyroradius of one of the species, are
carried out using the gyrokinetic equations. This and
other computational studies of plasmas have been dis-
cussed by Tang (2002). The gyrokinetic equations are the
kinetic equations but with the particle velocity repre-
sented by the gyrokinetic drift velocity. The derivation
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of these equations was developed by Rutherford and
Frieman (1968), Taylor and Hastie (1968), and Antonsen
and Lane (1980).

The gyrokinetic drift velocity consists of two parts.
The first part is the guiding-center drift of the particles
in the large-scale electric and magnetic fields. This is just
the ordinary guiding-center drift, v,, which was dis-
cussed in Sec. VI.D. The second part, 617g, is the modifi-
cation of the drift of the guiding center by the small-
scale perturbations. The perturbations that arise in
microturbulence are small, of order the gyroradius-to-
system-size ratio p/a, but the drifts that the perturba-
tions cause can be of order of other guiding-center drifts
due to the strong spatial gradients, of order 1/p.

Despite having a wavelength across the magnetic-field
lines comparable to the gyroradius of one of the species,
the perturbations that arise in a microturbulent plasma
have a wavelength along the magnetic field comparable
to the plasma size. The long parallel wavelength arises
to minimize Landau damping (Sec. VI.C). This compli-
cated spatial structure can be accommodated math-
ematically by writing perturbed quantities, such as the
electric potential, in eikonal form,

8 = d(x,1)eS e (242)
just as one does for ballooning modes. The eikonal
S(i;,a) depends on the two Clebsch coordinates, where

é:ﬁwtx ﬁa, Eq. (9), and represents the rapid variation

of 6O across the magnetic-field lines. & varies on a much
longer spatial scale, which involves the plasma size, and
with a slow time scale, of order the thermal sound speed
divided by the plasma radius C;/a. Although

k,=Vs (243)

is very large, k | p~1, the spatial variation of k| itself is

much longer, involving the overall scale of the plasma.
Three electromagnetic quantities affect the particle

drifts due to their rapid spatial variation: the perturbed

electric potential, 5&=d exp(iS), the perturbed parallel

component of the vector potential, S4,=A, exp(iS), and
the perturbed parallel component of the magnetic field,

8B,=B, exp(iS). As shown below, their effect on the
drifts is given by

) - dx ik, Xb
5ng<e‘Sg—xg>:— L X,

244
dt B @244)
with the generalized potential
- - B, 2J,(k  p)
x= (@ =Dk p)+ AT T (245)

kip

defined using the time derivative of the particle energy
or Hamiltonian,
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ax s dH

—={ePs— ). 246
Tor <e S (246)
Here §, means the eikonal is evaluated at the guiding-
center position, and (--+) means an average over the gy-
rophase 9. J; and J; are the zeroth and the first cylindri-
cal Bessel functions, u=mv’ /2B is the magnetic

moment, which is an adiabatic invariant, and h=BIB.
The time derivative of the guiding-center position Xx,,
Eq. (180), depends on the electric and magnetic fields at
the true position of the particle, x, rather than at the
location of the guiding center, x,. The difference be-
tween the true position x and the guiding center x, is the
vector gyroradius p=x-x,, Eq. (177). The difference be-
tween the eikonal evaluated at the guiding-center posi-
tion and the actual position of a particle is S§,—S
=~k p.

The Bessel functions that appear in the gyrokinetic
equations measure the importance of the interaction of
a charged particle with the magnetic field. As k, p—0
the interaction is strong, and the Bessel functions have
the limits Jo(k  p)—1 and 2J,(k ,p)/(k, p)—1. For k p
— oo, the interaction becomes weak, but at a slow rate,
l/v'm. As 7=k, p— o, the Bessel functions have the
asymptotic forms J,,(z)=(2/7z) cos[z—(n+1/2)(m/2)].

The distribution function of gyrokinetic theory is
evaluated at the guiding-center position of the particles
X, rather than their actual position X and has the form
fH X, 0)=fo(H ,X;)+6f,  where Of=f(H,p,X,,1)
Xexp(iS,) and f; is the equilibrium distribution function.

The gyrokinetic equation for the amplitiude of the

perturbed distribution function, §f= f exp(iS,), is

S -
<5+Vg-V+lkl-vg>f+Q+F,:CL(f), (247)
where the inhomogeneous term is
. 2 Ix 9fo
Fi=6v, - Vfy+q——, 248
1 Vg fO q(?l oH ( )

with f; the distribution function for the unperturbed

equilibrium. CL(f) is a linearized collision operator, and
the quantity Q is a quadratic nonlinearity. The dominant
nonlinearity in gyrokinetic theory is generally taken to

be the (dfg/ dt)-ﬁ&f nonlinearity, for which Q has the
form

b (e (xe'Ss) X V (fe'Ss)))
= 3 .

Q (249)
The notation ((---)) means an average over the gy-
rophase and a projection of the expression using the or-
thogonality of the solutions to the linear gyrokinetic
equation. The function y exp(iS,) comes from convert-
ing the electric and magnetic fields that appear in dx,/dt
from the particle position to the guiding-center position
plus an average over the gyrophase. The gyrophase av-
erage is discussed below in the derivations of v, and y.
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The nonlinear part Q of the gyrokinetic equation re-
quires a definition of orthogonality among the solutions
to the linear gyrokinetic equation, which means solu-
tions that have different eikonals S. For example, in axi-
symmetric systems different solutions in eikonal form
can have different toroidal mode numbers, as discussed
in Sec. V.C.2 on ballooning modes. The gradient of the
eikonal is the effective perpendicular wave number. As
is well known from Fourier analysis, perturbations with
different wave numbers are orthogonal. The definition
of orthogonality and the evaluation of the required inte-
grals to obtain Q is the major subtlety of the study of
microturbulence with the gyrokinetic equation. An ap-
proximate method, which is relatively easy to follow, has
been given by Beer, Cowley, and Hammett (1995).

