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Preface
________

   Charged Particle Beams is the product of a two-term course sequence that I taught on
accelerator technology and beam physics at the University of New Mexico and at Los Alamos
National Laboratory. The material for the two terms was divided into the dynamics of single
charged particles and the description of large groups of particles (the collective behavior of
beams). A previous book, Principles of Charged Particle Acceleration (available on the
Internet at http://www.fieldp.com/cpa/cpa.html) covered single particle topics such as linear
transfer matrices and the operation of accelerators. The new book is an introduction to charged-
particle-beam physics. 
   In writing Charged Particle Beams my goal was to create a unified description that would be
useful to a broad audience: accelerator designers, accelerator users, industrial engineers, and
physics researchers. I organized the material to provide beginning students with the background
to understand advanced literature and to use accelerators effectively. This book can serve as an
independent reference. Combining Charged Particle Beams with Principles of Charged
Particle Acceleration gives a programmed introduction to the field of particle acceleration. I
began my research on particle beams with a background in plasma physics. This change in
direction involved a difficult process of searching for material, learning from experts, and
seeking past insights. Although I found excellent advanced references on specialized areas, no
single work covered the topics necessary to understand high-power accelerators and
high-brightness beams. The difficulties I faced encouraged me to write Charged Particle
Beams. The book describes the basic ideas behind modern beam applications such as stochastic
cooling, high-brightness injectors and the free-electron laser.
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   I was fortunate to have abundant help creating this book. Richard Cooper of Los Alamos
National Laboratory applied his proofreading ability to the entire manuscript. In additional to
mechanical corrections, his suggestions on technical points and emphasis were invaluable. The
creation of this book was supported in part by a sabbatical leave from the Department of
Electrical and Computer Engineering at the University of New Mexico. David Woodall. former
Chairman of the Department of Chemical and Nuclear Engineering at the University of New
Mexico, suggested the idea of the accelerator course sequence. I am grateful for his support
during the development of the courses.
   Several people contributed advice on specific sections of the book. Commentators included
Kevin O'Brien of Sandia National Laboratories, John Creedon of Physics International
Company, Brendan Godfrey of the Air Force Weapons Laboratory, Edward Lee of Lawrence
Berkeley Laboratory, William Herrmannsfeldt of the Stanford Linear Accelerator Center, and
Carl Ekdahl of Los Alamos National Laboratory. I would also like to thank A. V. Tollestrup of
Fermi National Accelerator Laboratory for permission to paraphrase his article (coauthored by
G. Dugan) on Elementary Stochastic Cooling.
   I want to express appreciation to the students in my beam physics course at the University of
New Mexico and at the Los Alamos Graduate Center. Through their contributions, I clarified and
expanded the material over several years. Los Alamos National Laboratory supported the
courses since their inception. I want to thank Robert Jameson and Alan Wadlinger of the
Accelerator Technology Division for their encouragement. The efforts of the Instructional
Television Center of UNM made it feasible to present classes at Los Alamos. I have also taught
the material in short course format. I am grateful to Thomas Roberts and Stanley Pruett for
organizing a course at the Strategic Defense Command.
   Several accelerator science groups helped in the development of material for the book. I have
worked closely with the Heavy Ion Fusion Accelerator Research Group at Lawrence Berkeley
Laboratory for several years. I want to thank Henry Rutkowski, Thomas Fessenden, Denis Keefe
and Edward Lee for their suggestions on the book and for providing the opportunity to work in
the field of accelerator inertial fusion. The long-term support of Charles Roberson of the Office
of Naval Research has been critical for accelerator research at the University of New Mexico.
The University has also received generous research support from Groups CLS-7 and P-14 of the
Los Alamos National Laboratory. I am grateful to Roger Bangerter and the late Kenneth Riepe
who initiated the UNM program on vacuum arc plasma sources. I would also like to thank Carl
Ekdahl – much of the material in this book evolved from spirited discussions on high-current
beam physics.
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   During the composition of this book, I had the opportunity to participate in several research
programs on high-power accelerators. I would like to thank Ralph Genuario and George
Fraser of Physics International Company, Sidney Putnam of Pulse Sciences Incorporated, Robert
Meger of the Naval Research Laboratory, Martin Nahemow of the Westinghouse Research and
Development Center, Richard Adler of North Star Research Corporation, Daniel Sloan of
CH2M-Hill, Kenneth Moses of Jaycor, and R. Bruce Miller of Titan Technologies. I would like
to acknowledge two meetings that I attended during the creation of the book. The first is the
NATO Workshop on High Brightness Beams in Pitlochry, Scotland. I express my appreciation to
Anthony Hyder for organizing this workshop. I have particularly enjoyed participating in the
U.S. Particle Accelerator Schools organized by Melvin Month.

Finally, I would to thank John Wiley and Sons Incorporated for graciously reverting the
copyright on this book so I could prepare this Internet version.

STANLEY HUMPHRIES, JR.

Albuquerque, New Mexico 
November 2002
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1
Introduction
__________

1.1 CHARGED PARTICLE BEAMS

A charged particle beam is a group of particles that have about the same kinetic energy and
move in about the same direction. Usually, the kinetic energies are much higher than the  thermal
energies of particles at ordinary temperatures. The high kinetic energy and good directionality of
charged particles in beams make them useful for applications. Although we often associate
accelerators with the large machines of high-energy physics, charged particle beams have
continually expanding applications in many branches of research and technology. Recent  active
areas include flat-screen cathode-ray tubes, synchrotron light sources, beam lithography for
microcircuits, thin-film technology, production of short-lived medical isotopes, radiation
processing of food, and free-electron lasers. 
   The importance of accelerators for applications in research and industry sometimes
overshadows beam physics as an intellectual discipline in its own right. The theory of charged 
particle beams is much more than a tool to design machines - it  is one of the richest and most
active areas of classical physics.  In our study of charged particle beams, we shall gain a
comprehensive understanding of applied electromagnetism and collective physics. 
   Despite the practical importance and underlying unity of beam  physics, the field has not yet
achieved a strong identity like plasma physics. Although there are many specialized review
papers  and texts, few general works cover the full range of beam processes. There are several
reasons for fragmentation in the field. Accelerator scientists are largely goal-oriented,
concentrating on the theory and technology to solve the problem  at hand. Each large accelerator
has its own mission and its own  group of scientists. Because of the broad range of required
beam  parameters, different accelerators use a diversity of technologies that often have little in
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common. Although there are  large differences in technology, we shall see that a few basic
principles enter into the the design of all accelerators and beam transport devices. As the
problems of accelerators become more challenging and beam applications become more
sophisticated, it  is increasingly important for accelerator scientists to share their insights and
expertise. In recent years, there have been 
several efforts to emphasize the unity of the field and to promote communication between
researchers. In the United States,  examples include the Particle Accelerator Conference with its 
steadily increasing attendance from all areas of accelerator research, the U.S. Particle
Accelerator School and its educational publications, and the recently-formed American Physical
Society Division of Accelerator Physics. 
   This book was written to guide students entering accelerator  science and to provide
researchers with a comprehensive reference. It contains a unified treatment of beam physics at an
introductory level. This book and a previous one, Principles of  Charged Particle
Acceleration, provide a bridge to carry students  to advanced work in specialized fields of
accelerator science and  beam theory. Principles of Charged Particle Acceleration reviews  the
fundamentals of single particle dynamics. The book describes  how accelerators work, from
small low-current devices to the largest machines of high-energy and high-power research. The
present book concentrates on problems of beam physics, the acceleration and control of large
numbers of charged particles.  The range of topics is extensive, with reference material for
designers and users of all types of accelerators. Colored equation  numbers indicate important
relationships. 
   In this section, we begin by reviewing properties of charged particles and particle beams. Sect.
1.2 discusses some of the problems of collective physics and outlines the organization of  the
book. Sect. 1.3 summarizes some results from Principles of Charged Particle Acceleration that
will be useful  for many of the derivations. The goal of beam theory is to describe how the
multitude of particles in a beam interact with one another. For this purpose, we need not consider
the internal structure of charged particles. Usually, it is sufficient to represent a particle as point
entity with two properties: charge, q, and rest mass, mo. We assume that the particle
characteristics  are constant during acceleration and transport. In this book, we  will not examine
the effects of finite particle dimensions and quantum properties such as spin. Except for
specialized applications, these properties have little effect on the formation and acceleration of
beams. 
   Much of the material in this book applies to any charged particle, from the elementary particles
of high-energy physics research to hyper-velocity charged dust projectiles. Familiar applications
usually involve one of two types of particles: electrons or ions. The electron is an elementary
particle with the following characteristics:
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We shall apply SI units exclusively throughout the book with the  exception of the electron volt,
a useful unit for the energy of  individual particles. 
   Ions are composite particles. An ion is an atom missing one or more electrons. The following
quantities characterize an ion: 

A: the atomic mass number, equal to the total number of protons and neutrons in the nucleus.
Z: the atomic number, equal to the number of electrons in the neutral atom.
Z*: the charge state of the ion, equal to the number of electrons removed from the atom. 

The proton is the simplest ion - it is a hydrogen atom with its single electron removed. The
proton is an elementary particle with charge and mass:

We denote the charge and mass of other ions as:

   The rest energy of a particle equals the rest mass multiplied  by the square of the speed of light.
The rest energy of an electron is:  If the kinetic energy of a particle
approaches or exceeds its rest energy, we must use relativistic equations of motion. The SI energy
unit of joules is not convenient for individual charged particles. The standard energy unit in beam
physics is the electron volt (eV). One electron volt equals the change in kinetic energy of an
electron or proton that crosses a potential difference of 1 V, or: 

The electron rest energy in electron volts is:

  When an electron accelerates through a potential difference of  5.11 × 105 V, the kinetic energy
equals the rest energy. Electrons are relativistic when they have kinetic energy above about 100
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Figure 1.1. Particle orbits in a plasma compared with a beam.
Arrows represent velocity vectors

keV (105 eV). The Newtonian equations of motion are approximately correct for electron beams
with kinetic energy below this level. The proton rest mass exceeds the electron mass  by a factor
of 1843 - the proton rest energy is correspondingly  higher:

Because of the high rest energy, we can use Newtonian dynamics to  predict the motion of ions in
many applications. 
   Although single charged particles may be useful for some physics experiments, we need large
numbers of energetic particles  for most applications. A flux of particles is a beam when the 
following two conditions hold:

1. The particles travel in almost the same direction.
2. The particles have a small spread in kinetic energy. 

A beam is an ordered flow of charged particles. A disordered set f particles, such as a thermal
plasma, is not a beam. Figure 1.1  illustrates the difference between a beam and a plasma. The
relationship between a charged-particle beam and a plasma is analogous to the relationship
between a laser and a light bulb.  The photons from a laser are directed and monochromatic. The 
degree of order in a flow of particles is called coherence. A high level of coherence is essential
for most applications. For example, the minimum spot size of a scanning electron microscopic
depends on the parallelism of the electrons in the beam.
   Several quantities are useful to characterize charged particle  beams, including 1) type of
particle, 2) average kinetic energy,  3) current, 4) power, 5) pulse length, 6) transverse dimension,
7)  parallelism, and 8) energy spread. The parameters of charged particle beams for applications
extends over a remarkably large range.  Table 1.1 gives estimates of high and low values for
beam 
properties. No other field of engineering or applied physics extends over such a broad parameter
space.
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Table 1.1. Charged particle beam parameters for applications
Property Lower limit Upper limit Range

Mass me, 9.1×10-31 kg 238mp, 4.0×10-25 kg 106

Charge e, 1.6×10-19 C -100e, 1.6×10-17 C 102

Kinetic energy #1 eV 1012 eV 1012

Current 10-9 A 106 A 1015

Power <1 W 1012 W >1012

Pulse length <10-10 s Continuous >1010

Dimension 10-6 m >1 m >106

Angular spread 10-6 radians 1 radian 106

   In conventional accelerators, particle mass spans the range from electrons to the heavy ions
used for nuclear physics and accelerator inertial fusion. The mass of a uranium ion is 238 times
that of the proton, or 440,000 times the electron mass. The  charge state of particles in most
accelerators is q = ±e. Heavy  ion accelerators are an exception. In these machines,
highly-stripped ions (Z* > 50) result when a medium energy beam passes through a thin foil. The
multiply-charged ions then accelerate to  high kinetic energy in a linear accelerator.
   The kinetic energy of beams for applications spans about twelve orders of magnitude. At the
low end, we shall encounter energies less than 1 eV when we study electron emission from a
thermionic cathode. The current achievements of high-energy physics accelerators define the high
end of the energy spectrum,  about 1 TeV (1012 eV). 
   The beam current in present devices spans an even broader range, -1015. Ion and electron
microprobes have a current of about 1 nA = 10-9 A. Despite the low flux of such beams, we must 
apply collective beam theory to predict the minimum spot size. At  the other extreme, pulsed ion
or electron diodes generate beams  with current exceeding 1 MA = 106 A.
   To characterize beam power, we must distinguish between average power and peak power.
Many accelerators have a pulsed duty cycle. The highest peak power, over 1012 W for -50 ns, 
occurs in experiments on inertial fusion. At the low end, commercial devices such as CRT tubes
operate continuously at power levels below 1 W. Continuous machines define the upper limit on
beam pulse length. Resonant accelerators generate trains of very short pulses. Pulse durations
may be less than 100 ps =  10-10 s. 
    The maximum transverse dimension of charged particle beams is  immense if we include
astrophysical jets. In conventional applications, industrial sheet beam irradiators create the largest
beams, about 2 m in length. Scanning electron microscopes generate small beam spots less than 1
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:m in diameter.  The parallelism of orbits in beams also has a wide range. Accelerators under
development for defense applications have a requirement on angular divergence of about 1 :rad.
At the other extreme, intense pinched electron beams may have a divergence angle approaching a
radian, with a spread in longitudinal kinetic energy comparable to the directed energy. 

1.2. Methods and organization

   The central issue in beam physics is the solution of collective problems involving large numbers
of particles. The orbits of the particles depend on electric and magnetic fields.  The fields, in turn,
result partly from contributions of the beam  particles. Therefore, the field values depend on the
positions and velocities of all particles. An exact prediction of beam behavior demands the
simultaneous calculation of every particle  orbit. The challenge is formidable - a low current beam
may contain more than 1010 particles. Clearly, exact solutions are  impossible, even with the most
powerful computers.
   Collective physics is a science of approximation. Predictions  involve insight and experience -
to solve problems, we must eliminate unnecessary material but preserve the essential processes.
Beam physics can be difficult for beginning students  because there are no cut-and-dried methods.
Each calculation demands a careful analysis and a reduction with simplifying assumptions. One
goal of this book is give some insight into collective problems. The material of the book was
organized with this goal in mind: 

    1. The order of topics is from the simplest to the most complex. Ideally, the reader should
follow the text from beginning to the end. The early chapters give background material necessary
to understand advanced subjects like beam instabilities.
    2. In collective problems, the initial analysis and reduction is as important as the correct
mathematical solution of the equations. The best mathematical methods are useless if the
statement of the problem is not physically correct. Therefore, we shall concentrate on setting up
problems, carefully listing all limiting conditions. After defining the governing equations, we
shall apply 
straightforward mathematical methods to find a solution. 
3. A frustrating problem in many advanced works on beam physics is that the derivations often
have missing steps. These leaps may be obvious to the author but are obscure to non-experts. To
avoid this difficulty, we shall follow all stages of derivations at the expense of some repetition.