The linear part of the gyrokinetic equation follows
from Eqgs. (244) and (246) and the Kkinetic equation
dfldt=C(f), where df/dt=dfy/dt+d5f/dt. The time de-
rivative of the perturbed distribution function is ddf/dt

:(df/dt)eiSHifeisgng/dt, and the time derivative of
the equilibrium distribution function 1is dfy/dt
=(dfo/dH)dH/dt+(dx,/dt)-Vfy. The linear gyrokinetic
equation is obtained by multiplying both sides of the
kinetic equation by ez and then averaging over the
gyrophase . The rapidly varying part of &f is in the
eikonal, so f is slowly varying, and df/dr:ﬂf/am ﬁg-ﬁf
The gyrophase average is (ng/dt)=<§g-§Sg>=EL-ﬁg

To have a complete set of equations, relations are
needed between the perturbed distribution function f
and the perturbed electric potential @, the parallel com-
ponent of the vector potential A;, and the parallel com-
ponent of the magnetic field EH. For purposes of taking

the averages, the perpendicular velocity of the particle
will be written as

v, =v {cos 9k, X b+sin 9k ,)}. (250)

The perturbed electric potential is given by Poisson’s
equation, which can be approximated as k% &P
=(q/ g én, or

Kd =7
€

(251)
The perturbed density of a species is on=[Afd>v, where
Af=q5D(afy/oH)+5f [Eq. (153)]. Since &f=fexp(iS,)
but én=r exp(iS) with S,—S=~k  p cos 9, the perturbed
density is

= f To gy + f Jolk L p)fdv, (252)

where we used the integral expression for the zeroth-
order Bessel function,
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1 (™
Jo(z) = — f e~izcos Vg9, (253)
27)_,

to carry out the integration over the gyrophase ¢, which
is one of the integration variables in d*v [Eq. (171)].
The perturbed parallel component of the vector po-

tential can be calculated using Ampere’s law, VXV
X bﬁ:uoé‘f, or

1Ay = pal)- (254)
The perturbed current density is
Ji=q f vilo(k p)fd’x, (255)

where we have assumed dfy/dH is symmetric in vy.

The equation for By is given by the force balance
across the field lines, which for short-wavelength pertur-

bations has the form ﬁ-ﬁ(p | +B?/2u4)=0. This follows
from X B=B-VB-VB?/2 B-VB=B%-Vb
+bB-VB is negligible when k | > k. The perturbed per-

pendicular pressure is p, =(fm(v-k,)?Afd®v), which
means

I (qd)f =033y ffjl(kip) v)B, (256)

where pu=my l/ZB is the magnetic moment and the
first-order Bessel function obeys

J1(z)
z 2w)_,

since

_ L[

e™2c0s O5in? d 6. (257)

The adiabatic term in p, which is the term proportional

to @, is equal and opposite for the electrons and the ions
provided the Debye length satisfies k Ap<<1, so edn,

=g dn;. The force balance is ﬁl-i-Bé”/,LLO:COHSt, SO

- 2J1(k | p)
BFﬂ“UfoZ—LCP
p

The remainder of the section gives the derivations of
Eq. (245) for y, which is defined by gdx/dt
=(e"SsdH/dry and &V, = (e sdx,/dry [Eq. (244)].

First, we need the approximate relation between the
vector potential and the magnetic field that holds when
k,a>1 with a the plasma radius. The magnetic field is

SB=V X 5A where A=A exp(iS). Dotting this expres-
sion with the unperturbed magnetic field B, one finds

that é-éé:ﬁ-(&/i X§)+5A-€X§. The only term on
the right-hand side that is large is the first term, through

(258)

its dependence on k | = VS ,
8B, =—(ik, x b)-5A . (259)

The components of the perturbed magnetic field that are
perpendicular to the unperturbed field are given by B
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X SB=V(B-6A)~SAXVXB—-8A-VB-—B-VSA.  The
large term is the first term, which gives

b x 8B =ik 5A,. (260)

Second, we derive the expression for y, Eq. (245),
from its definition, Eq. (246). The exact equation for the
change in the energy of the particles is dH/dt=q(o®/dt

-V JA1 or) [Eq. (198)]. The required gyrophase average

(e7SsdH/dt) is the sum of two terms. The first term is
o aA) 55

q( a W )

The gyrophase average (exp[i(S—S,)]) can be written as
(exp(ik  p cos 9))=Jy(k  p). The second term is

.9, 0B, 2J,(k
) :ﬁ_“M,
ot q dt k.p

(261)

(262)

which is derived using Egs. (250) and (259), v L-&i n

vk, - &il sin 9+i(v,/k,)6B,cos 9. The gyrophase
average (sin & exp[i(S—S,)]) is zero because

1 m

oy €2 Vgin 9d 9 =0,
m —1Tr

(263)

and the gyrophase average (cos ¢ exp[i(S—S,)]) is
1 m

2w,

£1205 ¥ 00 94 = iJ (Z), (264)

where z=k,p and p=mv /qB. Assembling the parts,
one obtains (e7SsdH/dty=qdx/dt with y given by Eq.
(245).

Third, we calculate the part of 517g, Eq. (244), that is
across the magnetic field. The time derivative of the
guiding-center position is given by Eq. (180). Because of
the slowness of the time variation, the perturbed electric
field is given by the gradient of the potential,

SE = — ik , 5D. (265)
The contribution of the E X B drift to 5178 is
< SEXB ik, X b 8
<e“53 7 > =— =k p®, (266)

where we used (expli(S—S,)])=Jo(k p). The effect of
the perturbation on the term is

. d 1 B,/ .dS
TS X b—— ) == —L{ &SIy X h— ).
5<€ VL bdtQ> aB\¢ vixby

(267)

The large term is dS/dt:ﬁL-ﬁSzﬁL-ﬁL, which means
dS/dt=k,v, sind. Equation (250) implies v, Xb
=v,(k, Xb)sin 9—v k, cos . The gyrophase integral

that involves the second term in v, X b is zero, and the
gyrophase integral that involves the first term is calcu-
lated using Eq. (257),

Rev. Mod. Phys., Vol. 76, No. 4, October 2004

—iS. -~ ~d i Y N J(k P)
<e Sev | X bEeS> =—ilk, X b)vilkflp.

(268)

Fourth, we calculate the part of 617g, Eq. (244), that is
along the perturbed magnetic field. Motion along the

magnetic field is given by v||13+v”5l; with the change in

the direction of the magnetic field, sb=5B 1 /B. Equa-
tion (260) implies

o o ik XD -
&e sy 6b) = LTVMAHJo(ku))- (269)
Putting the pieces together, one finds the effect of the
perturbations on the drift equation (244) with the gener-
alized potential y given by Eq. (245).

H. Alfvén instabilities

e Shear Alfvén waves are a twisting of the magnetic-
field lines. These waves have a continuous spectrum
of possible frequencies but are generally heavily
damped. The damping occurs if there is sufficient
field-line shear, which means variation in the direc-
tion of the magnetic-field lines or sufficient variation
in the Alfvén velocity, B/\uyp with p the plasma
mass density, transverse to the magnetic field.

e If the Alfvén velocity varies along the magnetic-field
lines and the magnetic-field lines have shear, then the
continuous spectrum of Alfvén waves has gaps, and
weakly damped discrete (sharp-frequency) shear
Alfvén modes can exist in these gaps.

e Energy is transferred between shear Alfvén modes
and particles with a resonant velocity, w/k;, along the
field lines. A destabilizing transfer of energy from
the particles to the waves occurs if the diamagnetic
drift frequency of the interacting particles, w: of Eq.
(290), is larger than the frequency w of the Alfvén
mode; otherwise the transfer is stabilizing. Only par-
ticles, such as fusion alphas, that have a gyroradius in
the poloidal magnetic field alone comparable to their
density gradient have a destabilizing interaction.

If a magnetic field is twisted and released, the twist
travels down the magnetic-field lines at the Alfvén ve-
locity,

2
Vp= B—, (270)

Mop
and is called a shear Alfvén wave. Most shear Alfvén
perturbations are strongly damped, but certain perturba-
tions called gap modes have weak natural damping. The
weakly damped gap modes are susceptible to being
driven to high amplitude by interactions with particles
that are moving along the field lines with a velocity com-
parable to the Alfvén velocity. This instability of the gap
modes goes under the name of the toroidal Alfvén
eigenmode (TAE) instability. The theory of short-
wavelength TAE instability was developed by Cheng et
al. (1985), and the theory of the more important low-
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mode-number TAE instability by Cheng and Chance
(1986). The concern is that alpha particles produced by
the fusion reaction will drive gap modes to a high am-
plitude causing a loss of the alphas from the plasma be-
fore they can transfer their energy to the bulk plasma
(ITER Physics Export Group on Energetic Particles, ...,
1999a). Only at a low plasma beta, S=2up/B?, is the
Alfvén velocity above the speed v, at which fusion al-
phas are produced, 8=1.8% (T/20 keV)(v,/v4)? with T
the plasma temperature. Wong (1999) has reviewed the
relation between the experiments and theory for TAE
instabilities. The properties of shear Alfvén modes that
are central to this theory will be discussed in this section.

1. Continuum Alfvén wave damping

Shear Alfvén waves have a continuous spectrum that
is heavily damped (Tataronis and Grossmann, 1973).
The physics is illustrated by a model in which the equi-
librium magnetic field is uniform and in the Z direction,

B=BZ, but the plasma mass density p depends on x. The
force balance is p(x)av/ dr= & X B with MO@?zﬁ X 5B. The
perturbation to the magnetic field is given by the ideal
Ohm’s law, 98B/ at=V X (v X é). The two components of
velocity that enter the calculation are written as v,
=V, (x) exp[i(k,y+kiz—wt)] and v,=7(x) expli(k,y+kz
—ot)]. The wave number k,, is in the surface of constant
Alfvén velocity, and the wave number k; is along the
magnetic field.

If the model equations for Alfvén waves are analyzed,

keeping all three components of 55’, one finds

. dv, . v
[@? - KVi(0)]5, + Vi? + zkyviax =0 (271)
and
2 (12 122 S o dVy
[ — (ki + ky)vA(x)]vy +ikyvy I 0. (272)
X

These equations, which are more general than the deri-
vation given here, can be combined into a single equa-
tion for v,
i( wz—kﬁv?4 @) . wz—kﬁviﬁ 0
dx\ o — (ki + k)v5 dx Vit
When the Alfvén velocity is independent of position,
this equation has two types of solutions. One type is the
compressional Alfvén mode with v4d?v,/dx*+{w* (ki
+k§)vi}vx:0, which is a propagating wave if k)zc
= (w?/ vi)—(k§+kﬁ) =0 and evanescent (exponential de-
pendence on x) otherwise. The other solution is the
shear Alfvén wave with wzzkfvi, which has an arbitrary
dependence on x. When the Alfvén velocity depends on
position, these two types of solutions are coupled, and
the point where V2 (x) = w?/ kﬁ is a singular point, a point
at which energy is absorbed.