This book is an introductory text. It does not address sophisticated methods of mathematical
analysis, the history of beam physics, or the vast range of advanced literature. The 
references in Appendix1 are a good starting point for further reading on advanced topics. 
   The material in Chaps. 1 through 6 is the foundation for later chapters. Chapter 2 is a capsule
summary of collective physics with an emphasis on charged particle beam theory. Collective
physics organizes information about the motion of large numbers  of particles. Rather than
calculate the orbits of individual particles, we try to identify general trends in behavior. The 
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best way to organize information about particles is to plot orbit  vectors in phase-space. The
theorem of conserved particle density  in phase space leads to the fundamental equation of
collective physics, the Boltzmann equation. From this relationship, we derive moment equations
that describe the conservation of particles, momentum and energy in large groups.
   The introductory accelerator theory of Principles of Charged  Particle Acceleration
concentrates on the orbits of single particles or on laminar beams where all orbits are similar. In 
Chapter 3, we remove this limitation and study beams where the particles have random spreads in
direction and energy. Real beams always have such a diversity of orbits - to design accelerators, 
we must understand the limitations set by beam imperfections. Chapter 3 defines emittance, a
quantity that characterizes the parallelism of beams. The principle of emittance conservation has 
extensive applications to accelerators and beam optics systems.
   Chapter 4 discusses consequences of beam emittance in low current beams with small
space-charge forces. The first three sections define the transport parameters of a beam and review 
transport theory. This theory is useful for the the design of beam transport systems. Section 4.4
reviews imperfections in charged particle lenses and how they contribute to the growth of  beam
emittance. The final two sections discuss the importance of  beam emittance in storage rings and
beam colliders. We shall study methods that circumvent the principle of phase-volume
conservation to produce beams with low spreads in direction and  energy.
   Chapter 5 discusses equilibrium effects of beam-generated electric and magnetic fields. The
chapter introduces the idea of  self-consistent calculations. Here, we follow the motion of beam 
particles in fields that depend on the instantaneous position of  all other particles. The Child
derivation is the prototype calculation of a self-consistent beam equilibrium. It leads to the Child
limit, a constraint on the current density from a beam  extractor. Chapter 6 uses the expressions
for the fields generated by equilibrium beams to calculate one-dimensional current flow in several
practical cases. The chapter also introduces the KV distribution, a starting point for self-consistent
models of two-dimensional equilibria. 
   Chapters 7 and 8 introduce methods to create beams, while Chapters 9 through 12 discuss beam
transport and acceleration. Chapter 7 deals with electron and ion guns at low to medium current.
Sections 7.1 through 7.3 review design techniques for guns. Section 7.4 discusses electron
sources, while Sections. 7.5 and  7.6 review ion sources and ion extraction from plasmas. The
final  two sections describe methods to generate large-area, high-current ion beams. 
   Chapter 8 is devoted to high-power pulsed electron and ion diodes. These devices use pulsed
power technology to generate beams with very high current. Sect. 8.1 discusses the motion of 
electrons in crossed electric and magnetic fields - the resulting  equations are also useful for
conventional devices like the magnetron. The next two sections review the generation of pulsed 
electron beams. Sections 8.4 and 8.5 discuss two important processes for diode technology,
magnetic insulation and plasma erosion. The final four sections cover methods to create pulsed 
ion beams with current density far beyond the Child limit.
   In Chapter 9, we begin the study of beam transport. This chapter  discusses the effect of
space-charge and emittance on beams in conventional accelerators. The beams in these devices
are 
paraxial - particle orbits make small angles with respect to the  axis. Sections 9.1 through 9.3
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derive envelope equations for beams in several focusing systems. These equations, based on 
transverse force balance, are important first-order design tools  for beam optics systems. Section
9.4 applies the equations to define the maximum beam current in accelerators. Sect. 9.5 describes
multiple-beam transport, a method to circumvent current  limitations. The final section reviews
limitations on beam power  set by axial space-charge forces.
   Chapters 10 through 12 describe methods to control high-power  electron and ion beams.
Chapter 10 concentrates on high-current  electron beams in vacuum - the material is useful for 
applications such as microwave tubes. Solenoid lenses are effective for containment of
low-energy electron beams - the first three sections describe electron motion and linear beam
propagation in axial magnetic fields. Section 10.5 describes methods to focus relativistic beams
with thin foils or meshes. As  background, Section 10.4 summarizes the scattering and energy loss 
of electrons passing through matter. Section 10.6 derives the charge and current distributions
induced by beams in surrounding  metal structures - the relationships are important for latter
calculations of beam stability. Sections 10.7 through 10.9 treat the steering and focusing of
high-current electron beams in curved transport systems.
   In Chapter 11, we turn our attention to high-current ion beams. Moderate energy ions have low
velocity - for the same current and energy, an ion beam has higher space-charge than an  electron
beam. Therefore, it is difficult to transport high flux  ion beams through vacuum. High current ion
beams must be neutralized - the addition of low-energy electrons reduces the beam-generated
electric fields. Sections 11.1 through 11.3 describe methods to add electrons to ion beams. Section
11.4 reviews focal limits on neutralized ion beams, while Section 11.5  describes methods to
control and to accelerate high-flux ion beams. 
   Chapter 12 discusses the propagation of electron beams through  plasmas. We shall review the
properties of plasmas that affect their response to all types of pulsed beams. Sections 12.1 and 
12.2 introduce two basic plasma quantities, the Debye length and  the plasma frequency. Sections
12.3 applies the theory of plasma oscillations to describe the transverse motion of an electron
beam in an ion column. Sections 12.4 through 12.6 concentrate on plasma responses to pulsed
electron beams. Sections. 12.7 though 12.9 review the properties of beam equilibria in plasmas
and processes that limit beam current and propagation length.
   Chapters 13 and 14 cover instabilities, spontaneous departures from equilibrium driven by the
free energy of beams. The theoretical description of instabilities is a challenge - we must  handle
time-dependent effects of beam-generated electric and magnetic fields with self-consistent
methods. The field of beam  instabilities is broad. It would take an entire chapter just to  list the
processes covered in the literature. Instead, we  shall concentrate on a few important examples.
The detailed discussions illustrate methods and insights that have application  to the full range of
instability calculations.
   Most beam instabilities involve the transfer of axial kinetic energy to undesired random
motions. We use the term transverse instability when the energy contributes to transverse particle 
motion. These disturbances can lead to increased emittance or to sweeping motions of the beam.
Sections 13.2 through 13.4 review background material. Section 13.2 classifies transverse beam
oscillations in focusing systems. Section 13.3 summarizes the effects of wall resistance and a
spread of particle momentum on coherent oscillations. Section 13.4 reviews the theory of



Introduction Charged Particle Beams

9

(1.8)

transverse resonant modes in accelerator cavities. These modes can effectively couple the beam
kinetic energy to transverse oscillations. The other sections in the chapter describe collective
instabilities for a broad range of accelerators. 
   Chapter 14 discusses longitudinal instabilities. Here, the kinetic energy of a mono-energetic
beam couples to an axial velocity spread. The resulting momentum dispersion can interfere with
beam containment and focusing. Section 14.2 derives reference expressions for axial electric
fields in perturbed beams. The other sections contain descriptions of specific instabilities. 
    In Chapter 15 we shall study an important application of charged particle beams, the generation
of electromagnetic radiation. The description of radiation sources intimately involves beam
theory.  Besides reviewing some practical microwave devices, the chapter  introduces material of
general interest. Section 15.2 covers the use of resonant cavities as impedance transformers.
Cavities convert beam energy at high voltage and low current to microwave  energy at low
voltage and high current. Section 15.3 describes axial beam bunching, a process critical to the
operation of the  klystron and RF accelerators. The other sections cover several ways to convert
the energy of a beam to electromagnetic radiation: the inverse diode, the klystron, the traveling
wave tube, and the magnetron. To conclude the book, Sections 15.7 and 15.8. introduce the
theory of the free-electron laser. 

1.3. Single-particle dynamics

  In the following chapters, we shall study the behavior of ordered groups of charged particles.
Although much of the material is introduced as needed, the reader must have a good preliminary
knowledge of single-particle dynamics. The companion  book Principles of Charged Particle
Acceleration provides the  necessary prerequisites. In this section, we shall summarize important
background equations for later reference. The symbol [CPA] appears throughout this book to
reference sections of Principles of Charged Particle Acceleration with relevant supplementary
material. 

A. Particle dynamics

   We shall construct theories of collective beam behavior by summing over the orbits of many
individual charged particles. We  use equations of motion to predict single particle orbits. Four 
quantities specify the status of a charged particle: the rest energy, mo, the charge, q, the vector
position, x, and the vector  velocity, v. In most of the derivations in following chapters, q and mo
are constant while x and v change. The velocity causes a  change in position:

Although the rest mass of a particle is constant, the special theory of relativity states that the
inertia of a particle observed in a frame of reference depends on the magnitude of its speed in that
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(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

frame. In Cartesian coordinates, the particle speed  is 

Relativistic dynamics uses the special function of v:

where c is the speed of light:

The quantity ( is always greater than unity because the observed  speed of a particle can never
equal or exceed c. Another useful  parameter is the ratio of the particle speed to c:

Substituting Eq. (1.12) in Eq. (1.10) gives:

    The inertia of a particle is proportional to (. The apparent  mass is:

The particle momentum, a vector quantity, equals:

In response to a force, F, the momentum changes as:
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(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)
(1.24)

(1.25)

(1.26)

If the force is a known function of x and v, we can use numerical  methods to calculate the orbit
of a particle by a simultaneous solution of Eqs. (1.8) and (1.17). In relativistic dynamics, the total
energy of a particle is mc2 = (moc2. The kinetic energy equals the total energy minus the rest
energy:

    Newtonian dynamics describes the motion of low-energy particles when:

In the non-relativistic limit, ( • 1. Here, the equations of particle dynamics are:

Equations (1.20)-(1.24) have a simpler form than the relativistic equivalents - it is usually easier
to find analytic solutions to  non-relativistic problems. 
   Sometimes, we can use modified Newtonian equations to describe  the transverse motion of
relativistic particles in beams. In most  beams, the transverse velocities of particles are much
smaller than the axial velocities. We shall consistently use the coordinate z as the average
direction of beam motion; therefore,  vx, vy n vz. For transverse particle motion with no
acceleration in z, the total particle energy is almost constant. If we take ( as  a constant, Eqs. (1.8)
and (1.17) become:

Similar equations hold for the y-direction. Equations (1.25) and (1.26 ) have the form of
Newtonian equations of motion with a modified mass, (mo. 
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(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

B. Electromagnetic forces

   The motion of charged particles in accelerators depends almost  entirely on electromagnetic
forces. The Lorentz force expression  for a particle with charge q and velocity v is:

The values of electric and magnetic field in Eq. (1.27) are evaluated at the instantaneous position
of the particle. 
   We calculate electric and magnetic fields from the Maxwell equations using known
distributions of charge and current density. The charge density, D, is a scalar quantity with units
coulombs per cubic meter. The current density, j, is a vector quantity with units of amperes per
square meter. Several sources can contribute to the net charge density, including charges
deposited on electrodes by external power supplies (Dapplied), displaced charges in dielectric
materials (Ddielectric), and the charge of beam particles moving freely through vacuum (Dspace). The
total current density may have contributions from applied currents in magnet coils (japplied),  from
atomic currents in ferromagnetic materials (jatomic), and from beam particles (jspace). The Maxwell
equations are:

The summation symbols denote the sum of all contributions to the  charge and current density.
The constants in Eqs. (1.28) and (1.31)  are:

and
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(1.34)

(1.35)

(1.36)
(1.37)

(1.38)
(1.39)

(1.40)

(1.41)

   Often, the portion of the electric field created by charges in dielectric materials is linearly
proportional to the total electric field in the material. In this case Eq. (1.28) becomes,

where , is a constant that depends on the material, , $ ,o. The  symbol Dfree represents all
contributions to the charge density  except the charges bound in the dielectric. We can make
similar  definitions for the effect of atomic currents in ferromagnetic materials. In the special case
that field components arising from dielectric and ferromagnetic materials are linearly proportional 
to the total fields in the materials, we can write the Maxwell equations in an alternative form:

The constant : depends on the magnetic properties of the material; here, jfree is the total current
density from all sources except the ferromagnetic material. We can characterize dielectrics in
terms of the relative dielectric constant:

and magnetic materials in terms of the relative magnetic permeability:

C. Coordinate transformations

  In derivations of the following chapters, it is often useful  to change between different frames of
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(1.42)

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)

reference. We often define  two special frames. The stationary frame is the rest frame of the
physical devices that accelerate and confine a beam. In this frame, the beam moves at average
velocity vz = $zc. The beam rest  frame moves at velocity $zc relative to the stationary frame. In 
this frame, particles are at rest if the beam has no axial velocity spread.
   The Lorentz transformations relate position and velocity between two frames of reference in
relative motion. Suppose that  we determine the position and velocity of a particle in a frame  that
we consider stationary - the measured quantities are (x,y,z,vx,vy,vz). Consider the viewpoint of an
observer who moves  relative to our frame at speed $c in the +z-direction. The observer measures
the position and velocity of the particle as (x’,y’,z’, vx', vy', vz'). The Lorentz transformations give 
relationships between the quantities measured in the two frames  of reference:

where . Equations. (1.42)-(1.48) hold if we define the origin of time so that z =  z'
at t = t' = 0.
   Some derivations in later chapters are simplified by transforming electric and magnetic fields
between frames in relative motion. Suppose we measure the quantities (Ex, Ey, Ez, Bx, By, Bz) in a
frame that we consider stationary. In a  frame in relative motion, the measured field components
are (Ex’, Ey’, Ez’, Bx’, By’, Bz’) . If the frame moves at relative velocity v = vzz = $cz, the electric
and magnetic fields are related by:
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(1.49)

(1.50)

(1.51)

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

(1.57)

D. Transfer matrices

   Most beam transport devices, such as charged particle lenses  and bending magnets, apply
transverse forces that are linearly proportional to the distance of a particle from a preferred axis. 
Suppose a device produces a linear transverse force in the x-direction over an axial length. We
want to compare the particle  orbit at the exit of the device to the orbit at the entrance. To  specify
the orbit of the particle in the x-direction, we must give its position, x, and velocity, vx. The
convention in charged-particle optics is to represent particle orbits in terms  of their angle relative
to the main axis, rather than the transverse velocity. In the limit that vx n vz, the angle is

We can symbolize the entrance orbit as a vector, [xo, xo']. The exit vector is [x1, x1']. If the
x-directed forces in the device are linear, then we can express the exit vector as a linear
combination of the entrance vector components:

In matrix notation, the relationship is:

The quantities amn depend on the distribution of forces. The focusing effect of any
one-dimensional linear device is specified  by the four numbers, amn. The matrix of Eq. (1.57) is
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(1.58)

(1.59)

(1.60)

the transfer matrix of the device in the x direction. Without acceleration, the determinant of the
transfer matrix equals unity:

   If a particle travels through linear device A and then through device B, the final orbit vector is

or,

The quantity C is the matrix product of B times A. The orbit vector transformation from any
combination of one-dimensional focusing elements is a single transfer matrix, the product of the 
individual matrices of all the elements.

   The particle orbit vector for a two-dimensional focusing system is x = [x, x', y, y']. A 4×4 matrix
represents the effect of  a general linear focusing element or system. In many practical devices,
such as quadrupole lens arrays, the forces in the x and  y directions are independent. Then, we can
calculate motion in x and y separately using individual 2×2 matrices. 

E. Periodic focusing systems

   Most high-energy accelerator systems use quadrupole lens arrays for focusing. The transverse
forces in a quadrupole array  must vary periodically along the axis for net focusing in both the x
and y directions. A general periodic focusing system consists of a repeated set of focusing
elements and drift spaces,  The smallest periodic subset is called a focusing cell. For example, the
cell of a quadrupole lens array may consist of a focusing lens, a defocusing lens, and intervening
drift spaces.  If transverse forces are linear, each element of the cell has a  transfer matrix. We can
find the transfer matrix, M, for the complete cell by multiplication of the matrices of individual
elements.
   If xo is an orbit vector at the entrance to a focusing cell,  the orbit at the entrance to the next cell
is x1 = Mxo. At the end of n cells, the orbit vector is xn = Mnxo. The power notation designates the
matrix multiplication of M by itself n times. Through analysis of the matrix power operation, we
can show that the orbit displacements at the cell entrances follow the equation:
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(1.61)

(1.62)

(1.63)

(1.64)

(1.65)

(1.66)

The quantity :o is the vacuum phase advance per cell. It depends on the trace of the ray transfer
matrix through  the equation:

An orbital instability occurs in the periodic system when

   With a continuous linear focusing force, all particles oscillate harmonically in the transverse
direction at Tb, the betatron angular frequency. The particles trace out harmonic curves as they
move axially. The axial wavelength of the orbit traces is the betatron wavelength:

In a periodic system with axially varying forces, particles do not follow perfect sinusoidal orbits.
Nonetheless, Eq. (1.61) shows  that the locus of particle displacements at the cell boundaries is a
harmonic curve. If we disregard small scale motions within  each cell, we can define an effective
betatron wavelength in periodic systems. If the cell has length L, then the actual orbit  intersects
the curve:

The effective betatron wavelength in a periodic focusing system  is related to the phase advance
per cell by

F. Phase dynamics

  Despite differences in geometry, all radio-frequency accelerators use a traveling electromagnetic
wave to accelerate charged particles. For ion acceleration, the axial component of  the electric
field on the axis has the form:
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(1.67)

Figure 1.2. Axial variation of the longitudinal electric field of a
traveling wave at a given time

(1.68)

(1.69)

Figure 1.2 shows the axial variation of the electric field of Eq. (1.67) at time t = 0. The frequency,
T is constant through the length of the accelerator, while the wave number, k(z), may vary.  In the
following discussion, we assume that the magnitude of the  electric field, Eo, is constant in z. The
wave can accelerate particles to high energy only if they stay within the region of  accelerating
electric field. In other words, the particles must  remain at about the same phase of the
accelerating wave. This means that the wave phase-velocity must increase to match the velocity
of the accelerating particles.
   Figure 1.2 defines the phase of a particle with respect to a traveling wave. A particle with zero
phase, N = 0, sees no axial electric field. The wave accelerates particles with phase in the range 0
< N < B and decelerates particles in the phase range 0 > N > -B. We can define conditions where a
particle stays at a constant phase. A particle with this property is a synchronous particle - its
phase is the synchronous phase, Ns. Figure 1.2 shows that the synchronous particle experiences a
constant axial electric field, Ezs = Eo sinNs. Limiting attention to non-relativistic ions, the
synchronous particle velocity changes as: 

The accelerating structure must vary along its length so that the  wave number is
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(1.70)

(1.71)

(1.72)

(1.73)

(1.74)

(1.75)

(1.76)

   An accelerator has a synchronous particle if Eqs. (1.68) and (1.69) hold. If a synchronous
particle exists, we can show that under some conditions non-synchronous particles have stable 
oscillations about the synchronous particle position, zs. This requirment is essential for practical
beam acceleration because we can never create a singular distribution of perfectly synchronized 
particles. Let z and v be the axial position and velocity of a non-synchronous particle. We define
the small quantities:

Inspection of Fig. 1.2 shows that 

The quantity 8 is the local wavelength of the traveling wave. The  instantaneous acceleration of
the non-synchronous particle is:

We can combine Eqs. (1.70) - (1.72) into the general phase equations for non-relativistic
particles:

Numerical solutions of Eqs. (1.73) and (1.74) describe the axial motion of particles when Eo and
vs vary with z. If Eo and vs are almost constant during an axial oscillation of a non-synchronous
particle, then we can combine Eqs. (1.73) and (1.74) to give the familiar non-linear differential
equation:

For small oscillations about the phase of the synchronous particle, )N n Ns, Eq. (1.75) reduces to:
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(1.77)

(1.78)

The axial oscillations of non-synchronous particles are stable if  cosNs > 0. The conditions for
synchronized particle acceleration  are cosNs > 0 and sinNs > 0, or

A traveling wave can also decelerate particles - this is the basis for many microwave devices and
the free-electron laser. The  conditions for synchronized deceleration are cosNs > 0 and sinNs  < 0,
or: 
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2
Phase-space description of charged particle beams
__________________________________________

   This chapter introduces theoretical tools for application in  the rest of the book. We shall
review methods to predict the average behavior of large numbers of particles. The emphasis is
]on beams, where the particles have high kinetic energy, have good  directionality, and may be
relativistic.
   Section 2.1 discusses the representation of particle orbits in  phase-space. For non-relativistic
particles, phase-space is a six-dimensional space with axes in space (x, y, z) and velocity (vx, vy,
vz). At a given time, a point in phase-space represents the complete parameters of a particle orbit.
As time evolves, the  orbit point of a particle traces out a trajectory, [x(t), y(t), z(t), vx(t), vy(t),
vz(t)]. We adopt the phase-space viewpoint because plots of multiple particle trajectories are
more orderly than the familiar orbit plots in conventional space, [x(t), y(t), z(t)].
   Section 2.2 introduces the distribution function, a method to organize information on large
numbers of particle orbit points in  phase-space. The distribution function is a record of particle
orbit coordinates. It changes with time as particles move. The section defines both the discrete
distribution function and the  continuous distribution function. The discrete function is the
foundation for computer simulations, while the continuous function is the basis for analytic
theories of collective behavior.
   Section 2.3 gives a general discussion of self-consistent orbit  calculations with
beam-generated forces. The section concentrates on numerical methods as an illustration of a
strategy to advance orbits and fields simultaneously. We divide time into small steps. At each
step, we advance the orbits and calculate the resulting fields. The process converges toward the
actual solution if the forces acting on particles all almost constant over the time step. The section
reviews a useful numerical technique for orbit calculations, the leapfrog method. 
   Section 2.4 applies the leapfrog method to prove the theorem of  phase-volume conservation.
The theorem states that the volume occupied by a collection of orbit points in phase-space is
constant in time when there are no collisions. Here, the term collision means a short-range force
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that varies over a length comparable to the spacing between particles. An equivalent statement of
the theorem is that the distribution function is constant if we follow the orbit of particle.
Phase-volume conservation is the fundamental principle of beam physics. From it we derive the
basic equations and the principle of emittance  conservation (Chapters 3 and 4).
   Sections 2.5 and 2.6 illustrate the use of the distribution function. Section 2.5 discusses
macroscopic quantities. These are the measurable properties of a collection of particles, such as
density and average velocity. We shall see how to calculate these quantities as velocity-space
averages over the distribution function. Sect. 2.6 reviews the properties of a specific function, the
Maxwell distribution. The distribution describes a  collection of particles in thermal equilibrium
- we shall encounter it several times in following chapters. For reference,  the section gives
several macroscopic averages of the Maxwell 
distribution.
   Section 2.7 derives the collisionless Boltzmann equation. The equation describes the evolution
of particle orbit points in phase-space in the fluid approximation. The equation follows from  the
demonstration in Section 2.4 that the phase fluid is incompressible. The Vlasov equation is a
special case of the collisionless Boltzmann equation where only electric and magnetic  forces act
on particles. The Vlasov equation is the fundamental  relationship of beam physics.
   For self-consistent calculations, we must find the electric and magnetic fields associated with a
distribution of particles.  Sect. 2.8 shows how to calculate the space-charge density and current
density of a beam from the distribution function. We shall also review the basis of the
phase-fluid model and the validity limits on the Vlasov equation. The models assume that field
variations are smooth - variations of the field are small over lengths comparable to the distance
between particles.
   Sect. 2.9 reviews computer simulations of beams. The material  illustrates the physical
meanings of distribution functions and  the Vlasov equation. Simulations are concrete and easily-
visualized examples of collective particle motion. They help us to see the distribution function as
a practical method of particle book-keeping rather than an abstract theoretical concept. We shall
review the particle-in-cell method, the basis for simulations of high-current beams.
    We derive the moment equations in Section 2.10 by taking velocity averages over the
collisionless Boltzmann equation. The  process generates simple and useful equations by
removing detailed information about the velocity distribution. We shall use the moment
equations extensively, particularly in treating macroscopic beam instabilities where the orbits of
all particles  move in a similar way. Section 2.11 discusses the consequences of  velocity
dispersion in a beam distribution. We can represent the  effect of a velocity spread as an average
pressure force. Because  we often think of pressure in terms of collisional particles such  as
gases, we must carefully review the nature of the pressure force in a collisionless distribution.
   To conclude the chapter, Section 2.12 describes the properties of relativistic particle
distributions, a subject critical to charged particle beams. We must define phase-space in terms
of position and momentum rather than velocity, [x, y, z, px, py, pz]. If  we adopt this convention,
we can preserve the principle of phase- volume conservation and derive a modified Vlasov
equation for relativistic particles.
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Figure 2.1. The orbits of particles in a beam portrayed in configuration space.
The particles move in a non-linear transverse force with mixed amplitudes,
phases, and frequencies.

2.1. Particle trajectories in phase space

   The motion of a single charged particle is usually portrayed  in three-dimensional geometric
space, or configuration space. The  particle follows a trajectory described by the vector (x(t),
y(t), z(t)). The position vector is calculated from the velocity, (vx(t), vy(t), vz(t)). The velocity
reflects the action  of applied forces. The configuration space representation is not an effective
way to portray the behavior of large numbers of particles. For example, Fig. 2.1 shows
trajectories of particles  in a beam confined by a non-linear transverse force with a distribution of
amplitudes and phases. In configuration space, the motion appears disordered. From an
inspection of the confused  picture, it is difficult to envision general methods to predict  the
behavior of the beam as it moves downstream. The only option  appears to be direct solution of a
large number of individual orbits. 
   In order to develop theoretical tools for the description of  large numbers of particles, we need
a more ordered picture of particle dynamics. We can improve the model by representing particle
trajectories in a six-dimensional space with axes in both space and velocity, (x, y, z, vx, vy, vz).
This mathematical space is called phase space. At a particular time,  each particle in a beam is
represented as a single point in phase space. Although it is impossible to display all six phase-
space dimensions simultaneously, we can gain insight into phase-space dynamics by viewing the
projection of particle motion in a single direction, (x, vx). Then, the evolution of particle orbits
can be displayed on a two-dimensional plot. Throughout this book, we will use two-dimensional
plots to gain physical intuition before addressing general results for six-dimensional phase space. 
   When plotted in phase space, the trajectories of large numbers of particles have a high degree
of order if forces vary smoothly  in space. Without collisions, two particles that start out with 
similar phase-space coordinates will always be neighbors. This features follows from the fact
that the particles have about the same initial position and velocity and are influenced by similar
forces. Another consequence is that the trajectories of particles influenced by smooth forces
never cross in phase space. As two trajectories approach, the forces acting on both particles
becomes almost identical. The implication is that the trajectories of particles in phase space are
laminar. The trajectories follow non-intersecting streamlines, as shown in Fig. 2.2a. Particle
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Figure 2.2. Representation of particle motions in phase-space. (a)  Laminar phase-space
trajectories of particle orbit vectors with  no collisions. (b) Effect of a collision on the
phase-space position of a particle orbit vector.

orbits plotted in configuration space clearly  do not have this property (Fig. 2.1). Laminar phase
flow is the  foundation for theories of collective behavior. Application of the laminar flow
condition leads to equations for large numbers of particles similar to those that describe fluids
(Section 2.7).  Because of the adherence to fluid equations, the phase-space coordinates for a
collection of particles is often called a phase  fluid. 
   The criterion for laminar flow is that the forces acting on particles are smooth. A force is
smooth when the scale length for spatial force variations is long compared with the distance
between particles. Similarly, if the force depends on velocity,  the velocity scale for variations of
a smooth force is larger than the velocity difference of adjacent particles in phase space. The
applied forces in accelerators are usually smooth. For example, transverse focusing forces vary
over scale lengths comparable to a beam radius, -0.01 m. In contrast, the spacing between
particles in a 1 A, 100 keV electron beam of radius 0.01 m is only about 10-3 cm. 
   Short range forces between particles are generally called collisions. When particles collide
with a background or with one another, there is a discrete change in phase-space coordinates. 
Two particles that are phase-space neighbors may become widely separated in velocity space
after one particle suffers a collision. Figure 2.2b shows phase-space trajectories in the presence
of collisions. The trajectories are no longer laminar.  In most charged-particle-beam accelerators
and transport systems,  the effect of collisions is small. Changes in phase trajectories  from
collisions usually take place slowly compared with the motion of particles under the action of
long range forces.  
   To gain an intuition for phase-space trajectories, we shall review some examples. To begin,
consider the trajectories of particles accelerated by a constant axial electric field, Ez. We shall
neglect transverse motions of particles and concentrate on the z-vz phase-space plane. The axial
position and velocity of non-relativistic particles are given by the parametric equations:
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(2.1)

(2.2)

(2.3)

(2.4)
(2.5)

(2.6)

Equations (2.1) and (2.2) represent a parabola in phase space. Fig. 2.3a  illustrates some orbits of
protons in an electric field of 105 V/m. Note that trajectories are laminar with no crossings.
Adjacent particles are always localized in phase space even though they undergo substantial
acceleration. 
   As a second example, consider particles acted on by a spatially-varying transverse focusing
force of the form 

The linear force variation of Eq. (2.3) is important in charged particle beam applications. Almost
all accelerator focusing devices exert approximately linear transverse forces. The orbits of
non-relativistic particles are described by:
where

The phase-space trajectories of particle orbits are ellipses (Fig. 2.3b) The phase-space rotation
frequency, T, is the same for all particles. Individual trajectories may vary in amplitude, xo, or
phase, N. A collection of particles with different oscillation amplitudes follows a nested set of
elliptical trajectories. A set of particles with the same amplitude but different phase follow each
other along the same ellipse. The trajectories neither overtake nor cross one another.
   Analysis of relativistic particles is performed in a phase space with axes of spatial coordinates
and momentum, (x, y, z, px, py, pz), rather than velocity. Velocity is not a useful quantity to
characterize relativistic orbits since all particles travel at approximately the speed of light when
their kinetic energy is comparable to or greater than their rest energy. Representation of
relativistic particle distributions in (x, p) phase-space leads to fluid-like equations for collective
behavior  (Section 2.12). To illustrate the phase dynamics of high energy  particles, we shall
consider the relativistic harmonic oscillator. Here, the change of kinetic energy of a particle
moving in the linear force of Eq. (2.3) is comparable to or greater  than the rest energy. We must
account for a change in the relativistic mass factor, (. Note that this derivation  is seldom 
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Figure 2.3. Representation of particle motions in phase-space. (a)  Longitudinal motion (z-vz) of protons
accelerated by an axial electric field, Ez = 105 V/m. (b) Transverse motion (x-vx) of 
particles in a linear focusing force: 300 keV protons with a betatron wavelength of 0.3 m.

applicable to the transverse oscillation of charged particles in beams. In a typical beam,
transverse particle motion accounts for only a small fraction of the particle's kinetic energy and
the quantity ( is almost constant.
   The relativistic equations of motion are
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(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

Momentum is related to ( by

Equation (2.7) can be rewritten as

We shall rewrite Eqs. (2.8) and (2.10) in dimensionless form to illustrate scaling parameters for
the solution. Assume a maximum amplitude for particle oscillations, xo, and define the
dimensionless variable X = x/xo. For relativistic particles, a good choice for the scaling velocity
is c, the speed of light.  The time scale of interest is roughly xo/c. We define a dimensionless time
variable J = t/(xo/c). Finally, inspection of  Eq. (2.10) shows that a good choice for the
dimensionless momentum  is Px = px/moc. The reduced equations of motion are 

where

The single governing parameter, ", is equal to twice the particle potential energy at xo divided by
the rest energy. The value of " indicates the regime of particle dynamics - motion is relativistic
when " > 1. 
   Figures 2.4a and 2.4b show numerical solutions for configuration space orbits. The quantity
X(t) is plotted for choice of " = 0.5 and 5.0. As expected, motion is nearly sinusoidal when " is
small. At high values of ", the orbit approaches a sawtooth function. This behavior results from
the fact the particle travels close to the velocity of light most of the time. The velocity is small
compared with c only at the turning points. In  contrast to non-relativistic particles, the
transverse oscillation frequency of relativistic particles in a linear force  is amplitude dependent. 
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Figure 2.4. Oscillation of a relativistic particle in a linear force. (a) Variation of normalized transverse
position with normalized time, X(t), for " = axo

2/moc2 = 0.5. (b) Plot of X(t) for " = 5.0. (c) Phase-space 
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This property can reduce the growth of resonant instabilities in high current relativistic beams.
Fig.  2.4c shows the non-elliptical phase-space trajectory of the relativistic particle with " = 5.  
plot of a particle orbit-vector trajectory. Normalized position versus normalized momentum, X-Px,  for "
= 5.0. 

2.2. Distribution functions

   Collective physics predicts the behavior of systems with multiple interacting components. The
main task is keeping track  of large numbers of items. Usually, it is impossible to monitor 
individual components - the amount of information is overwhelming. Two procedures are
commonly used to reduce large data sets to a comprehensible level: 

1. Identification of trends in behavior or other relationships among components.
2. Development of methods of record-keeping so that information on group behavior can be
extracted efficiently. 

In the first procedure, components are assigned to groups with like properties. This makes it
easier to predict average properties by studying group behavior. We have already made a start in
this direction by adopting the phase-space description of particle dynamics. Particles in a
particular phase-space region all behave about the same way.

Figure 2.5. Computer-generated one-dimensional distribution - 2000  particle orbit vectors. Random
distribution in position and velocity with the weighting function f(x,vx) ~ cos(Bx/2xmax) cos(By/2ymax).
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   Regarding the second technique, the function of record-keeping  in charged particle physics is
served by the distribution function. The distribution function is a database of information on
particles from which average behavior can be extracted. It is a time-resolved record of how
particles occupy phase space. The distribution function is more than a simple list of properties -
the function itself obeys a fluid equation and is constrained by conservation principles. As a
result, we can often study the evolution of the distribution function to predict the behavior of a
beam rather than follow the  orbits of individual particles. 
   To visualize distribution functions, we will concentrate on particle motion in a single direction
represented by a two-dimensional phase space. We begin by studying non-relativistic particles in
(z-vz)-space. Section 2.12 treats relativistic particle beams. At time t, four quantities represent all 
information about a particle: q, mo, z(t) and vz(t). Assume that all particles in a collection have
the same charge, q, and rest  mass, mo. In non-relativistic beams, these quantities are constant in
time. Therefore, all information about a collection  of particles at time t is contained in a plot of
the coordinate  points [z, vz]. Figure 2.5 represents such a plot. The collection of  coordinate
points in the figure is called the particle distribution at time t. 
   Another way to represent information about the particle distribution is to divide the phase-
space region of interest into boxes with dimensions )z and )vz (Fig. 2.6). The process is called
defining a mesh in phase space. Given a mesh, we can define the discrete distribution function,
F. The function is simply the number of particle coordinates in each box. The discrete
distribution appears in computer simulations of beam dynamics. In a computer memory, the
discrete function has the form of a table of integer numbers. For a two-dimensional distribution,
the discrete function is an M × N matrix, where MN  is the total number of phase-space boxes
defined. The full six-dimensional phase-space representation of a beam is stored in a computer in
a six-dimensional matrix. 
   For one-dimensional motion, the discrete distribution function can be written as F(z, vz, t) =
F(m)z, n)vz), where z and vz are the coordinates at the center of a box. Note that F is a function
of time, since particles may move in and out of a box if they travel along the z axis or undergo
acceleration. The discrete distribution function for the shaded box in Fig. 2.6  is F = 5. 
   To understand the utility of the discrete distribution function, we must ask what information F
contains about the beam.  If )z and )vz are made small, the boxes may contain the coordinates of
a single particle or none at all. In the limit that )z and )vz approach zero, the function F gives
detailed information on the velocity and position of each particle. In principle, a knowledge of F
at time t is sufficient to predict the beam behavior precisely at all following times. In the
opposite  limit, where )z and )vz are large, each box contains many particle coordinates. On
such a coarse mesh, the function F tells  how many particles have position within a range ±)z/2
about z and velocity ±)vz/2 about vz. Although the discrete distribution function on a coarse
mesh may contain useful information about average beam properties, it cannot predict individual
particle orbits.
   A large amount of information is required to define F on a fine mesh. The amount of
information may be too extensive to obtain or to analyze. Furthermore, most applications do not
call  for such detailed knowledge. For example, we saw in Section 2.1 that particles with phase-
space coordinates that are close follow  almost the same trajectories when applied forces are 
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Figure 2.6. Phase-space mesh to define the discrete distribution  function, F. The function has the value F
= 5 in the shaded area element.

smooth. For this condition, a mesh division with dimension )z comparable to the length scale
for force variations would be sufficient. 
   The boxes on a coarse mesh contain many particles. When forces vary smoothly, the average
behavior of particles in the box can be determined by calculating the orbit of a single test
particle.  This simplification substantially reduces the number of calculations to predict the
evolution of the distribution. The test particle approximation is the basis of computer
simulations.  The criterion for an accurate analysis is that )z and )vz are small enough to resolve
major physical processes. For example, if  a beam is subject to a filamentation instability, where
the fastest growth occurs at a wavelength of 0.01 m, then the dimension of the box along z
should probably be smaller than 1 mm. 
  When particle motions along the three coordinate axes are not  independent, the definition of
the discrete distribution function  must be extended. For example, when a solenoid lens is
combined  with a quadrupole transport system, motions in the x and y directions are coupled. The
discrete distribution function, denoted F(x, vx, y, vy), is referenced to a mesh with box dimensions 
()x, )vx, )y, )vy). The function F gives the number of particles within a range (±)x/2, ±)vx/2,
±)y/2, ±)vy/2) of the point (x, vx, y, vy) in the four-dimensional phase space. 
   Although discrete functions are ideal for computer calculations, analytic treatments of
collective beam physics are usually carried out in terms of fluid models. The discrete nature of
particles is ignored and the distribution in phase space is approximated as a continuum. The fluid
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(2.14)

description is valid when the distribution has a high density in phase space. The term high
density implies that there are many particle orbit points in a  phase-space box. Accordingly, we
can define a quantity that describes the local density of particle coordinates in phase space,
independent of the dimensions of the mesh:

The function f is called the continuous distribution function, or  simply the distribution function. 
   The continuous distribution function has properties that are  analogous to the space charge
density, D, in electrostatics. When  there are many charged particles in a volume of interest, D
can  be treated as a continuous spatial function, leading to the differential form of the Poisson
equation. Similarly, the function f varies smoothly in space and time in the limit of high  phase-
space density. We will see in Section 2.7 that a fluid equation describes the time evolution of f. 