Equation (273) has a singular point, which will be de-
noted by x=0, where vi(x):wz/ kﬁ. At the singular

(273)
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point, the velocity v, has a 1/x singularity, which means
there is an infinite amount of energy in the vicinity of
the singular point, an unphysical result. This singularity
in the energy means an arbitrarily large amount of en-
ergy can accumulate, a buildup of energy that can be
represented by letting the frequency be complex, w
=wy+iy. Assume vy is small, let x=0 be the point where
kﬁvﬁ:wﬁ, and let
5= 22% (274)
kidvy,/dx

evaluated at x=0. Then near its singular point Eq. (273)
can be approximated as
d odi
I (x—1i0) i (x zﬁ)kyvx, (275)
while Eq. (272) implies kv, =idv,/dx.

To calculate the power per unit area flowing into the
singular point of Eq. (273), we study the two indepen-
dent solutions of Eq. (275) in the vicinity of the singular
point. These solutions are the cylindrical zeroth-order
modified Bessel functions of the first, I,(£), and the sec-
ond, Ky(¢), kind, where {=k (x-id). As £é—0, [—1
and K,— —In & The regular, or [, part of the solution is
undamped, but the singular, or K, part is damped. Fo-
cusing on the singular part of the solution, let

v, =V,Ky(8), (276)

where V is a constant. Then near §=0, v,=-iV,/& The
average power per unit y—z area that goes into the ve-
locity singularity is P=R{/[ pﬁ;(&ﬁy/ dt)dx/2}. Here we
used the easily proven result that if a function f(y) is the
real part of f, exp(ik,y) and another function g(y) has
the same form, then the y average of f(y)g(y) is
Relfog}/2. Since 30,/ dt=—iwV,, P=(y/2)[pv,v,dx. The
integral that must be performed has the form

fw dx _m
X2+ 8|8
so P=(m/2)(y/|8)pyV;/k; where py=p(x=0). In other

words, the power per unit area going into the sigularity
is

277)

dInv,(x)
dx

2
pOVs

P v
= —wO P
2 7k

. (278)

2. The weakly damped gap mode

The existence of weakly damped gap modes requires
both a shear in the magnetic-field lines across the lines
and a variation in the magnetic-field strength along the
magnetic-field lines. An equation for the shear Alfvén
mode, which contains both shear and variation in the
Alfvén velocity, is relatively simple when the perturba-
tion is localized to a magnetic-field line. This occurs
when the perpendicular wave number k, is large in
comparison to the wave number along the magnetic field



Allen H. Boozer: Physics of magnetically confined plasmas 1133

lines k. The assumption k, > k; leads to the eikonal ap-
proximation as in the discussion of ballooning modes,
Sec. V.C.2, and gyrokinetics, Sec. VI.G.

All the perturbed quantities in a shear Alfvén wave
can be expressed in terms of the perturbation to the

electric potential b= exp(iS), where S(a)=2mma is
the eikonal and m is a large integer. The perpendicular
wavelength is k, =VS. The Clebsch angle a=(6,
—up)/27 is defined so B=Vy, X Va [Eq. (9)]. The equa-
tion for the perturbed electric potential, which is derived
below, is
a (kK a&cp) K
-\ = —=0(2)* 6D, 279
g( B 04 (279)
where (¢ is a dimensionless coordinate along the
magnetic-field line. The distance along a line is €
=(L/2m){ with L a characteristic distance. () is a dimen-
sionless, or normalized, frequency,

L )2
2
2] (280)

with o the frequency of the perturbation & = exp(—iwt).
The characteristic form is Q2(¢)=03 o(1+2ecosg). In a
large-aspect-ratio tokamak, e=r/R, gives the variation
in the magnetic-field strength, and L=2mR,/¢ is the pe-
riodicity length of the field strength. The period of the
magnetic-field strength in a tokamak is 6,=2, but
along a field line 6,,=t¢ with d€=R,d¢.The frequency
ws=Q2m/L)v, is known as the Alfvén frequency, so
=w/wy. For a large-aspect-ratio tokamak, wy=v4t/R,,.
A magnetic field has global shear if di/dy, is nonzero.
When the field is sheared, the characteristic dependence
of K2 /B on { is
K 242
g *(1+570),

()P = w2(

(281)

with socdi/dy,. This follows from 27Va=V,— Ve

—o(dd/ dlﬁxﬁ'ﬂr with ¢o{. For a large-aspect-ratio toka-
mak, {=wp and s=d Ini/d Inr.

This paragraph contains the derivation of Eq. (279)
for 6®. The derivation starts with the ideal Ohm’s law,

SE+v X B. The magnetic perturbation of a shear Alfvén
wave is perpendicular to the main field, and when k

—o Eq. (260) shows that 0B, =ik, XbsA, with b
= B/B. Therefore SE=-bJsA,dt—V b, which implies v
=(Bx ik )P/ B2 and 95A,/ dt=—(B-V D)/ B. The force
balance pav/dt=35j X B implies &, =(B X pav/dr)/ B* and
that V-& =k’ p(98®/dr)/B%. Since the current is
divergence-free, B- VY/WB) =-V- 5.
B-V(j,/B)=—k%(p/B)35D/ot. Ampere’s law gives
K> 8A,=pgj, and  PSD/oP=-w?dP. Let B-V
=(2mB/L)d/d¢ with L a characteristic length along the

field line. Q7 is defined by Eq. (280). Combining results,
one obtains Eq. (279).

Therefore
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The energy density of a shear Alfvén wave,

ﬁ( 1 a&b*a&@)
a O o a

(282)

is the sum of the kinetic energy pv*-v/4 and the mag-

netic energy 6&*-513‘/4,%. The factors of four, where
two is expected, come from the use of complex arith-
metic, as discussed just above Eq. (277).