Figure 2.7. Phase-space plot of contour lines of the normalized continuous distribution function, 
f(x, vx)/f(0,0) = cos(Bx/2xmax) cos(Bvx/2vxmax). The function f(x,vx) is the continuous approximation to the
distribution of Fig. 2.5. (One quadrant shown.)   

This means that an extensive body of knowledge on fluid dynamics can be applied to  the
analysis of beam behavior. For one-dimensional motion, the continuous distribution function is
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(2.15)

(2.16)

often represented by a contour plot. Figure 2.7 shows a contour plot of the continuous limit of
the discrete function of Fig. 2.6. When there is a mixture of particle species (such as a charge
neutralized beam),  each species is represented by a separate distribution function.  

2.3. Numerical calculation of particle orbits with beam-generated forces

   As mentioned in Chapter 1, the major challenge in collective  physics is the solution of the
self-consistent problem. We would like to predict the evolution of a charged particle distribution
in which the forces generated by the particles themselves play a role in the dynamics. We shall
have opportunity in following chapters to study several analytic approaches to the problem.
These methods are often indirect - they may involve geometric simplifications, recognition of
trends in particle orbits, or application of symmetry principles.  In this section, we will defer
analytic methods and concentrate on direct numerical solutions. This approach is the most
straightforward way to reduce the self-consistent problem to a manageable level.  Also, we shall
gain insight into the basis of finite difference solutions of charged particle orbits. These concepts
will be applied in Section 2.4 to derive the principle of phase volume conservation. The section
concludes with an illustration of a specific finite difference method, the leapfrog algorithm. This 
algorithm finds extensive application in computer simulations of  beams and plasmas. 
   Consider the motion of non-relativistic particles in a beam. When forces between the particles
are small compared with externally-applied forces, the solution is conceptually simple.  Here, we
can solve the equations of motion for each particle independently to find the position and
velocity. The non-relativistic equations for the nth particle are

The quantity Fe in Eq. (2.16) is an externally-applied force which may depend on time and the
position and velocity of the  specific particle. The calculation of Eqs. (2.15) and (2.16) is
performed over an interval for all particles to give an accurate  prediction of the final
distribution.
   Calculating the evolution of a beam distribution is more difficult when the particles interact. If
the electric or magnetic fields generated by the beam are strong, then the force on a specific
particle depends on the location of all other particles in the beam. As a result, it is impossible to
determine  a test particle orbit directly. The orbit depends on the time-dependent positions and
velocities of the other particles in the  beam. In turn, these orbits depend on the motion of the test
particle. The problem is circular — we cannot find the exact orbits of a collection of particles
without a foreknowledge of the solution.
   One approach to self-consistent solutions is to use a stepwise  approximation - we advance all
orbits simultaneously over a small  time increment, )t. The resulting orbit predictions converge
to the actual solutions if the forces generated by particles satisfy  two conditions: 1) they vary
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(2.17)

(2.18)

over long distance scales compared  with the spacing between particles, and 2) they change
slowly compared with )t. The conditions imply that the spatial variation of the forces does not
change greatly between t and t + )t.
  A stepwise method to advance a particle distribution with self-consistent forces consists of the
following operations:

   1. The positions and velocities of all particles, (xio, vio) are specified at an initial time, t = 0. 
   2. The velocity of each particle is advanced through the first time step according to 

The notation in Eq. (2.17) suggests that the total force, F, depends on the location of all other
beam particles at time t = 0 and the position of the test particle.
   3. The values of xn are estimated at t = )t through the equation

   4. Because the forces are almost constant over )t, the positions predicted by Eq. (2.18) will be
close to the actual positions of interacting particles. Given the new positions, the electric and
magnetic fields of the beam can be estimated at time )t. This leads to an approximation for  the
total force at the position of each particle, F(xn, xi, )t).
   5. Steps 2 and 3 are repeated to predict the approximate particle positions and velocities at 2)t,
3)t, and so forth. The process continues until the particle distribution advances to the final time.

  As in any numerical calculation, the procedure involves compromises. A short time step
improves the accuracy but increases the number of operations. On the other hand, a large time
steps leads to inaccuracies that may mask important physical  processes. The goal is to extract
the maximum amount of information through the minimum number of calculations. The
following strategies reduce beam calculations to a level that a  computer can accommodate:

   1. The physical processes of the problem are analyzed to find )t small enough to resolve
critical beam behavior, but large enough to avoid the generation of needless information.
   2. Further analysis is performed to find the minimum number of particle orbits to represent
changes in the beam distribution. Representation of average beam behavior by a reduced number
of test particles is the basis of computer simulations (Section 2.9).
   3. Numerical methods are applied that yield the highest accuracy for a given )t.

  Concerning the third item, we shall study a particular procedure in the remainder of this
section. The leapfrog method  gives accurate predictions of particle orbits with few operations  -
it is well suited to simulations that involve large numbers of  particles. To simplify the
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(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

discussion, assume that particles move only in the x direction and that the force is a function of
position and time, not velocity. The second condition applies, for example, to electric forces in
the static limit. The equation  of motion for the nth particle in a distribution is 

The total force at time t depends on the position of the particle, xn(t), and the positions of all
other particles, xi(t).  Equation (2.19_ separates into two first order differential equations:

The differential equations are symmetric - the change in position depends on velocity while the
change in velocity depends on position. 
   Before addressing the simultaneous solution of Eqs. (2.20) and (2.21), it is useful to review the
solution of a first order differential equation of the type,

The exact change in y over the interval )t can be written as

For a numerical solution, we must find an approximation for the  integral on the right hand side
of Eq. (2.23). One choice is

Equation (2.24) is the basis of the Eulerian difference method [CPA, 115]. The drawback of this
approach is that it introduces errors proportional to the first power of the interval, )t. Figure 2.8a
illustrates the origin of the error. The rectangle F(t))t is a poor approximation to the  area under
the curve. 
   An improved estimate results if the value of the function is  taken at the intermediate time,



Phase space description of charged-particle beams Charged Particle Beams

35

(2.25)

(2.26)

t+)t/2. Here, we have 

Inspection of Fig. 2.8b shows that Eq. (2.25) is a better approximation than Eq. (2.24) because
first order errors cancel -  the solution is accurate to order )t2. The general class of difference
methods that use Eq. (2.25) are called time-centered methods because the value of F is taken at
the midpoint of the interval. The algorithm to advance y is

   Time-centering is simple when F is a known function of time. In the more general case, where
F depends on y and t, we must use  approximations to estimate F(y(t+)t/2), t+)t/2). One such
method,  the two-step integration procedure, is described in [CPA, Sect.  7.6]. The leapfrog
method is an alternative that involves fewer  calculations - it is well suited to electrostatic particle 
simulations. At the start of such a simulation, we usually have  the set of particle positions and
velocities at t = 0, xi(0) and  vi(0). Suppose instead, that we know the positions at t = 0 and the
velocities at the displaced time )t/2. In other words, the initial quantities are the set xi(0) and
vi()t/2).

Figure 2.8. Approximations to the integral IF(t)dt for the numerical solution of a first-order differential
equation. (a) Eulerian method. (b) Time-centered method.     

   The first step of the leap frog method is to advance the positions of individual particles
according to
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(2.27)

(2.28)

Notice that Eq. (2.27) has a time-centered form. Once we know the set of particle positions at t =
)t, we can find the electric field and hence the spatially-dependent force at that time. The force is
used to advance the velocities according to 

Equation (2.28) is also time-centered. The process extends over additional time intervals, with the
velocity and position advancing ahead of each other. Equations (2.27) and (2.28) define the
leapfrog method. Despite its simplicity, it achieves second order accuracy in )t. The main
problem is finding accurate values of vi()t/2) to start the calculation if xi(0) and vi(0) are known. 
Often, more complex difference methods are applied over the first  half time step.

2.4. Conservation of phase-space volume 

  Conservation of the phase-space volume occupied by a particle distribution is a fundamental
theorem of collective physics1.  The conservation principle leads to the Boltzmann equation
(Section  2.7) and to the fluid moment equations (Section 2.10). Furthermore,  the theorem is the
basis for the principle of emittance conservation, discussed in Chapter 3.
   Figure 2.9 illustrates the physical meaning of phase volume conservation. Again, we use a
two-dimensional phase space for illustration - the general theorem applies to hypervolumes in a 
six-dimensional phase space. At time t1, a set of adjacent coordinate points in phase space
represents a collection of particles with similar orbit properties. A boundary, B1, circumscribes the
coordinate points. In the two-dimensional representation of Fig. 2.9, the boundary defines a
phase-space area - in the full six-dimensional phase space, the boundary surrounds a
hypervolume.  At time t2, the particle positions and  velocities have changed. The dashed line in
Fig. 2.9 indicates 
the phase space motion of a particle orbit vector near the center  of the set as time evolves. We
know from the properties of phase-space trajectories that the trajectories at t2 will still be near 
each other if there are no collisions. The set can be circumscribed by another boundary, B2. The
theorem of phase volume conservation states that the area (or hypervolume) enclosed by B2 is
equal to the original area inside B1. 

1. The principle of incompressibility of a phase fluid is often called Liouville’s theorem. This is not strictly
correct — Liouville’s theorem refers to the conservation of the number of possible macrostates of a system
of N particles plotted in a 6N-dimensional phase space. For a complete explanation, see H. Goldstein,
Classical Mechanics (Addison-Wesley, New York, 1950), 266.
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(2.29)

Figure 2.9. Illustration of phase-volume conservation - the boundary around the included group of particle
orbit vectors changes shape with time but has the same area. The dashed line shows the orbit-vector
trajectory of a particle at the center of the group. 

   It is important to define carefully the validity conditions for conservation of phase volume.
Many important procedures in beam physics, such as beam cooling, depend on violation of the 
theorem. The following conditions must be satisfied: 

   1. The particle distribution is dense — the number of particles in a phase volume element of
interest is large. In the high-density limit, the phase fluid concept is valid, and the continuous
distribution function, f, provides an accurate description. 
   2. Forces on particles vary smoothly in space and time — there are no collisions. The
implication is that proximate particles in phase space always remain close.
   3. Although forces may vary with time and position, frictional forces that depend on particle
velocity are excluded. 

In the following discussion, we will limit attention to non-relativistic particle motion. This limit
applies to low energy particles or the transverse motion of relativistic particles in  the paraxial
limit. Section 2.12 extends the analysis to relativistic particles.
   If the phase volume occupied by a group of particle orbit vectors remains constant, then the
phase-space density in the vicinity of the particles is a conserved quantity. Adopting the phase
fluid viewpoint, conservation of phase volume implies that  the fluid is incompressible. By
definition, the continuous distribution function equals the density of orbit vectors. The condition
of phase space incompressibility is equivalent to
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(2.30)

(2.31)

(2.32)

The function is evaluated at the phase space location x(t), vx(t), y(t), vy(t), z(t), vz(t) — the
coordinates correspond to  the center of the volume element under consideration. Equation (2.29) 
shows that f remains constant as we follow a particle trajectory — it does not imply that f is
constant at all locations in phase space. 
   We shall prove the theorem of phase volume conservation for the special case of a
two-dimensional distribution with particle orbit coordinates x and vx. The extension to six
dimensions is straightforward. To begin, consider a collection of orbit points  contained within a
rectangular boundary at t = 0 (Fig. 2.10a). The area contains many orbit points, so its boundary
can be identified unambiguously as the distribution evolves. If we can  prove that the area
circumscribed by the boundary remains constant, we can conclude that the area of any bounded
region remains constant since any shape can be approximated by a number  of small rectangles. 
   We can find changes in the shape of the phase space region by  analyzing the motion of
individual particles in the region. Section 2.3 discussed finite-difference methods to calculate 
particle orbits by advancing in small time steps, )t. We will concentrate on the leapfrog method
that sequentially advances position and velocity. In this context, the spatial coordinates of a
particle orbit are defined at times t, t+)t, t + 2)t,... while the velocity coordinates are defined at
t+)t/2, t + 3)t/2,..... 
    The first step is to find the change in the spatial positions of particles at time t = t + )t.
Equation (2.27) implies that 

where i is the index number of particles within the group. The half-step velocities can be
expressed in terms of deviations from the average velocity of particles in the region:

Equation (2.30) becomes

The second term on the right hand side of Eq. (2.23) gives an equal displacement for all particles
in the region (Fig 2.10b). Although the rectangle moves, there is no change in its shape or area.
Figure 2.10c illustrates the effect of the second term. Particles with  suffer no
displacement relative to the  center of the rectangle. Particles with )vxi > 0 move a relative 
distance proportional to )vxi  in the +x direction. Similarly, particles with negative velocity 
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Figure 2.10. Illustration of phase-volume conservation by the leapfrog method to advance particle
positions and velocities. (a) Boundary around a group of neighboring particles in phase-space,  with
positions defined at time t and velocities defined at time  t+)t/2. (b) Advancing the particle positions to
time t+)t using the velocities at t+)t/2. (c) Advancing the particle velocities to time t+3)t/2 using forces
calculated from the positions at time t+)t.

compared to the average are retarded. The net effect of the third term in Eq. (2.32) is to distort the
shape of the phase space region from a rectangle to a trapezoid. Note that the phase space area
occupied by the particles does not change - the rectangle and trapezoid have the same base and
height. 
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(2.33)

(2.34)

(2.35)

  The second step in the difference method is to advance the velocities of the particles from time
(t+)t/2) to (t+3)t/2). The  forces are calculated from the values of the particle positions at time
(t+)t). Following Eq. 2.28,

The force, F, is a function of the particle position and time. It  also depends implicitly on the
positions of all other particles in the beam and charges on external electrodes. We assume that F 
varies smoothly with the position of the particle, xi. As a result, variation of the force over the
small phase space region of Fig. 2.10a at time t+)t can be approximated by a Taylor series 
expansion. The expansion is performed about the average position of particles in the region: 

where

Substituting Eq. (2.34) in Eq. (2.33), we find that the equation to advance the velocity has a form
similar to Eq. (2.32): 

When Eq. (2.35) is applied to the particles in the region, the second term on the right hand side
contributes a uniform displacement of orbit coordinates along the velocity axis. The third term
distorts the boundary of the region from a trapezoid to a diamond (Fig. 2.10d). Again, it is easy to
verify that this transformation preserves the area of the figure. In following time steps, the
diamond may change to another diamond, a trapezoid, or back to a rectangle. In any case, the area
of the  figures is the same.
   The above derivation, although simple, has broad application.  A phase space region of any
shape can be divided into a set of rectangular segments. As time advances, the shapes of 
individual  segments change, but their net area remains constant. Adjacent segments always share
the same boundary particles. In the smooth  force limit, the segments cannot overlap or exchange
particles.  Figure 2.11 illustrates these facts. In the figure, an applied force of the form Fx = -kx
acts on particles. They initially occupy an irregular phase space area. Plots of the evolution of  the
rectangular boundaries at three later times are shown. Note  that the boundaries between segments
are always straight lines.  The shapes of segments change but the areas are constant. As a result,
the area of the complete distribution is constant. 
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(2.37)

Figure 2.11. Conservation of phase-space area for a one-dimensional particle distribution in a linear
focusing force. The bounded area is divided into rectangles. The four figures show the calculated evolution
of the rectangles with time as the particles advance through three-eighths of a betatron oscillation. The
shaded region marks a particular group of particles.

   Conservation of phase space area (or volume) occupied by a distribution results from the fact
that individual particle orbits advance through linear transformations. Motion of a group of
particles during a time step is equivalent to the transformation of the orbit coordinates in phase
space. As an illustration, take a particle orbit represented by the vector

We will neglect changes of the position or velocity mass center of the group — we know that
these changes do not modify the phase area. The first orbit vector transformation of the leap frog 
method can be represented by the matrix equation

where , and
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(2.38)

(2.39)

(2.40)

(2.41)

The second step is:

where 

The net transformation of position and velocity over a time step  is

where

Equation (2.39) is a linear transformation of particle orbit parameters.  Note that the determinant
of the transformation matrix C is unity. Under this condition, the theory of linear algebra states 
that two-dimensional transformations preserve elements of area.  In other words, if two particles
are initially separated in position by )x and in velocity by )vx and if individual positions and
velocities are modified by a linear transformation, then

Extension of the derivation to six-dimensional phase space orbit  vectors leads to the conclusion
that the hypervolume occupied by  a collection of particles is conserved over each time step.
   The condition of conservation of phase volume is often written  in the following notation: 
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The symbol D/Dt denotes the convective derivative. In fluid dynamics, convection denotes
moving along with fluid. For example, if we follow the orbit represented by the dashed line in 
Fig. 2.9, then the phase space density, f, remains constant near the particle.
    To conclude the section, it is important to note circumstances  when the derivation leading to
Eq. (2.29) is invalid. The effect of  collisions is obvious; particles can move instantaneously from 
one phase-space segment to another. Consequently, the phase-space density inside a particular
segment can change in time. Collisions sometimes result from strong interactions between two 
particles in the distribution. In addition, collision can occur  between particles in the distribution
and an external distribution of particles. For example, a beam passing through neutral gas can
exchange momentum with the background. 
   In contrast to single-particle collisions, friction can be approximated as a smooth force. It
causes gradual changes in particle orbits.  Usually, a frictional force can be represented as a
function of  the particle velocity, v: 

where n is a number characteristic of the process. Friction may result from the interaction of a
beam with an external resistive structure or from the cumulative effect of many weak collisions.
Friction leads to a net loss of energy from a beam. Generally, the beam particles transfer energy
to an external medium in the form of heat. The following examples illustrate some instances
where friction is important to describe the evolution of a charged particle beam:

   1) Ions passing through a diffuse neutral gas background interact primarily with the electrons of
the atoms. Displacement of the light electrons absorbs energy from the massive ions. Interaction
with large numbers of electrons results in a cumulative decrease of longitudinal ion kinetic
energy.
   2) When a pulsed beam propagates through a conducting pipe, it induces return currents in the
wall (Section 10.6). If the wall is resistive, the return current deposits thermal energy in the wall
that is ultimately supplied by deceleration of the beam.
   3) Particles may transfer energy to an external structure by radiation. A familiar example is
synchrotron radiation of electrons in synchrotrons and storage rings. 

To illustrate how friction modifies the phase volume conservation  theorem, assume that a
spatially-uniform, velocity-dependent force acts on a beam. We will concentrate on the axial
motion of  particles contained in the phase space area illustrated in Fig.  2.12. The force can be
represented as 

The quantity F(vzi) is the force acting on a single particle and  is the average force acting on
all particles in the region. Inserting Eq. (2.42) gives,
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Figure 2.12. Effect of a frictional force on a bounded phase-space  region of orbit vectors. As the particles
decelerate, the area of  the region decreases.

Consider advancing the velocity with the leapfrog method. If the  is initially positive, the
constant term in the brackets of  Eq. (2.44) leads to a net slowing of particles in the segment with 
no change in the segment area. On the other hand, the term proportional to )vzi modifies the
segment area. If the exponent n in Eq. (2.42) is greater than zero, the retarding frictional force on
the top of the segment exceeds the force on the bottom. Consequently, the top shifts down more
than the bottom — the area  of the rectangle shrinks. The implication is that frictional forces can
compress a phase fluid, raising the phase space density. This fact is the physical basis of beam
cooling discussed in Section 4.6. 
  An example will clarify the relationship between strong collisions resulting in velocity diffusion
and weak collisions that approximate a frictional force. Both effects violate conservation of
phase-space volume. A steady-state proton beam with kinetic energy near 200 MeV decelerates in
a solid density metal  target (Fig. 2.13). Transverse and longitudinal motions are independent
because there are no long-range electric or magnetic fields — we shall discuss only motion along
the z axis. The beam initially has infinite axial extent and a small spread in axial velocity (Point A
in Fig. 2.13). As shown in Section 10.4, the energy loss rate from collisions with atomic electrons
is small at high energy. Therefore, interactions of the beam with the target are initially dominated
by strong nuclear collisions. These collisions cause energy straggling, a spread in the longitudinal
velocity of the  protons. The phase space area occupied by the beam particles moves to lower
velocity because of the cumulative effect of inelastic collisions and expands in area because of the
random nature of the nuclear collisions (Point B). At lower energy,  the rate of energy transfer to
atomic electrons becomes the dominant energy loss mechanism. All ions slow down almost 
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Figure 2.13. Axial phase-space distribution (z-vz) of an energetic, steady-state ion beam slowing down in a
solid target.  (A) The entering beam has a narrow velocity spread. (B) Inelastic  nuclear collisions with
target nuclei reduce the average beam velocity and broaden the velocity spread. (C) Small-angle collisions
with atomic electrons bring the ions to rest at the end of their range with zero velocity spread.

uniformly through the summation of many weak collisions. At low  energy, the force is frictional
and the phase area occupied by protons decreases (Point C). Ultimately, the area shrinks to zero
as the protons come to rest in the target.
   Finally, we should note that the velocity-dependent forces associated with magnetic fields do
not cause a change in the phase space volume occupied by a particle distribution. In contrast to
frictional forces, the magnetic force is perpendicular to the particle velocity. The magnetic force 
extracts no energy from the particle. We can prove that the phase  area of a distribution is
conserved in the presence of magnetic  forces by invoking a result from electromagnetic field
theory. It  is always possible to find a frame of reference in which a given magnetic field
vanishes2. In this frame, only electric fields  are present. The electric force does not depend on
velocity; 
therefore, the phase volume is conserved under the action of the force. In a non-relativistic
transformation between frames, the  volume of differential phase space elements in preserved —
the volume conservation principle must hold in both frames.
 
3. See, for instance, J.D. Jackson, Classical Electrodynamics,  2nd Edition (John Wiley and Sons, New
York, 1975), Sect. 11.10. 



Phase-space description of charged-particle beams Charged-particle beams

46

(2.45)

2.5. Density and average velocity

   When we measure the properties of a particle distribution, we often use instruments that
sample spatial variations of the beam but cannot resolve details of the velocity distribution. For
example, simple probes to measure particle flux at a point usually give no information about the
velocities of individual particles that constitute the flow. Velocity averages over a distribution
are called macroscopic quantities or moments of the  distribution function. Two such quantities
that are useful for charged particle beams are the particle density and average velocity. Other
quantities, such as the velocity spread about a  mean, are sometimes useful. The source terms for
the Maxwell equations, charge density and current density, are also macroscopic quantities
(Section 2.8). 
   We calculate macroscopic quantities by taking velocity weighted sums over a discrete
distribution function (or integrals over a continuous distribution function). The resulting
quantities are functions only of the spatial coordinates. There are three motivations to define
velocity-averaged quantities:

   1. We must have expressions for the charge and current density to develop self-consistent
theories of beam evolution in response to electromagnetic forces.
   2. Velocity-averaged quantities can be compared with measurements to check the validity of a
theory.
   3. Fluid equations directly describe the evolution of macroscopic quantities (Section 2.10).
Although the equations provide an incomplete description of a beam, they are often easy to
solve. 

   The density of a distribution of particles equals the number of particles per volume at a
location. We will take some time to discuss density expressions in both discrete and continuous 
forms. To begin, consider the calculation for a discrete distribution function. We shall refer to
the one-dimensional distribution illustrated in Fig. 2.14. We divide the region occupied by
particles into elements with area )x)vx. The discrete density function, N(x), is the number of
particles between x-)x/2  and x+)x/2 divided by )x. It is easy to find N(x) using a computer that
stores the positions and velocities of the particles. The computer loops through the particle array, 
counting the number of particles within )x. The process ignores  information about the particle
velocity. Figure 2.14 indicates that  the computer performs a sum of particles over all phase area 
elements at position x. In terms of the function F(x, vx, y, vy, z, vz), the symbolic representation of
the process in  three dimensions is: 

   Sect.=ion 2.2 showed that a continuous distribution function, f(x, vx, y, vy, z, vz), is useful when
a beam contains many particles.  The function f equals the density of particles in phase space. 
Similarly, we can define a configuration space density, n(x,y,z)  as 



Phase-space description of charged-particle beams Charged-particle beams

47

(2.46)
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Figure 2.14. Phase-space orbit vectors of a one-dimensional distribution containing 2000 particles with a
uniform random distribution over an elliptical region. Phase-space is divided into elements to compute the
density, n(x). The shaded area indicates a sum over velocities.

in the limit that . The units of n(x,y,z) are particles/m3. We can write an analog for
Eq. (2.45) in continuous form. Again, consider a one-dimensional distribution. The relation
between the discrete and continuous distribution functions is: 

If we extend the integration limits on the right hand side of Eq.  (2.47) over all velocities, then
the left hand side equals N(x). Substituting in Eq. (2.46), the continuous density function is 



Phase-space description of charged-particle beams Charged-particle beams

48

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

The three-dimensional generalization of Eq. (2.48) is 

   The average velocity of a one-dimensional discrete distribution is calculated by taking a
weighted sum over the distribution. Again, we divide phase space into elements with dimensions
)x and )vx. The average velocity at position x is the  sum over all elements at x of vx times the
probability that a particle is in the element. The probability that a particle is in the element at (x,
vx) is 

The resulting expression for the average velocity is

The extension to a one-dimensional continuous distribution function is straightforward.  The
fraction of particles at x with velocity in the range vx–)vx/2 to vx+)vx/2 is

The average velocity is defined as

Note that the denominator in Eq. (2.53) is equal to the density, n(x). The three dimensional
extension of Eq. (2.53) is 
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(2.54)

(2.55)

(2.56)

The following section on the Maxwell distribution illustrates a  specific application of Eqs.
(2.49) and (2.54).

2.6. Maxwell distribution

   The Maxwell velocity distribution appears in all branches of  collective physics. Advanced
kinetic theory shows that groups of energetic particles that interact through collisions ultimately 
approach a Maxwell distribution. Particles in an isotropic Maxwell distribution are in thermal
equilibrium. They have a spread in kinetic energy. Charged particle beams are non-isotropic and
usually almost monoenergetic. In a sense, the primary goal of beam technology is to create
non-Maxwellian distributions and to  preserve them over time scales set by the application.
Nevertheless, there are many applications of the Maxwell distribution in beam physics. An
example is the velocity spread of  electrons from a thermionic cathode. In another application,
we  will study the thermalization of low energy electrons injected to neutralize high current ion
beams in Chapter 11.
   The distribution of non-relativistic particles in thermal equilibrium can be expressed as the
product of the spatial density function times a function of velocity:

If particle motions are closely coupled in all three directions,  the velocity distribution is
isotropic. Here, the velocity function is given by

The argument of the exponent is proportional to particle kinetic energy divided by kT. The
quantity kT therefore characterizes the kinetic energy spread of the distribution. The quantity T is
the temperature of the distribution and k is Boltzmann's constant, k = 1.38 × 10-23  J/°K. If a
collection of particles is in thermal equilibrium, kT is constant over all regions of space.
Sometimes, the velocity distribution at a point may approximate the form of Eq. (2.56), but kT
may vary in space. Then, the distribution is called a local Maxwellian distribution.  In chemistry
and fluid mechanics, the  temperature T is specified in units of °K. In beam physics it is usually
more convenient to express  kT as a single quantity in units of joules or electron volts. 
   We can find the normalization constant A in Eq. (2.56) by setting 
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(2.57)

(2.58)

(2.59)

(2.60)

Using the relation

the Maxwell velocity function is

The quantity g(vx)dvx, the probability that particle has velocity  in the interval dvx, is plotted in
Fig. 2.15. 
   We can apply Eq. (2.59) to find velocity averages that will be useful in following sections. As
discussed in Sect. 2.5, the average velocity projected in the x direction is

Figure 2.15. Normalized velocity distribution functions, g(vx) and  g(v), for a Maxwell distribution. The
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(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

functions plotted have an integral of unity.
Substituting Eq. (2.59) for g, we find that

Similarly, we can find the average particle kinetic energy projected along an axis by taking the
distribution integral weighted by mvx

2/2). The result is

   The average particle speed (independent of direction) is a useful quantity for isotropic
distributions. The speed is 

Inspection of Eq. (2.59) shows that g(v) ~  exp(-mv2/2kT). In taking averages over the
distribution of particle speed, we must remember that the fraction of particles with speed v in the
range  v-dv/2 to v+dv/2 is 4Bv2g(v)dv. 
   The quantity  4Bv2dv is the volume of a spherical shell of thickness dv in velocity space. The
normalized distribution function in terms of speed is 

Figure 2.15 shows a plot of 4Bv2g(v), the probability that a particle has speed in the interval dv.
Equation (2.64) gives the average  speed as, 

and the average total kinetic energy as,

   The Maxwell distribution is often applied to systems where the  velocity distribution is
non-isotropic. Consider, for example, a  non-relativistic electron beam extracted from a
thermionic cathode.  At the cathode, the electron distribution is Maxwellian in the transverse
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(2.68)

(2.69)

direction with a temperature equal to that of  the cathode, Tc. If the electrons are accelerated and
transported  in an ideal accelerator, they all gain an equal increment of axial velocity, vo. If we
observe the beam in a frame moving at vo, we find that the distribution is still isotropic and 
Maxwellian with temperature Tc. On the other hand, suppose that  the beam is separated and
compressed into axial bunches for injection into an RF accelerator (Sect. 15.3). As we shall see
in  Section 3.8, compression of the beam into small bunches causes an  increase in spread of
axial kinetic energy. If the forces are solely in the axial direction, the kinetic energy spread in the
x  and y directions remains equal to kTc/2. Under these conditions,  it is useful to approximate the
beam distribution as Maxwellian  with different temperatures in the axial and transverse 
directions: 

For the thermionic cathode example, kTx = kTy = kTc and kTz >  kTc. 
   A common assumption used in beam theory is that the particles  have a Maxwell distribution
when observed in the beam rest frame.  The transformed distribution observed in the stationary 
frame of  the accelerator is called a displaced Maxwell distribution.  The distribution has a
kinetic energy spread superimposed on an ordered axial velocity. As an example, consider a non-
relativistic ion beam extracted from a plasma source with ion temperature Ti (Section 7.6). The
beam is axially bunched passing  through a radio-frequency quadrupole accelerator. The beam 
emerges from the accelerator with kinetic energy Eo. We can represent the exit beam distribution
in the stationary frame as

where . Because of the axial bunching, Ti' is larger than Ti.

2.7. Collisionless Boltzmann equation

   Section 2.4 showed that the convective derivative of the continuous distribution function
equals zero:

Equation (2.69) implies that the density of orbit vectors of a collisionless group of particles is
constant in a frame of reference moving with the vectors through phase space. If we view  the
collection of vector points as a fluid, Eq. (2.69) states that  the fluid is locally incompressible. In
fluid dynamics,  relationships like Eq. (2.69) are called Lagrangian equations — they are
defined in a frame of reference that moves with the fluid. 



Phase-space description of charged-particle beams Charged-particle beams

53

   Often, the Lagrangian viewpoint is not the most convenient form. Usually, we would like to
describe variations of fluid quantities in a fixed frame through which the fluid moves. For
example, in beam physics we reference equations to the frame of  the stationary accelerator.
Furthermore, there are circumstances  where a Lagrangian frame is undefined. For example,
theories of  neutralized beams (Chapter 11) require a description of intermixed  fluids moving at
different velocities. Eulerian equations specify  the evolution of fluid quantities in a stationary
frame. In this  section, we shall convert Eq. (2.69) to an Eulerian form. The derivation leads to
one of the most important equations of collective physics, the collisionless Boltzmann equation.
A form  of the Boltzmann equation that includes only electromagnetic forces, the Vlasov
equation, is often encountered in charged particle beam physics. 
   Figure 2.9 shows a region of phase space occupied by a one-dimensional beam distribution.
The function f(x,vx,t) represents  the density of orbit vector points at a particular time. Suppose 
we measure f near an orbit vector point [xo(to),vxo(to)] at time to. Equation (2.69) states that the
measurements always give the same value if we follow the orbit vector as it moves with time, or 

Here, we seek an alternate equation that prescribes how f varies in time at a constant position in
phase space, (x, vx). The advantage is that the resulting equation describes quantities that we can
measure. Figure 2.16 shows how a detector could determine f(x, vx) at a stationary point in phase
space. A sheet  beam, uniform in y and z, moves past the detector. Transverse velocity
components, vx, are small compared with the axial velocity, vo. Any motion of the detector in the
x direction must  be slow compared with the velocities of beam particles - the detector
effectively occupies a stationary point on the position axis. The aperture admits particles only in
a small range of position, )x, near x. The detector can be inclined at an angle,  vx/vo, so that only
particles within a range )vx near vx can enter. The output signal of the detector is proportional to  

Figure 2.16. Detector to measure the transverse distribution function of a paraxial beam. The detector 
moves in position and rotates in angle to admit particles with different values of x and vx.
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the entering flux, which is in turn proportional to f(x, vx, t). We can calculate the absolute value
of f by analyzing the properties of  the aperture. For a steady state beam, the detector can be 
moved  and tilted to map the entire distribution function. 
   In a distribution that changes with time, orbit vector points flow past a fixed location. If f is
constant over all x and vx,  then the phase space density observed at the location is constant  in
time. Here, an equal number of points replaces orbit vectors  that leave the region near the
specified location. Temporal variations of f (observed at a location) occur if there are non- zero
gradients of the distribution function in x or vx. For example, consider a point (xo, vxo). If vxo is
positive, particles  with x < xo replace particles that start near xo at to. Suppose  that f has a
negative spatial gradient at xo and to. Then, the  phase space density observed at the point
increases with time, f [xo(t), vxo(t), t] > f [xo(to), vxo(to), to].
   We shall develop a quantitative expression for the time variation of f with the help of Fig. 2.17.
The solid line shows f (x, vx, t) at time t in a region near the point (x, vx). The function has a
negative gradient. At a later time, t+)t, all particles shift to the right a distance )x = vx)t. A
second line represents the modified distribution. Although f retains its original value at the new
position of the particles, the value of  f at the stationary point (x,vx) drops by an amount: 

The partial derivative notation refers to a variation of f along a path in the x direction. 