A shear in the magnetic-field lines, s #0, causes a
rapid loss of energy from Alfvén waves if the field
strength is constant, e=0. Consider the Fourier trans-
form of Eq. (279) with k% /B replaced using Eq. (281).
That is, let 60 =[¢ exp(ix;{)dx;, which implies dé®/d{
— ik and (6D — —idp/dk;. Then when the variation of

the Alfvén speed along the field lines is ignored, (2
=const, Eq. (279) implies

d d¢
2.7 02

’ dKu( 5 dk

This equation is singular at the place where «;=(), which

is the equation for a shear Alfvén wave in the absence of

shear, s=0. The energy density in «; space, w,, is defined
so Jw,dk=[wd{, and is given by

4o+ dé

ol i
we==p| — — s
* 2p B 0 QZ dK” dK”
with the subscript naught on (k,/B)7 implying evalua-

tion at {=0. Near the singular point «;={), the dominant
component in the energy density w, scales as the square

= (0% - k) . (283)

) (284)

of sd¢/dx;, and an infinite amount of energy is located
near this point in k; space. These equations and the reso-
lution of their singularity exactly follow the derivation
that led to Eq. (278) for the dissipation of Alfvén wave
energy. The singular point, x,=(, of Eq. (283) represents
the transfer of energy to the region {—o°, which in
steady state has infinite energy content, while the singu-
lar point kv, =w of Eq. (273) represents the transfer of
energy to an arbitrarily small region in x, which means
to k,— .

The existence of gaps in the spectrum of Alfvén waves
and the existence of weakly damped modes in those
gaps is easier to demonstrate if the perturbed quantities
are expressed in terms of u=(ik / \s"E)@CD, which places
the energy density in a nonsingular form,

w——(|u|2 1 du Y4 s
4B Q2| de 1+522

2
u ) (285)

The equation for u has the characteristic form

(952 — mu =- (1 + 2€ecos {)qu

(286)
The solution to this equation for values of ) is given in
Fig. 14. The equation obtained from transforming
Eq. (279) is &Zu/&gz o(Du+Q*(ODu=0, where o({)
—(\B/ki)&z(kl VB)/3¢%. Using k,/VBox\1+s?Z and
0¥ =02 o(1+2€ecos{), one obtains the characteristic
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FIG. 14. (Color) The solution to Eq. (286), plotted for three

values of the eigenvalue: red, )(=0.42 gives a solution in the

continuum, green, y=0.4775 gives a singular solution, and

blue, 0(=0.487 gives a discrete mode. The parameters s=0.5

and €=0.2 are the same for all three solutions.

equation for u. If Q?=const, then the solution is u
—exp(iQ)Q) for either s—0 or s{—o. This means as ¢
— o the Fourier transform of the shear Alfvén wave sat-
isfies «k;— ). Since the amplitude of u is constant as ¢
— oo, the solution u— exp(i€2{) has infinite energy.

Now consider the effect of a variation in the Alfvén
speed along the magnetic-field lines. The characteristic
equation for u, Eq. (286), reduces to the Mathieu equa-
tion (Bender and Orszag, 1978),

2

d—L; +(1+2€ecos x)Q(z)u(x) =0, (287)
X

for either zero shear, s=0, or for [s{|>1. The Mathieu
equation has two types of solutions, depending on the
value of the eigenvalue Q2. For certain ranges of (3, the
regular regions, the equation yields oscillatory solutions,
and for others, the singular, or gap, regions, there are
exponentially growing solutions (Fig. 14). The smallest
Qé>0 region that is singular occurs in the vicinity of
O5=1/4 for |e¢<1, which means w=w,/2 with w,
=v,u/ R, the Alfvén frequency. More precisely, the sin-
gular, or gap, region is Q2=1(1+e) for | <1. The regu-
lar ranges of ()} give continuum shear Alfvén waves.
These solutions extend over the full range of ¢ and,
therefore, require an infinite energy to drive. The singu-
lar regions, or gaps, are values of Qg for which physical
shear Alfvén waves do not exist. The energy in a singu-
lar solution is in the region |{| — o, since the amplitude
of u increases exponentially with |Z].

The characteristic equation for u, Eq. (286), also has
spatially bounded solutions, which means the solution is
concentrated in the region where |s{| is small (Fig. 14).
These solutions are the gap modes because they occur in
the singular gap regions of the Mathieu equation and
have little intrinsic damping. They are the modes of in-
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terest for Alfvén instabilities. Since they have finite en-
ergy, they can be driven unstable by their interactions
with high-energy particles. The existence of discrete
modes in the gaps of a frequency spectrum is a well-
known phenomenon in condensed-matter physics. For a
simple discussion see Allen et al. (2003).

3. The particle-Alfvén wave interaction

The interaction of the particles that form the plasma
with the shear Alfvén wave is given by the kinetic equa-
tion. This interaction is weaker than one might at first
expect for modes, such as the discrete or gap mode, that
have no parallel electric field. When E;=0, particles in
resonance with a shear Alfvén wave, vj=w/kj, do not
exchange energy with the wave unless there is a cross-
field drift v, in the equilibrium magnetic field.

To simplify the analysis of the interaction of particles
with a shear Alfvén wave, the perturbed electric poten-
tial will be assumed to have the form

5P = Peilkiztky-on), (288)

The distribution function f of the species that has a reso-
nant interaction with the Alfvén wave can be written as
the sum of an equilibrium distribution and a perturba-
tion, f=f.(H,x)+df and obeys the Vlasov equation
df/dt=0. The time-averaged power to the Alfvén wave
per unit volume will be shown to be

. zéﬁ(& ) 1)61_2q~)zj—c<2)
T2kl \e T, "\k)
where v, is the guiding-center drift velocity of particles
in the y direction in the unperturbed magnetic field,
k,T,dInf,
gB ox

(289)

(290)

is the diamagnetic drift frequency, f,(v,)= [ fdvdv,, and
T,=-d1In f,/9H is the effective temperature of the inter-
acting particles, which have a Hamiltonian H.