Figure 2.17. Distribution function with a spatial gradient plotted  at two times. The positive spatial
gradient leads to a decrease of f at a point with time.  
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(2.72)

(2.73)

(2.74)

 Similarly, we can write the change of f at the point (x, vx) that results from a gradient of f in
velocity. Suppose that near  (x, vx) the phase space density is higher for higher vx. In the presence
of a decelerating force, the high-velocity particles shift to a velocity closer to vx. As a result,
f(x,vx,t) rises with time. The change in velocity produced by an acceleration, ax, acting over an
interval )t is vx = ax )t. The change in f resulting from a gradient of f in velocity and a force can
be written: 

   The symbol Mf/Mt denotes the change in f with time at a constant location in phase space. The
combined effects of position and velocity gradients give the following equation: 

Equation. (2.72) implies that the total change in the continuous distribution function from all
causes — the passage of time, motion of the phase fluid, and fluid acceleration - equals zero.   
The full form of Eq. (2.72) for motion in three dimensions is 

Equation (2.73) is the collisionless Boltzmann equation. The equation is equivalent to the
principle of the conservation of phase volume.  Therefore, Eq. (2.73) has the same validity
limitations. Forces on  the particles must vary smoothly in space and time. Collisions and friction
are excluded. Equation (2.73) is often written in vector notation as 

The definitions of the vector derivative and dot product notations are evident from a comparison
of Eq. (2.74) with Eq. (2.73).
   Equation (2.74) takes a special form when f corresponds to a group of  non-relativistic charged
particles accelerated by electric and magnetic fields. The acceleration is given by the Lorentz
expression:
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(2.76)

(2.77)

If the particles have charge q and rest mass mo, then Eq. (2.74) becomes: 

Equation (2.76) is the Vlasov equation, a fundamental relationship in plasma physics. The
Vlasov equation is often applied to the stability analysis of charged particle beams. 
   If collisions occur, the phase space density of orbit vectors  may change, even in a Lagrangian
reference frame. Collisions cause a random walk of particles through velocity space. Usually, 
collisions result in a decrease of phase space density with time as a distribution diffuses to fill a
larger phase volume. For particle densities typical of most charged particle beam applications,
long range forces dominate the motions of particles while collisions perturb the distribution. The
effect of weak collisions is often added symbolically to Eq. (2.74) as a term that  contributes a
small variation to f at a point: 

Analyses of discrete particle interactions and particle migration  in velocity space lead to special
forms of Eq. (2.77) such as the Fokker-Planck equation.

2.8. Charge and current density

   Solution of the Vlasov equation for a charged particle beam depends on the net electric and
magnetic fields in the accelerator or transport region. At low current, the field contributions of
beam particles are small — electric and magnetic  fields arise mainly from external charges and
currents. Furthermore, the presence of the beam has little effect on the distribution of external
charges and currents. The implication is  that we can treat the electric and magnetic fields as
given 
functions that do not depend on the beam motion. 
   When we proceed beyond the single particle limit to collective effects, we include beam
contributions to the electromagnetic fields. Calculations of the fields and particle orbits must be 
self-consistent, as discussed in Section 2.3. In this section, expressions that relate the electric and
magnetic fields to the distribution function are summarized. Integrals over the distribution
function give the source terms of the Maxwell equations. For reference, the Maxwell equations
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(2.79)

(2.80)
(2.81)

(2.82)
(2.83)

(2.84)

are: 

   Equation (2.78) states that electric fields arise from a generating  function, the charge density
D(x, y, z, t). The charge density is a  scalar function with units of coulombs per cubic meter. The
second form on the  right hand side of Eq. (2.78) emphasizes that different types of charge may
contribute to the electric field. The charge density  includes contributions for the beam, Db, and a
summation over all other types of external changes on electrodes and in dielectrics.  The beam
charge is called space charge because it exists in free space. Equation (2.79) is Faraday's law —
electric fields also result from changing magnetic flux. Equation (2.81) implies that spatially-
distributed currents generate magnetic fields. The current density j(x, y, z, t) has units amperes
per square meter and it is a vector quantity.  Magnetic fields may result from beam current in
space, jb, or external currents. Equation (2.81) also shows that magnetic fields can arise from
time-varying electric fields through the displacement current, .
   In many charged-particle beam applications, the electric field  is static. Even if this condition is
not strictlytrue, static field equations may provide a good approximation. The quasi-static limit
is  valid if the fields vary slowly compared with the time scale for light to cross a characteristic
dimension of the beam or accelerator. In this limit, the effects of displacement current and
electric fields generated by induction are small. In the static limit, the equations for electric fields
are decoupled from the magnetic fields: 

   We can define the electrostatic potential, N(x, y, z), when Eqs. (2.82) and (2.83) hold. The
potential is a scalar, related to the electric field by: 

It is more effective to find a solution for N rather than to solve for E directly because it is easier
to identify scalar boundary conditions. Once N is known, Eq, (2.84) determines the electric field
components. Equations (2.82) and (2.84) can be combined to yield the Poisson equation
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Equation (2.85) has extensive applications in derivations of this book.
   Although a continuous space-charge density D does not occur  in reality, it is often a good
approximation when a beam contains many particles. We can understand limits on the validity of
the  continuous approximation by reference to Fig. 2.18. Figure 2.18a  shows a collection of
stationary, randomly-distributed charged particles. Figure 2.18b shows the exact axial electric
field along  the dashed line of Fig. 2.18a. Coulomb's law determines the field — the electric field
at the position of particle i is: 

where rji is a unit vector pointing from particle j to particle i while rj and ri are the position
vectors of the two particles. The sum is taken over all other particles. 
   Note in Fig. 2.18 that field fluctuations occur over a scale length comparable with the spacing
between particles. We neglect these small-scale variations when we solve the Maxwell equations 
with a continuous charge. The dashed line in Fig. 2.18b represents the continuous solution. The
fluctuations of electric field may change the velocity of a particle while leaving a phase-space
neighbor unaffected. Therefore, the fluctuations have much the same effect as collisions - close
encounters between charged particles are usually called Coulomb collisions. The electric field
fluctuations are small when a beam contains many particles. The smooth force approximation is
well justified for almost all useful charged particle beams. Usually,  the general motion of beams
can be described by the Maxwell equations with Coulomb collisions added as a perturbation. 

Figure 2.18. Macroscopic and microscopic electric field variations. (a) The orbit of a test particle (dashed
line) through randomly-distributed charged particles. (b) Variation of the axial electric field along the test
particle orbit. Solid line: Exact  field. Dashed line: Macroscopic field, discrete charges replaced  by a
uniform density.
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   For a single type of charged particle in a region of interest, the charge density equals the
charge of each particle, q, multiplied by number of particles per cubic meter, n(x, y, z):

Inserting Eq. (2.49), we find that the charge density can be calculated directly from the
continuous distribution function as:

  Equation (2.88) suggests an approach to the solution of the Vlasov equation with self-consistent
electric fields. We apply the Vlasov equation to advance the distribution function through a time
step, giving the charge and current densities of the beam at  time t. We then combine the beam
contributions to the field with external charge and current components to find the total electric 
field at time t. The information is then inserted into the Vlasov  equation to advance the
distribution function another time step.  Repetition of the process leads to a prediction of the
evolution of the beam distribution. 
   When more than one type of charged particle is present, the charge density is a sum of
contributions from individual components: 

The most common application of Eq. (2.89) in beam physics is to neutralized beams which
consist of a mixture of ions and electrons. If the ions have charge state Zi, Eq. (2.89) takes the 
form:

In well-neutralized beams, the charge densities are almost balanced, De – Di. Here, the net charge
is small and electric fields are almost completely canceled. The procedure to find the
self-consistent evolution of multiple charge species is similar to the approach for a single
species. Each type of particle is represented by a separate distribution function and Vlasov
equation. Changes in the individual distributions couple through the net electric and magnetic
fields. 
  The current density j  is the charge crossing an area of 1 m2  per second. The current density
vector points in the direction of  the average flow and the unit area is normal to the flow. For a 
single species, the current density equals the charge density multiplied by the average velocity,
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(2.92)

(2.93)

We can modify Eq. (2.54) to give an expression for j in terms of the continuous distribution
function: 

 Equation (2.92) can be combined with the Maxwell and Vlasov equations to  incorporate
magnetic fields in the self-consistent solutions. When multiple species are present, the current
density is the vector sum of components. For example, in a system with electrons  and ions,

2.9. Computer simulations

  In the prediction of the collective behavior of beams, numerical simulations are an alternative
to analytic solutions of the Vlasov or fluid equations. The use of simulations in beam physics has
expanded rapidly with advances in computer capabilities. There are two motivations to discuss
simulations in  this section. First, they are an important design tool for modern  accelerator
technology. Second, understanding computer simulations serves an educational purpose. The
methods used in real simulations provide a good example of the application of phase-space
dynamics. Calculations of density, directed velocity,  and other functions in simulations are
literal and easily understood applications of Eqs. (2.88) and (2.92).
  To gain a perspective we must examine the differences between an ideal simulation and the real 
calculations carried out on existing computers. The ideal simulation replicates the collective
interactions of a beam by accurately calculating the orbits of every particle in the beam.  To
carry out a solution of the equations of motion, the ideal simulation evaluates electromagnetic
fields at the position of each particle. The fields include contributions from other beam  particles.
The ideal simulation describes a beam exactly without the simplifications necessary for tractable
analytic theories. In principle, we need not worry about interpreting results and deriving validity
limits. It is tempting to believe that a technique exists that can eliminate the work and worry of
collective physics. This desire is reflected in a prevalent attitude that computer simulations are
the final arbiters of theoretical debates — computer simulations are sometimes called  numerical
experiments. 
   In reality, simulations can never precisely model beams of practical interest. Real simulations
require approximations, exclusion of non-critical processes, and other acts of judgment. For
example, we must apply initial conditions and boundary conditions to finite intervals and spatial
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regions —  these conditions often profoundly affect the results. The generation of good
simulations demands as much preliminary analysis of the input and interpretation of the results
as an analytic theory. We can easily show why simulations can never replicate beam
experiments. Consider, for example, a description of the electrons in 1 cm length of a 10-A, 10-
keV electron beam.  The segment contains about 1010 particles. The orbit vector of  each particle,
(x, v), requires 6 floating point numbers or about 24 bytes of random access memory. The total
memory required simply to store the orbit vectors is 240 gigabytes.
   Storage is not the only problem — the ideal simulation would demand a huge amount of
calculation time. Suppose we advance 1010 particles. The direct application of Eq. (2.86)
involves 1010 sequences of floating point operations for each particle, or 1020 sequences for each
time step. A computer that operates at 100 MFlops (108 floating point operations per second)
would take more  than 1012 seconds, or 32,000 years to advance one step. The numbers make it
clear that even the most powerful computer cannot create a literal representation of a beam. For
practical calculations, we must simplify the process in two ways: 
   1. Reduce the number of particle vectors in the computer memory.
   2. Reduce the number of operations to calculate electromagnetic fields at each time step.

   We can accomplish the first goal by applying the insights of Sects. (2.2) and (2.4). We shall
represent the motions of many particles by a single computational particle. We know that forces
that vary smoothly in x and v preserve the continuity of particle distributions. Suppose we divide
phase space into small regions (Fig. 2.19). Although the shapes of the regions change with time,
they enclose the same particles. We need not calculate the orbits of all particles inside a region 
because they all move in about the same way. For each region, it is  sufficient to determine the 

Figure 2.19. The physical basis of computer simulations of collective particle motions. The behavior of a
group of particles adjacent in phase-space is represented by the trajectory of a test particle orbit.
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orbit of one particle at the center. A typical simulation follows the orbits of 103  to 105

computational particles — each computational particle represents a region that contains 103 to
108 real particles. At each time step, the computational particles are advanced by single particle
equations of motion. The fields at the new time are calculated with the assumption that all 
particles in a region move along with the computational particle. Another viewpoint is that the
computational particle advances as a single particle, but is assigned multiple charges when the
electromagnetic fields are calculated. 
   Regarding the field calculation, we could estimate the electric field by applying Eq. (2.86) to
the computational particles. This process would still consume a considerable amount of time -
the number of operations scales as the square of the  number of computational particles.
Furthermore, the resulting field function includes non-physical fluctuations that result from the
discrete nature of the computational particles. We must  remove these field variations to avoid
spurious collisional effects. The particle-in-cell (PIC) method greatly reduces the number of
calculations and also implements field smoothing.
   The PIC method for electric and magnetic field calculations consists of the following
procedure. Configuration space is divided into small regions called cells. Discrete charge density
and current density arrays are defined with values in each cell. The charge density in a cell at
time t equals the product of the  number of computational particles in the cell times the charge
per computational particle divided by the cell volume. The current density is the average vector
velocity of computational  particles multiplied by their charge divided by the cell area.
Sometimes, computational particles are given a mathematical width to generate smoother density
functions. Depending on its position, a fraction of a particle may be assigned to adjacent cells.
This procedure is called the cloud-in-cell method.
   The space-charge and current density functions are combined with a finite difference solution
of the Maxwell equations to generate electric and magnetic field values. The PIC procedure
involves one pass through the array of computational particles assigning them to cells, followed
by a field computation. The number of mathematical operations is linearly proportional to the
number of particles and the number of cells. In a simulation involving  thousands of particles, the
PIC process takes much less time than a direct evaluation of inter-particle forces.
   We shall illustrate the PIC method by computing a quasi-static electric field from a particle
distribution using the Poisson equation. The cubic cells have width ) and volume )3 (Fig. 2.20). 
Points at the cell centers define a three-dimensional Cartesian mesh. The index numbers i, j and k
specify a mesh point with location x = i), y = j), and z = k). We define a discrete function, M(i,
j, k). The value of the function is equal to that of  the electrostatic potential, N, at a mesh point: 

We can fit the values of M(i,j,k) with a smooth curve to estimate N(x,y,z). Gradients of N yield
the components of electric field. 
   The finite-difference form of the Poisson equation is [CPA, pg. 67]:
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(2.95)

Figure 2.20. Spatial mesh for the finite difference solution of the Poisson equation. Cartesian mesh with
uniform spacing in x, y and z.

The final term is the space-charge density at the point (i), j), k)). The quantity D(i, j, k))3

equals the number of computational particles within a cell of volume )3 centered at the mesh
point (i, j, k), multiplied by the charge per computational particle. When D)3 is known, Eq.
(2.95) can be solved by a variety of methods including successive over-relaxation [CPA, pg. 55]. 
   An electrostatic computer simulation using the PIC method for field calculations consists of
the following operations at each  time step:

   1. At time t, the electric field at the location of each computational particle is interpolated from
the function M(i, j, k). The field is used to advance the vectors x and v for the particles to time
t+)t using an accurate difference scheme (Section 2.3). 
   2. The function  D(i, j, k))3 is evaluated at the mesh points by assigning the charge of the
computational particles according to their position. 
   3. The Poisson equation is solved to find electric fields at t+)t, and the process is repeated.
The procedure continues until the beam advances to the desired final state. We shall have an
opportunity to study one-dimensional computer simulations in Sections 12.4 and 13.1. 
    The charge assignment process is the heart of a PIC simulation. Table 2.1 contains a listing of
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a subroutine to calculate the discrete density and average velocity function (or equivalently, the
charge and current density) of a set of computational particles for a one-dimensional simulation.
Two arrays, x[j] and v[j], define the distribution function of computational particles. The routine
incorporates the following  assumptions:

   1. There are NPart computational particles with positions xi in a region of width L between x =
0 and x = L. 
   2. The discrete density function, ni, is defined at (NMesh+1) points uniformly spaced a distance
Delta = L/NMesh apart. The location of mesh point i is xi = i*Delta.
   3. If particles are uniformly spaced, the beam has line density Dens0 (particles/m). Each
computational particle represents Dens0*L/NPart real particles. 

TABLE 2.1.  Density and average velocity of a distribution

{Set the density and velocity arrays equal to zero}
  for i := 0 to Nmesh do
    begin
      Dens[i] := 0.0;
      Vav[i] := 0.0;        
    end;
{Define factors to eliminate redundant floating point operations}
  NormFact := Dens0*L;      
  HalfDelta := Delta/2.0;
{Sweep through all computational particles and assign them to
mesh points, and find the sum of particle velocities in a cell}  
  for j := 1 to NPart do
    begin
      index := int((x[j]+HalfDelta)/Delta);
      Dens[index] := Dens[index] + 1.0;
      Vav[index] := Vav[index] + v[j];
    end;
{Normalize the results}
  for i := 0 to NMesh do
    begin
      Vav[i] := Vav[i]/Dens[i];
      Dens[i] := Dens[i]*NormFact;
    end;

Written in Pascal, simple point assignment
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(2.96)

(2.97)

The routine determines if a particle is within a distance ±)/2 of a mesh point and assigns the
density carried by the computational particle to the corresponding cell. The approach to find the
average velocity array, Vav[i], is similar. 