The power to the shear Alfvén wave, Eq. (289), has a
destabilizing sign only if w- is greater than w, which is
equivalent to the requirement that the gyroradius p, of
the interacting particles in the poloidal field alone be
sufficiently large to be comparable to their density gra-
dient. The condition on the poloidal gyroradius is de-
rived by first noting that the gap mode has a typical
frequency w=w,/2 with the Alfvén frequency wy
=v,4u/R,. For the interacting species T,~m,vi, and k,
=m/r with m the poloidal mode number. Defining the
poloidal gryroradius py=(R,/w)p, one finds that the
condition w* > implies pyd Inn,/dr=1/m. Only par-
ticles, such as fusion alphas, that have a poloidal gyrora-
dius comparable to their density gradient can destabilize
Alfvén modes. Extremely high m-number Alfvén modes
are not of such great concern because of the small radial
extent of the perturbations that they produce.

To derive the power going to an Alfvén wave, the
time derivative of both the unperturbed and the per-



Allen H. Boozer: Physics of magnetically confined plasmas 1135

turbed parts of the distribution function are needed. The
time derivative of the unperturbed part of the distribu-
tion function f, is given by

df, dx,of, dHJ
dfy _ dxgofy  dH of; (291)
dt dt ox dt oH

which depends on dH/dt=0H/dt and the X component
of the guiding-center velocity, dx,/dt. The time rate of
change of the Hamiltonian is

oH (30D  20A kv, | 95P
= (——v—>:q<1—i)—, (292)

a '\ ot ot ot

where we used OE=—-d6®/dz—ISA;/dt=0, which means
w0A=k,6®. The relation between A, and 6P also gives
the guiding-center velocity in the x direction,

d OFE 6B k 1 96®
e ":-(1-—”)——, (293)
dt B B w /B dy

and the time derivative
df, . ws« | q 6P
o (- k||V||)<1 - Z) Trfr, (294)

where we have written dln f,/dH=-1/T, and used the
diamagnetic drift frequency [Eq. (290)].

The time derivative of the perturbed part of the dis-
tribution function &f is given by d &f/dt=d5f/ dt+ ﬁg-ﬁéf,
which can be written as dof/dt=—i(w-ky—k,v,)f,
where v, is the drift of particles in the y direction in the
unperturbed magnetic field. Since f obeys the Vlasov
equation, df/dt=0, the perturbed distribution function is
given by ddof/dt=-df,/dt, or

" k oD
5 = (1 - 1)(1 y )q f,.
w w — k”VH - kde Tr

The time-averaged power per unit volume going to

(295)

the Alfvén wave is pW:(—@?- 5177). The perturbed electric
field is 5E=—iky5q))7, and the part of é‘jy.zfv'défd% that
is in phase is the imaginary part, which is given by the
Landau integral, Eq. (165),

i = — i—qk v2<1 - ﬂ)@f@) (296)
Y |kn| i w/) T, ’ k; ’

where ]_”,(vz)E [f,dv.dv,. The time-averaged power per
unit volume to the Alfvén wave is p,=(-J- SE)
=(8j, -V&D), which implies p,,=k,]

y];<13/2. Consequently
the power to the wave per unit volume is given by Eq.

(289).

VIl. PLASMA EDGE

e Control of the plasma edge is important to (a) main-
tain plasma purity, (b) limit the maximum heat flux to
the chamber walls, and (c) achieve a high edge tem-
perature if the plasma transport is associated with a
critical temperature gradient.
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e The plasma edge can be defined by a solid object,
called a limiter, or by a separatrix between the
magnetic-field lines that lie on toroidal surfaces and
on open magnetic-field lines that intercept the cham-
ber walls. Most modern plasma confinement devices
define the edge with a separatrix. This method of
defining the plasma edge is called a divertor.

The edge is the interface between the hot plasma and
the walls. This interface must remove impurities, such as
the helium ash, and the waste heat. Ideally the waste
heat is removed by electromagnetic radiation because
that avoids hot spots on the walls. In addition, the edge
is more important to plasma confinement than one
might expect because transport often appears to obey a
critical-gradient theory, which means the temperature
throughout the plasma is proportional to the edge tem-
perature.

In modern plasma confinement devices the plasma
edge is generally defined by the separatrix between
magnetic-field lines that lie on toroidal magnetic-
surfaces and open magnetic field lines that go into spe-
cially designed regions on the chamber walls (Fig. 9).
This method of defining the plasma edge is called a di-
vertor (ITER Physics Expert Group on Diverter Model-
ling ..., 1999; Loarte, 2001).

Simple features of divertors can be understood from a

fluid model, pv-Vi+Vp=jX B, with V-(p9)=0 and p
=mn the mass density of the plasma. The plasma flow is

rapid along the magnetic field. Let pi=T'b+pv,, then

(297)

where the source S= —6-(p17 ). Equation (297) gives the
flux of plasma I' along a magnetic-field line. Since the
flow is essentially parallel to the magnetic field, the par-

allel component of the force balance is FBﬁ(F/p)

+l§-V}):O, which can be written as

r(o @0 dp _

Y, 10 0, (298)

where d/d¢=h-V. If the density p(€) is used as the in-
dependent variable,

(299)

where C2=dp/dp. That is, the effective sound speed is
CfE(dp/dK)/(dp/d@. Equation (299) is well known
from the theory of nozzles in fluid mechanics and says
the density drops as the flux I' increases when the flow
starts with zero speed, I'/p=0. The maximum flux that
can be obtained is I'=pC,, which implies a flow at the
speed of sound C;. If the divertor chamber exerts a suf-
ficiently small back pressure, then the plasma flow will
reach the sonic rate as it flows down the field lines. In
the other limit in which the back pressure p; keeps the
flow slow compared to the sound speed, the flux reaches
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I?=2py(po—pp) With p, the pressure where I'=0. Diver-
tors have been operated in both the high and the low
back-pressure limit. The advantage of a high back pres-
sure is that more of the energy moving down the di-
vertor channel can be radiated away primarily through
atomic radiation (Sec. VI.A), which reduces the peak
heat loads. The advantage of a sonic flow is that the
plasma is efficiently swept into the divertor chamber.

An important issue is the ability of materials to with-
stand the high energy fluxes in the energy of the imping-
ing particles. The energy of the impinging particles is
greatly modified by the sheath potential between a
plasma and a material surface. The flow of a plasma into
a wall is roughly at the speed of sound. However, the
electrons would naturally flow into the wall at the elec-
tron thermal speed, which is a factor \Vm;/m, faster. To
preserve the quasineutrality of the plasma, a jump in the
electrostatic potential occurs on a Debye length scale
between a plasma and a wall with the potential holding
back the electrons. This means y7,/m, exp(eA®)=C,,
or A®/eT,~ In(Ym;/m,) =4. The ions impinge on the
wall not only with their thermal energy but also with the
kinetic energy obtained from the sheath potential gA®.

The required divertor flux is I'=72ma?/ (7,0), where 71 is
the average density in the plasma, 7, is the confinement
time for particles, and J'is the width of the divertor out-
flow channel.

Stellarators use an island chain about a rational sur-
face, ¢ equal to a rational number, at the plasma surface
to divert the plasma into the divertor chamber (Renner
et al., 2002). This idea is analogous to that used in toka-
maks where the separatrix that lies between field lines
that encircle the plasma and those that go to the divertor
chamber is at the =0 rational surface, which is the only
rational surface on which an island can form in axisym-
metry.

The variation in the electrostatic potential across the
divertor region has important implications for the over-
all confinement of the plasma. The ions can sense the
presence of open magnetic-field lines once they are
within a banana orbit width of the plasma edge. Because
of their higher thermal speed, electrons tend to leave as
soon as they cross onto open field lines, while the ions
penetrate deeper into the open field-line region. Conse-
quently, it is natural for a strong shear in the £ X B flow
to occur near the plasma edge, which can stabilize the
microtubulence. A region of greatly reduced transport
at the plasma edge is called a high, or H, mode of con-
finement and was the first transport barrier observed
(Wagner et al., 1982).
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APPENDIX: GENERAL COORDINATE SYSTEMS

Clever choices of coordinates are an important part of
classical physics. Any three quantities, which are con-
ventionally denoted by (x!,x%,x?), can be used as coor-
dinates if they are well-behaved functions of the Carte-
sian coordinates and if positions in Cartesian
coordinates are well-behaved functions of (x',x?,x%).
The superscripts on the x’s number the coordinates and
are not powers. The position in space associated with
each coordinate point is defined by the transformation
function x¥(x',x2,x%). The transformation function can be
given in Cartesian coordinates as

(A1)

For example, cylindrical coordinates (R,¢,Z) are de-
fined by X(R,¢,Z)=R cos ¢X+R sin ¢y +Z7%.

Most people find it surprising that a coordinate trans-
formation is defined by giving x(x',x?,x°) rather that
x/(X) with the index i going from 1 to 3. The reason
%(x',x%,x%) is given is that we want to convert functions
of position, like the temperature 7(x), into functions of
(x',x%2,x%). Given x(x',x?,x%) one has T(x',x? x3)
=T(x(xt, x%,x3)).

The quantities (x!,x?,x%) are valid coordinates only if
the Cartesian coordinates (x,y,z) are well-behaved
functions of (x',x?,x%). This implies the Jacobian

oxX (af af)
jE—' — X —

axt 2 a3

*=x(ch % x)E + y (e 0P + (el a2 xd)z.

(A2)

cannot be infinite. The condition that the quantities
(x',x2,x%) be well-behaved functions of the Cartesian
coordinates implies that the Jacobian cannot be zero.
The gradients of the three coordinates Vx' with the
index i=1,2,3, and the three tangent vectors dx/dx’ are
related by the orthogonality relation,
- X
i, _ 4
Vx Pl é; (A3)
This relation, which is fundamental to the whole theory
of general coordinates, can be proven using the chain
rule. First consider each coordinate to be a function of
the Cartesian coordinates x‘(x,y,z), so Vxi=dx/dx
=(dx'/dx)x+---. The derivatives of the transformation
equations, called tangent vectors, are dx/dx/=(dx/dx/)%
+(dy!ax))y+(dz/dx')Z. When one takes a dot product be-
tween the gradient of a coordinate and a tangent vector,
one finds using the chain rule that Vx'- 9%/ dx/ = dx'/ ox/. 1f

i=1 and j=2, one has Vx!-a¥/dx?=(dx'/dx?),1 3, which is
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zero. In words, the derivative of x' with respect to x?
while holding x! constant is zero. If one lets i=1 and j
=1, one has Vx!'-ax/dx'=(dx'/ox'),2 3, which is one.
The use of general coordinates is illustrated by the
derivation of the equations for field lines. Field lines are

defined by dx/ dr=B(%) where 7is a parameter that de-
fines positions along the line. We want the trajectory of
the field lines in general coordinates, which means we
want the functions x(7). Now dx/dr=3(9x/dx})dx'/dr.
Dotting both sides of the defining equation for field lines
by the various coordinate gradients and using the or-
thogonality relation, one finds that
dx' -

—=B- Vx

dr (Ad)

If B-Vx? is nonzero, one can use x> as the parameter
that defines positions along the line. The chain rule im-
plies dx!/dx3=B-Vx'/B-Vx3,

The orthogonality relation allows one to write the gra-
dients of the coordinates in terms of the tangent vectors,
for example,

(AS5)

This relation is called a dual relation and is important in
practical calculations, for otherwise the calculation of a
coordinate gradient would require a function inversion
of x(x',x2,x%) to obtain x! as a function of the Cartesian
coordinates (x,y,z). A vector in three dimensions can be
expanded using any three independent vectors, so
- ox _ ox ox X ox X
Vxl—alo-,z $+a2$XE+a3EXE. (A6)
Dotting this equation with 9x/dx!, one finds that a,
=1/J. Dotting the equation with dx/dx?, one finds a,
=0. Similarly, one finds a;=0.