2.10. Moment equations

   In beam theory, the investigation of velocity space instabilities and collective phenomena like
Landau damping (Section  14.4) requires a complete solution of the Vlasov equation. Although
the equation has a simple form, its solution is usually difficult. Sometimes, we can describe
motion of a beam without a  detailed description of its velocity distribution. It is often sufficient
to approximate a beam velocity distribution with a simple form such as a delta function (cold
beam) or a Maxwell distribution. 
   In this section, we shall derive a set of reduced equations from the Vlasov equation by taking
weighted averages over velocity space. We shall limit attention to low energy distributions
described by the non-relativistic Boltzmann equation of Section 2.7 — the more complex
equations that result from relativistic distributions are of limited use. In classical  mechanics,
weighted averages over a mass distribution are called  moments; hence, the equations we shall
derive are called moment equations. The moment equations are useful even though they reveal
no information about the evolution of the velocity distribution. They involve measurable
quantities, such as particle density, average velocity, and temperature — their application is
helpful to develop physical insight into collective phenomena. 
   A velocity moment taken over a particle distribution function  has the following general form: 

We have already encountered a version of Eq. (2.96) in Section 2.8.  The moment corresponding
to k = 0 is a scalar quantity, the particle density, n(x,y,z). The moment for k = 1 is the average 
velocity of the particles at a location multiplied by the density. We shall derive the moment
equations by applying the operation of Eq. (2.96) to all terms in the collisionless Boltzmann 
equation (Eq. 2.73) for different values of k. The resulting equations apply to charged particle
beams when the force in Eq.  (2.73) is the Lorentz force. To simplify notation, the calculations 
are performed for a one dimensional distribution, f(x,vx). 
   The k = 0 moment over the Boltzmann equation has the form: 

We shall analyze the terms of Eq. (2.97) separately. In the first  term, we can move the partial
derivative operation outside the integral. The result is 
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(2.98)

(2.99)

(2.100)

(2.101)

(2.102)

(2.103)

The final form on the right hand side of Eq. (2.98) proceeds from  Eq. (2.48). 
   We also move the spatial partial derivative operation outside the integral in the second term of
Eq. (2.97). Multiplying and dividing the term by I dvx f gives: 

The integrals in Eq. (2.99) extend over all velocity space. The term in parentheses is the average
velocity in the x direction {Eq. (2.53)]. The multiplying factor equals the particle density.  The
second term thus assumes the form: 

   To simplify the third term, we note that Eq. (2.73) is invalid if the force depends on vx.
Therefore, the acceleration in Eq. (2.97) varies only with x. Moving the acceleration outside the 
velocity integral leads to a modified form for the third term: 

If a beam has finite kinetic energy density, the distribution function must drop to zero as vx
approaches infinity. Therefore, the third term equals zero. 
   In summary, the k = 0 moment equation is:

Equation (2.102) describes the change in particle density with time at a particular location. We
can understand the physical meaning of the equation by expanding the x derivative: 
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(2.104)

(2.105)

(2.106)

Figure 2.21. Contributions to temporal changes of the particle density at a point in space. (a) The density
changes when particles have an average directed velocity and a spatial density  gradient. (b) The density
changes when there is a gradient of the average particle velocity. Here, density decreases at a point
because more particles leave through the right-hand boundary than enter through the left-hand boundary.

Changes in n(x) at a point occur when there are spatial gradients of the density or of the average
particle velocity. Fig. 2.21a  illustrates the effect of a density gradient. The spatial distribution of
particles is shown at times t and t+)t for a positive value of . The density changes by an
amount 

   Figure 2.21b shows the effect of a velocity gradient on the number of particles contained in a
differential element )x centered at x. The average velocity at each side of the element  is: 

The change in the number of particles in the element over time )t  equals the difference in
particle flux crossing the boundaries multiplied by )t. The particle flux equals the product of the
density and average velocity. The rate that particles enter the left hand boundary is 

The change in the number of particles in the element resulting from the velocity gradient is
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(2.107)

(2.108)

(2.109)

(2.110)

(2.111)

(Mn/Mt))x = )n(left) - )n(right),  or 

Adding the effects of a density gradient [Eq. (2.104)] and a gradient of average velocity [Eq.
(2.107)] leads to Eq. (2.102). 
   The three dimensional extension of Eq. (2.102) is written in vector notation as: 

The quantity  is the average velocity vector. We recognize the right hand side of Eq. (2.108) as
the divergence of the particle flux [CPA, pg. 46]. The equation states that the time rate of change
in the number of particles in a volume equals the particle  flux into or out of the region. Eq.
(2.108) is called the continuity equation — it expresses conservation of the total number of
particles in a system. If particles are created or absorbed, we must add source or sink terms to the
equation. 
  We shall derive another equation from the collisionless Boltzmann equation by taking moments
with k = 1 (Eq. 2.96). The one-dimensional form is 

Again, we shall deal with each term in sequence. From the preceding discussion, we recognize
that the first term equals 

Rearrangement of the second term gives

   Charged particle beams usually have a highly-directed velocity with a small spread about the
mean. It is convenient to write the  velocity of particles in terms of a deviation from the average:  

By the definition of the average velocity, the average of deviations about

must be zero, . Therefore, the quantity  in Eq. (2.109) equals 
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(2.112)

(2.113)

(2.114)

(2.115)

   We can again extract the acceleration from the velocity integral in the third term. We can
modify the expression by noting that: 

The third term of Eq. (2.109) becomes

The integrand of the first integral in brackets is an exact differential. Again, if the average
velocity of the distribution is finite, (fvx) must approach zero as vx approaches infinity. Only the
second term in Eq. (2.114) is non-zero; the integral Idvxf equals the particle density. 
   If we combine Eqs. (2.110), (2.112) and (2.114) and multiply all terms by the particle rest
mass, we find the following form for the k = 1 moment equation: 

The quantity Fx is the force on individual particles, Fx = moax. Equation (2.115) expresses
conservation of momentum at spatial positions within the particle distribution. 
   The left hand side of Eq. (2.115) is the time rate of change of  momentum per unit volume,

, at a location. The terms on the right hand side contribute to the momentum change. We
should note  that the average momentum at a point can change by two processes:  

   1. An applied force may accelerate particles in the volume element. 
   2. Particles may leave the element and be replaced by new particles with a different average
momentum. 

The first process is familiar from single particle dynamics. The  second process is unique to
collective physics - it can occur only if a system contains many particles. In the Eulerian 
viewpoint, it is unimportant which specific particles are at a location. Instead, we want to find
the average properties of whatever particles occupy the point at a particular time. Although this
contention may seem straightforward, we shall find  in later chapters that it sometimes leads to
results that challenge intuition. 
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(2.116)

(2.117)

(2.118)

   Term 3 on right hand side of Eq. (2.115) represents the acceleration of particles in a volume
element. A force Fx causes  a time rate of change momentum per volume equal to n(x)Fx(x).
Terms 1 and 2 in Eq. (2.115) represent changes of momentum per volume resulting from particle
migration. Term 1 describes momentum convection by a directed velocity. We can see this
connection by noting that the flux of momentum across a surface normal to the x direction equals
the momentum per particle multiplied by the number of particles that cross the surface per unit
area and time. The mathematical expression of this statement is: 

Equation (2.116)and the arguments used to explain Eq. (2.102) show that that the change in
momentum resulting from convection in a differential length element is proportional to the
gradient of . Term 2 in Eq. (2.115) represents the migration of momentum
associated with spatial variations of random velocity components. This term is often represented
by ficticious forces:  pressure and viscosity.  We shall discuss the effects of velocity  spreads in
Section 2.11. 
   We usually write Eq. (2.115) in a form that gives the time rate of change of the average
velocity at a point: 

The derivation of Eq. (2.117) involves the expansion of Eq. (2.115)  and substitution from the
continuity equation [Eq. (2.102)]. 
   The condition defines a cold beam. The three dimensional extension of Eq. 2.117  for
a cold beam with electromagnetic forces is

The vector notation of the convective term has the following form  in Cartesian coordinates: 
The terms in Eq. 2.119 represent convection of momentum in three  possible directions. 
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(2.119)

(2.120)

   It is possible to generate higher order moment equations from the collisionless Boltzmann
equation by choosing k > 1. The equation for k = 2 describes heat transfer in a collisionless 
particle distribution. There is, in fact, an infinite set of moment equations. Higher-order
equations give more detailed information about the velocity space evolution of the distribution.
Ultimately, a complete set of moment equations yields the same information about the
distribution as a direct 
solution of Eq. (2.73). High-order moments of the Vlasov equation are sometimes applied to
describe transport phenomena in plasmas.  For charged-particle beam theory, it is seldom
necessary to extend the set beyond the momentum equation. 

2.11. Pressure force in collisionless distributions 

   In this section, we shall discuss how velocity spreads affect momentum balance among
collisionless particles. Velocity dispersion leads to a force density that acts on volume elements
of distributions. For a one-dimensional beam with uniform properties in the y and z directions,
Eq. (2.115) shows that the force per volume resulting from random velocity components about  a
mean is: 

In Eq. (2.120), mo is the particle mass, n is the density and *vx  is difference of the velocity of a
particle from the mean, . Equation (2.120) implies that momentum may be
transferred to or from a volume element when there is a gradient in either the particle density or
the mean squared velocity spread, .. 
   The volumetric force of Eq. (2.120) is often called the pressure force. The term may be
confusing to those unfamiliar with collective physics. Most of us have a strong intuitive view of
pressure from gas dynamics. The force arises when gas atoms with random velocity components
collide with one another — we envision that the gas atoms push against each another. If this is 
true, how can we define pressure for collisionless distributions?  
   The key to understanding pressure is to remember that a volumetric force is synonymous with
a time rate of change of momentum per volume. Section (2.10) showed that momentum density  
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Figure 2.22. Changes in the average particle momentum at a point in space resulting from a velocity
spread. Velocity vectors in the figure represent a beam with uniform density and zero average velocity in
the x direction. (a) With a spatially-uniform velocity spread the average velocity in the center cell remains
equal to zero. b) With a negative gradient of velocity spread, more particles enter through the left-hand
boundary than through the right-hand boundary. The average momentum in x increases with time. 

can change as a result of both applied forces and particle migration. An observer measuring
macroscopic properties of a beam  cannot distinguish between the two processes. To the
observer, momentum change through particle migration appears as a force acting at a location. In
the macroscopic view of the observer, the pressure term of Eq. (2.120) acts as a force per
volume. In the  microscopic view, there is no actual interchange of momentum between the
collisionless particles. Instead, gradients in  effect changes in the momentum density at a
location by particle transport. 
   Figure 2.22 illustrates the meaning of Eq. (2.120) for a one-dimensional distribution. Figure
2.22a shows two boundaries defining differential length elements — the quantities n and 

 are equal on both sides of each boundary. Assume that the  particles in the elements have no

average drift velocity, . The velocity dispersion causes momentum flux across the
boundaries. From the discussion of Section 2.10, the flux across  a boundary equals the average
of individual particle momenta weighted by their velocity: 
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(2.121)

(2.122)

(2.123)

(2.124)

(2.125)

Because n and  are uniform, the magnitudes of flux in the  positive and negative directions
are equal. Therefore, there is  no change in momentum density in the volume element between
the  boundaries. In the macroscopic view, there is no apparent volumetric force. 
   Figure 2.22b shows the magnitude of flux across the boundaries  when there is a negative
gradient in . The fraction of  particles with momentum in the positive x direction
increases in  the central element — the average momentum in the element assumes  a positive,
non-zero value. In the macroscopic view, an apparent  volumetric force in the +x direction acts
on the element. We can  apply the technique described in Section 2.10 to estimate the
momentum fluxes on the boundary. A Taylor's expansion of  about the center of the
length element leads to Eq. (2.120). 
  We shall identify the quantity  as the particle pressure in x direction: 

In SI units pressure has dimensions newtons/m2. The expression of Eq. (2.120) can be recast as: 

The pressure notation can be extended to distributions with three-dimensional variations. If
particle motions are decoupled in x, y and z, then we can define individual terms for the pressure: 

   Incorporating the definitions of Eqs. (2.123) and (2.124), the momentum equation for
non-relativistic charged particles [Eq. (2.117)] becomes: 

The pressure vector for decoupled motion is: 
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(2.126)

(2.127)

In Cartesian coordinates, the expansion of the divergence operator is: 

When particle motions in x, y and z are not decoupled, momentum flow becomes more complex.
The momentum equation involves terms like  — pressure must be defined as a tensor.
The cross terms represent collisionless viscosity. Although viscosity is a useful concept in gas
dynamics and plasma physics, it is seldom required for charged particle beam theory. 

Figure 2.23. Pressure force in a collisionless distribution - expansion at a boundary. Density as a function
of position with arrows to represent velocity vectors. (a) Initial state, particles confined at the boundary.
Average momentum equals zero at all positions. (b) After removal of boundary the density decreases in
region x < 0 as particles move into free space. Average momentum in  the +x direction. (c) Particles drift
into the region x >  0. In the macroscopic view acceleration by a pressure force increases the average
momentum. Particles separate according to their velocity, resulting  in cooling of the distribution.
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(2.128)

(2.129)

   Another quantity, the total pressure, is useful if the distribution of particle velocity is isotropic
(uniform in the three dimensions). The total pressure is defined by 

A global temperature T can be defined for an isotropic Maxwell velocity distribution. Both
temperature and pressure depend on the velocity spread. Comparison of Eqs. (2.128) and (2.66)
shows that: 

   Two examples serve to clarify the relationship between the macroscopic expressions for the
pressure force and the microscopic view of single particle motions. First, consider the  free
expansion of a one-dimensional particle distribution. In gas dynamics, a free expansion occurs
when a high pressure gas is released by a punctured diaphragm. In the macroscopic viewpoint, 
the pressure gradient drives the gas outward. The gas cools as it expands. Collisionless particle
distributions exhibit similar behavior. Figure (2.23) shows the free expansion of collisionless 
particles. A localized force initially confines the particles at  a boundary (Fig. 2.23a) — the force
is strong enough to reverse the velocity of all particles at the boundary. In the macroscopic 
view, the confining force balances the pressure force. 
  The confining force disappears at time t = 0.  The particles drift into the region x > 0 according 
to their initial velocities. Fast particles move farther than slow particles. Plots of the density and
average velocity as a function of x are shown for a short delay in Fig. 2.23b and for a  long delay
in Fig. 2.23c. Because of particle migration, length elements near the boundary have a
positively-directed average momentum that grows in time. In the macroscopic view, the length 
elements appear to accelerate in response to a force pointing in  the +x direction. At latter times,
drift motion separates the fast and slow particles, reducing the velocity spread in downstream
length elements. This process lowers the temperature (velocity spread) in a length element. As
particles spread out in space, the apparent acceleration of length elements decreases.  In the
microscopic view, this effect results from the reduction  of gradients of n and . 
   As a second example, we shall derive the variation of density  of a group of charged particles
in equilibrium subject to a one- dimensional electric force. The positively-charged particles have
an isotropic Maxwell velocity distribution. We shall apply the results to thermionic emission in
Section 6.2 and to plasma sheaths  in Section 12.1. Assume that the particle temperature, T, is 
independent of position. The electric field is zero in the region  x # 0, and has variation -Ex(x) in
the region x > 0. The electric force confines particles near a boundary at x = 0. Because there are
no applied forces in the region x # 0, the particle density  has the uniform value no. 
   Because the particles are in equilibrium, the average velocity  is zero everywhere, .
Equation (2.115) reduces to: 
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(2.130)

(2.131)

(2.132)

(2.133)

(2.143)

Equation (2.130) has the solution, 

If the electrostatic potential at the boundary equals zero, N(0) = 0,  then Eq. (2.131) assumes the
familiar form, 

  The same equation results from a microscopic analysis. The velocity distribution at x = 0 is 

The density is lower at a location x > 0 because only a fraction of the particles have a kinetic
energy high enough to overcome the electrostatic potential energy, movx2/2 > eN. The fraction of 
particles that can reach position x with electrostatic potential N(x) is 

Equation (2.134) is identical to Eq. (2.133). Note also that the relative velocity distribution in
Eq. (2.134) is independent of x — this property of the Maxwell distribution justifies the
assumption of  constant temperature. 
   In beam theory, particle motions in the transverse directions (x, y) are usually separable from
those in the axial direction (z). When a charged particle beam has a velocity spread in the
transverse direction, focusing forces must be applied to confine the beam to a limited
cross-section. Although we sometimes  use the terms beam pressure or beam temperature, the
common  name for velocity dispersion in beam theory is emittance. Chapters 3 and 4 give
detailed discussions of beam emittance, including the apparent expansion force associated with
transverse  velocity spread (Section 3.5).
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(2.135)

(2.136)

2.12. Relativistic particle distributions

   The derivations of phase volume conservation in Section 2.4 and the collisionless Boltzmann
equation in Section 2.7 were limited to  non-relativistic particles. This approximation is adequate
for plasma physics and sometimes applies to high-energy charged particle beams. For example,
transverse particle motion in a paraxial beam is well described by Newtonian dynamics with an 
adjusted particle mass, m = (mo. Nonetheless, there are many applications for relativistically
correct equations. One example is the axial motion of high energy electrons in the RF fields of a
resonant accelerator [CPA, Chap. 13]. When observed in the accelerator frame, all electrons
travel close to the speed of light, independent of their kinetic energy. Longitudinal forces cause
changes of momentum rather than velocity.
   We must revise our definition of phase space for relativistic distributions - it is impractical to
organize particle orbit parameters in terms of velocity. For example, a one-dimensional axial
distribution of relativistic particles would appear simply as a narrow line near vz = c. A 10 MeV
electron beam with a ±250-keV spread in kinetic energy has a relative velocity spread of only
±0.005 per cent. The electrons do have a significant spread in axial momentum because of
variations in the relativistic mass. This fact suggests organizing relativistic particle distributions
in a phase space of position, x, and momentum, p,  rather than velocity.
   It is easy to recast the collisionless Boltzmann equation in terms of momentum. Again, we
shall use a one-dimensional distribution as an example. Consider axial particle motion in terms
of the variables z and pz. The relativistic equations of motion are:

Figure 2.24. Phase volume conservation for a relativistic one-dimensional distribution. (a) Change of a
bounded phase-space region over a time step. Momenta at t+)t/2 advance positions to time t+)t. (b)
Forces calculated from positions at time t+)t advance momenta to time t+3)t/2.
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(2.137)

(2.138)

(2.139)

where

There are two differences from the non-relativistic equations of  motion. First, the force equation
[Eq. (2.135)] describes the time rate of change of momentum rather than velocity. Second, the 
position equation [Eq. (2.136)] is more complex.
   Using the reasoning of Section 2.4, we can show that the (z-pz)  phase space area occupied by a
group of collisionless particles  remains constant in time. Fig. 2.24a shows an area element in
phase space. To begin, consider how the element changes in an interval )t when there are no
forces. Axial velocity causes a shift of particle positions along z. In contrast to a non-relativistic
beam, the position shift is not linearly proportional to the difference in momentum from the
mean value. An element that is initially rectangular does not change to a trapezoid. Nonetheless,
the width of each slice of the element does not change in )t. Figure 2.24a shows that the area of
the element is constant although the shape changes. Modification of  the element over )t by
forces follows the same reasoning used in Section 2.4. We can expand the forces in a Taylor's
series about the mean position. When plotted in (z, pz) space, a rectangular phase area subjected
to a force over a time )t is distorted to a trapezoid with equal area (Fig. 2.24b). 
   Given that the volume occupied by a group of collisionless relativistic particles in (z, pz) space
is constant in time, we can derive a modified collisionless Boltzmann equation following  the
development of Section 2.7. We define a continuous relativistic distribution function, f(z, pz).
The quantity f(z, pz) )z)pz represents the number of particles in a beam located in region of
phase space of area  )z)pz near z and pz. The expression for conservation of phase volume is: 