Dual relations also exist that give the tangent vectors
in terms of the gradients, for example,

ox

——ij X Va3,

P (A7)

These dual relations are derived in an analogous man-
ner.

Given a transformation function x(x!,x2,x3), one can
expand any vector using the tangent vectors Jdx/dx’ as

basis vectors. This expansion, B=SB(a%/dx'), is called

the contravariant representation of the vector B. The or-
thogonality relation implies the expansion coefficients
are given by B'=B-Vx'.

An arbitrary vector can also be expanded using the
gradients of the coordinates as the expansion vectors,
B=3B;Vx', which is called the covariant representation.
The expansion coefficients are given by B;=B-dx/dx'.

>

The dot product of two vectors is given by A-B
=S A;B'=3A'B,.
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The covariant and contravariant representation of
vectors have distinct roles in both differential and inte-
gral vector calculus. First consider the gradient of a sca-
lar,

. of - .

Fr=3 L, (A8)
ox

which is a covariant vector.

Next consider the curl of a vector. This is easy for a
vector written in the covariant representation, which is
the expansion using the coordinate gradients,

VX B=2 VB, X Vx'. (A9)
One can expand ﬁBi in terms of the coordinate gradi-
ents and use the dual relations to show that

VXB= 2 elfkaB,a -, (A10)
where
d
0, =— All
= (A11)

and €/ is the contravariant fully antisymmetric tensor.
This tensor is defined by €'?>?=1 with the sign changing
if the order of two adjacent indices are changed. For
example, €-13=-1. If two indices are identical, the fully
antisymmetric tensor is zero, €"*=0. The curl of a co-
variant vector is a contravariant vector.

The divergence can be calculated using the contravari-
ant vector. One uses the dual relations to write

. J L

=3 > BV X Vxk, (A12)
where the components of the covariant antisymmetric
tensor €;; have identical values to the components of the

contravariant tensor €/%. The divergence is simple be-
cause the divergence of cross gradients is zero, and

V-(fi)=v-VI+fV-v. 117
—Vx!(Vx2X Vx3), which can be proven using the dual
relations, one finds

i

g.p-1 2 JdJB ‘
J ox’

The curl can be taken only if a vector is in covariant

form and the divergence can be taken only if a vector is

in contravariant form. How can one convert a vector

from one form to another? The covariant components

Writing the Jacobian as

(A13)

are given by B,-:E -(0x/ ax'), which if B is known in con-
travariant form yields B;=3(dx/dx")-(dx/dx/)B/. The
metric tensor is defined as

c?x &x
8= o o’ (A1)
SO Bl=2gl]B]

The name metric tensor comes from its role in deter-
mining distances between two coordinate points. The
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vector between two adjacent coordinate points is &x
=>(ox/ ax’) o, The square of the distance is (&x)>
=2g;ox' 5.

A vector in covariant form can be rewritten in contra-
variant form using B'=3g"B; where g’=Vx' -Vxl. Using
the dual relations one can show that g” is the matrix
inverse of g;;.

There are three types of integrals: line, area, and vol-
ume. A line integral is performed along a curve, which
means one of the three coordinates is varied while two
are held constant. Let us assume the first coordinate is
then di=(ax/ox)dx' and [B-di=[B-(d%/
axY)dx!, which can also be written as [B-dx=/B,dx". In
other words, a line integral is an ordinary integral of a
covariant coefficient.

The only difficulty in area, or surface, integrals is be-
coming comfortable with the definition of the area ele-
ment. A surface is defined by holding one coordinate
constant, say x', and varying the other two. The area
element is then

varied,

N 0.
da' = a—x X 0—dx2dx =Vx L 7dx?dx3,
x2

(A15)
where a dual relation was used to obtain the second
form. An area integral is then the double integral
[B-di=[B'Jdx*dx3, where B'=B-Vx! is the contravari-
ant coefficient.

The volume element is obtained by dotting the area
element with the distance across the surface, d°x
=(dx/dx")dx'-da', which can be written as d°x
= Jdx'dx*dx>. In other words, the integral of a function f
over a volume is the triple integral [f.7dx'dx*dx>.

The expression for the time derivative of a general
covariant vector, namely, the vector potential, is impor-
tant for the theory of the evolution of magnetic fields.

Let A= ¢,€(0/2w) - ¢p6(¢/2W) +€g. The time derivative
at a fixed spatial point x is

0A P o012\ - -
(24) ~(2) 9.2 -(227) s 50
or a ) om a ):

(A1l6)

where the - - stands for terms involving #, and ¢, which
are of the same form as those for ¢, and 6. The quantity

=<(9_g> . <ﬁ0/277> (&go/Zﬂ')
o 3 Ui ot /; lpp ot )g.

Time derivatives holding the coordinates (i, 6, ¢) fixed,
which are denoted by a subscript ¢, are related to time
derivatives holding the spatial position x fixed by the
chain rule,

(7)) (5 o

The velocity of the (¢, 6, ¢) coordinates through space is
1= (0x/dr),, so the time derivative of the coordinates has

(A17)

(A18)
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the form (dy,/ ar);:—ﬁ-€¢[, while the derivative of ¢,
has the form (azpp/at);:(awp/at)c—ﬁ-§¢P. Let B=V XA,
then i X B=[i-V(0/2m) Vi~ (i-Vip)V(0/2m)+---, and
the time derivative of A can be written

(%> =_(a¢>V—+u><B+Vs (A19)

The expressions ﬁ-ﬁa:—(aa/at); and u 6(p=—(r9(p/ﬁl);

plus Eq. (A17) imply

A-ii=—s+(glon).. (A20)
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