The three dimensional form of the Vlasov equation becomes: 

   It is disappointing that the relativistic collective equations are less symmetric and are more
difficult to solve than  the corresponding Newtonian equations. Generally, we hope that physical
formulations become simpler as we approach closer to the truth. The factor of ( in the
denominator of the second term of  the Vlasov equation upsets the symmetry. The derivation of
moment equations from the Vlasov equation (Section 2.10) becomes difficult in the general
relativistic limit. As a result, there is little motivation to describe relativistic beams in terms of
averaged quantities and moment equations except in the limit that ( – constant.
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3
Introduction to beam emittance
__________________________

   Emittance is a measure of the parallelism of a beam — it allows us to compare the quality of
beams for applications. This chapter describes techniques to find emittance and shows how to
use the quantity to predict the evolution of beams. Emittance is a conserved quantity in an ideal
focusing systems. We can gauge imperfections in transport systems by measuring emittance 
growth.
   Beams with random components of transverse velocity have a spread in angle relative to the
axis of propagation. Section 3.1 shows how the angular dispersion limits the ability to focus 
beams. Section 3.2 defines emittance for beams where particle motions are independent in the x
and y directions. We can find the quantity by plotting orbit vector points in a modified phase-
space called trace-space with axes of position and transverse angle, [x, x']. Emittance is
proportional to the area filled by the points. Section 3.3 illustrates the physical meaning of 
emittance by discussing methods to measure the quantity. Section 3.4 extends the emittance
definition to beams where transverse motions are not separable. The section introduces some
new 
quantities, including the brightness, a function of the emittance. Brightness quantifies the
maximum focused power flux of a beam.
   Section 3.5 incorporates the emittance into a simple expression  for the effective transverse
force resulting from the pressure (or velocity dispersion) of a beam. Section 3.6 applies the
expression to a practical problem, the expansion or compression  of a beam with non-zero
emittance in a drift region. We can use  the results to find the maximum propagation length or
the minimum  focal spot size for a beam. Section 3.7 shows how imperfect focusing systems can
cause emittance growth. We shall investigate  the effects of lenses where the magnitude of the
focusing force  does not increase linearly from the axis. Section 3.8 applies the  principle of
emittance conservation to derive some useful equations that relate the velocity dispersion of a
beam to a given change in its dimensions.
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3.1. Laminar and non-laminar beams

   As an introduction to emittance, we shall review the subject of order and disorder in beams. In
particular, we shall find how disorder limits the transport properties of beams. Beams with good
parallelism are easier to transport than beams with large random transverse velocity components.
Ordered beams can focus to a small spot size. We shall first discuss the properties of ideal
ordered beams, and then review the limitations set by disorder.
   The ideal charged particle beam has laminar particle orbits.  Orbits in a laminar beam flow in
layers (or laminae) that never  intersect. A laminar beam satisfies two conditions:

   1. All particles at a position have identical transverse velocities. If this is not true, the orbits of
two particles that start at the same position could separate and later cross each other. 
   2. The magnitude of the transverse particle velocity is linearly proportional to the displacement
from the axis of beam symmetry. 

Figure 3.1. Motion of beam particles viewed in configuration space. (a) Particle orbits in a laminar beam.
(b) Crossing orbits, where two particles at the same point have different transverse velocities. (c)
Non-laminar distribution, where peripheral particles have excess inward velocity. (d) Downstream
projection of particle orbits for the non-laminar distribution.
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   Some examples will illustrate the implications of the conditions. Figure 3.1 shows particle
orbits of a beam viewed in configuration space. Orbits in Fig. 3.1a are laminar. The beam of Fig.
3.1b is non-laminar because two particles at the same position have different transverse
velocities — condition 1 is not satisfied. As the beam propagates through a linear focusing
system, the orbits separate and later cross one another. Figures 3.1c and 3.1d illustrate a
circumstance where condition 2 is violated. At an initial position (Fig. 3.1c), particles near the
axis have small transverse velocity while displaced particles have a large inward-directed
velocity. The transverse velocity is not linearly proportional to displacement. Figure 3.1d shows
the orbits at a downstream location. The peripheral particles have moved toward the axis,
crossing the inner particle orbits. Particles at a location may have multiple values of transverse
velocity.

Figure 3.2. Configuration-space view of particle orbits in a laminar beam. (a) Ideal parallel beam. (b)
Converging laminar beam, where orbits pass through a common focus. (c) Diverging laminar 
beam converted to a parallel beam by a linear lens.  
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   Figure 3.2 illustrates some examples of orbits in laminar beams. The beam of Fig. 3.2a is
parallel — all particles have zero transverse velocity. There are no orbits that cross in such a
beam. The parallel beam propagates an infinite distance with no change in its width. As a second
example, Fig. 3.2b shows a converging laminar beam. Because the transverse velocities are
proportional to displacement, particle orbits define similar triangles which converge to a point.
After passing through the singularity at the focal point, the particles follow uniformly 
diverging orbits. Figure 3.2c shows a diverging beam focused by the forces of an electric field
lens. If the lens forces are linearly proportional to displacement from the symmetry axis, the lens 
maintains the laminar flow of the beam. We can always convert a  converging or diverging beam
to a parallel beam by using a lens of the proper focal length. 

Figure 3.3. Laminar beam orbit-vector distributions
viewed in transverse phase-space. (a) Distribution for
a parallel beam of width ±xo. (b) Distribution for a
converging beam. (c) Distribution  for a diverging
beam. 
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   Figure 3.3 depicts the three particle distributions of Fig. 3.2 as orbit vector plots in phase
space. Although the three configuration-space plots differ, the phase-space representations are
similar. The phase space vector plot of a laminar beam is always a straight line of zero thickness.
The condition that the particle distribution has zero thickness proceeds from condition 1; the line
straightness is a consequence of condition 2. The distribution of a laminar beam propagating
through a transport system with ideal linear focusing elements is a straight line with variable
length. 
  An ideal lens can focus a laminar beam to a point of zero dimension. Figure 3.4a illustrates
focusing by a lens of focal length f in configuration space — the parallel incident beam has a
halfwidth xo. After deflection, the particles converge to a point a distance f from the lens. Figure
3.4b is a phase space view of the same process. The incident beam distribution is a straight line
of length 2xo aligned along the x axis. The lens displaces the distribution in the vx direction while
preserving the projected length along the x axis. The velocity displacement has a maximum value
of (xo/f) vz at the beam edge. During subsequent transit through the drift region of length f, the
orbit vectors converge toward x = 0. The orientation of the distribution changes until it aligns
with the vx axis at the focal point. Here the distribution has dimension equal to zero in x and a
halfwidth along vx of ±(xo/f) vz. 
   Particles in a non-laminar beam have a random distribution of transverse velocities at a
location. Particles at the position x have different values of vx and a spread in directions. Because
of the disorder of a non-laminar beam, it is impossible to aim all particles from a location in the
beam toward a common point.  Lenses can influence only the average motion of particles. Focal 
spot limitations are a major concern for a wide variety of applications, from electron microscopy
to ion beam inertial fusion.

Figure 3.4. Focusing a laminar beam. (a) Configuration-space view of particle orbit traces. (b) Snapshots
of orbit-vector distributions in phase space at the positions (a), (b) and (c) marked in part a.
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Figure 3.5. Properties of non-laminar beams. (a) Configuration-space view of particle orbits — particles
at the same point move in different directions. (b) Configuration-space view of the transverse focusing of
a non-laminar beam. Incident beam has an equal spread in angle at all positions. (c) Snapshots of orbit
vector distributions in phase-space at positions (a), (b) and (c)  marked in part b.
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   Figure 3.5a shows orbits at a location of a non-laminar beam and the definition of the average
direction. Figure 3.5b is a configuration space view of the focusing process for non-laminar 
beams. The beam portrayed has a uniform spread of transverse velocity, ±)vx, at all positions in
the cross-section. The beam entering the lens is almost parallel — the average transverse
velocity at all positions equals zero. Individual particles have  inclination angles in the range 
±)vx/vz. Passing through the lens, particles acquire a directed convergence angle that sums with
the angular spread. The best focus occurs at approximately a distance f from lens. Figure 3.5b
shows that the orbit vectors at  the focus spread over a non-zero spatial width. The halfwidth is 

Equation (3.1) reveals that the width of the focal spot is proportional  to the transverse velocity
spread of the incident beam. 
   Figure 3.5c illustrates the same process viewed in phase space. The incident beam distribution
is no longer a line; it occupies a  rectangular region in phase space with dimensions 2xo and
2)vx.  The lens shifts the rectangle along the velocity axis — the maximum displacement is 

In the drift region, the rectangle rotates to an upright orientation. The beam has a finite width at
the focal point. In  the limit of small velocity spread, )vx n )vo, conservation of phase-space area
implies that the width of the focal spot is given by Eq. (3.1). The phase space area occupied by
the orbits of  the incident parallel beam is

At the focal point, the height of the beam along the velocity axis is almost equal to )vo [Eq.
(3.2)]. For a halfwidth *, the phase area at the focal point is 

Setting the expressions of Eqs. (3.3) and (3.4) equal leads to Eq. 3.1. 
   We can apply similar considerations to particle motion in the axial direction. In particular, we
can define the longitudinal equivalent of laminar flow — all particles at an axial location are
monoenergetic. Just as a spread in transverse angles limits the focal spot of a beam, a spread in
axial velocity limits the ability to compress the beam to short pulses. Axial focusing of  beams is
called bunching. The process is used, for example, to match beams into RF accelerators. As with
laminar beams, monoenergetic beams can converge to pulses of arbitrarily small  duration. 
   To illustrate bunching, consider a pulsed monoenergetic beam with axial length zo. Initially, all
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particles have the same axial velocity, vo. The pulse length of the beam (the time to pass a given
point) is )tp = zo/vo. The particles pass through a buncher, an element that imparts a velocity
change linearly proportional to the distance from the beam midpoint. Particles at  the midpoint
have no change in velocity, particles at the beam head decelerate by an amount -)vo, while
particles at the tail accelerate by +)vo. Peak bunching occurs when the tail particles overtake
particles at the midpoint. The propagation time from the buncher to the point of peak
convergence is 

The corresponding drift distance is 

   We can apply an approach similar to that used for transverse focusing to find the minimum
bunched pulse length for a beam with  a longitudinal velocity spread. We assume that the
velocity spread, )vz, is small compared with the velocity shift introduced  by the buncher, )vo.
At the point of peak compression, some of the particles at the tail of the beam travel a distance 
(vo+)vo+)vz) J during transit from the buncher to the focal point, while others travel only a
distance (vo+)vo-)vz) J. The quantity J is given in Eq. (3.5). Similarly, particles at the beam
midpoint can shift a maximum distance ±)vzJ during transit. As a result of the velocity spread,
the beam has a non-zero length at the bunching point given by 

The corresponding pulse length of the bunched beam is 

  The compression ratio, defined as the ratio of the initial to the reduced pulse length, is

A high compression ratio is possible under two circumstances: either the incident beam has small
longitudinal velocity spread or the buncher introduces a large velocity shift. We have seen that
strong transverse focusing has analogous requirements: either the beam has a small spread in
angle or the lens has a low  f/number.
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3.2. Emittance

  Section 2.4 proved that applied forces and beam-generated forces acting over large length
scales compared with the interparticle spacing preserve the phase space volume of a distribution. 
Nonetheless, noncollisional processes in accelerators can warp the shape of the distribution,
enlarging the effective phase volume. Although the net phase volume occupied by a beam may
be  constant, nonlinear field components and fringing fields of focusing lenses and steering
magnets can stretch and distort the distribution. To designate the quality of a beam for an
application, we must adopt a figure of merit based on the effective volume occupied by the
distribution. This quantity is the emittance. 
   To understand the motivation behind the definition of emittance, we must review properties of
particle distributions acted on by smooth forces. Section 3.1 showed that the orbit vector points
of a one-dimensional sheet beam fill an area in x-vx space. The smaller the phase area occupied
by the beam, the better the quality of the beam. Here, the term quality implies focusability or
parallelism. The minimum phase-space volume of a distribution is determined by the
characteristics of the beam injector. Processes that increases the phase volume are undesirable. 
   In principle, a modified beam distribution can be restored to its original state by reversing the
orbits of all the individual  particles. In practice, we cannot hope to control the orbits of
individual particles in a beam that may contain more than 1010 particles. From the macroscopic
viewpoint, some modifications of distributions are irreversible — it is impossible to sort out and
to compensate changes by applying broad-scale macroscopic forces. In  this context,
modification of a distribution is reversible if the process preserves not only the volume but also
the continuity of  the distribution. As an example of a reversible process, when a sheet beam that
occupies a  rectangle in x-vx phase space propagates through a series of linear lenses and drift
spaces, the rectangle changes to a series of parallelograms with equal area. Here, we can always
find a combination of linear optical elements that will restore the distribution to its original

Figure 3.6. Trace-space view of focusing of a non-laminar beam by an array of thin linear lenses. Four
lenses with :o = 80°. Note  that the process is reversible — the area enclosed by the shape. The
distribution and shape of the boundary are conserved.
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Figure 3.7. Beam focusing by a non-linear lens with soft force. (a)  Configuration-space view of orbits
with a parallel incident beam.  (b) Trace-space orbit vector distributions at the lens entrance,  lens exit,
and paraxial focal point. (c) Trace-space orbit vector distribution beyond the focal point.
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linear focusing system acts reversibly. To illustrate this fact, Fig. 3.6 shows calculated shapes of
a distribution in  a uniform thin lens array. Note that the lens focal length and drift distance give
a phase advance of 80° — the distribution returns to its initial shape after nine lenses. 
  Irreversible processes change distributions in such a way that  they cannot be restored by
macroscopic forces. Figure 3.7 illustrates such a process. A sheet beam passes through a non-
linear lens. The transverse force of the lens is soft; the lens force is weak at large displacement
compared with a linear lens.  As a result, the lens underfocuses particles on the periphery. Figure
3.7a shows particle orbits in configuration space, while Fig. 3.7b illustrates the beam distribution
at two points: the lens exit and the point of maximum convergence. Downstream from the focal
point (Fig. 3.7c), the distribution folds back on itself. There are positions in the beam, shown by
dashed lines,  where the particles have two different values of transverse velocity. We can see
that it is impossible to restore the distribution to a straight line with any optical component that
generates forces that are functions only of position. Such an element could not separate the two
overlapping velocity components.
  Note that the phase-space area filled by the beam in Fig. 3.7c  is unchanged. Nonetheless, the
distorted distribution surrounds regions of unoccupied phase space - the effective area of the 
distribution is larger. If we sought to focus all particles in the distribution of Fig. 3.7c to a spot
with an ideal linear lens, the relevant phase space area is that inside a boundary surrounding all
particles. Figure 3.7c shows such a boundary as a dashed line.
   Emittance is an empirical quantity that characterizes the effective phase volume (or area) of a
beam distribution, including the effects of irreversible processes. As opposed to the actual phase
volume, emittance is an inexact figure of merit.  As a result, its value involves approximations
and conventions that may vary with the application, sometimes leading to confusion. We express
emittance in terms of position and transverse angle rather than transverse velocity because the 
inclination of particle orbits can usually be measured directly. We denote the angle a particle
makes with the beam axis of symmetry as x' = dx/dz and y' = dy/dz. For paraxial beams, the 
relationship between the inclination angles and transverse velocities is 

The coordinates (x, x', y, y') are usually treated as functions of z rather than time, t. They describe
the trace of a particle orbit along the axial direction, [x(z), y(z)], rather than the time-dependent
position [x(t), y(t)]. Hence, the space defined by the coordinates is called trace space. We can
represent trace-space distributions for both relativistic and non-relativistic beams.  The
conversions of trace coordinates to phase space coordinates  for relativistic beams, (x, px) is 
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   We can plot the distributions of paraxial beams in trace space rather than phase space.
Equations (3.10) and (3.11) show that the plots contain the same information for known values
of vz or pz. Emittance is the effective volume (or area) occupied by a distribution in trace space.
To specify the volume, we must designate the distribution boundary. To begin, we shall limit our 
attention to a simple distribution with an unambiguous boundary.  Assume that the orbit vectors
of a one-dimensional beam uniformly  fill a well-defined region with a sharp boundary (Fig.
3.8a). We circumscribe the distribution with an ellipse, shown as a dashed  line in Fig. 3.8a. The
curve surrounds the minimum area that contains all the orbit vector points. We define emittance
as the  area of the ellipse divided by B: 

The subscript x indicates that orbit parameters are measured in the x direction. The following
section generalizes emittance for two-dimensional beams.
   Sometimes, an ellipse circumscribed around a distribution is upright. In other words, the major
and minor axes are aligned with the x-x' coordinate axes (Fig. 3.8b). Section 4.1 shows that an
upright distribution ellipse corresponds to a beam with an envelope parallel to the axis of
propagation. If xo and xo' are the ellipse dimensions, then Eq. (3.12) reduces to:

Figure 3.8. Definition of emittance. (a) Uniform orbit-vector distribution inside a boundary, surrounded
by a minimum-area ellipse. (b) Upright trace-space ellipse — the enclosed emittance equals xoxo' B-m-rad. 
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   In some works, the emittance is taken as the area of the ellipse without the divisor of B. When
quoting an emittance value, the recommended procedure to show which emittance convention
has been used is to include a symbol in the units. The modern standard is to include the factor of
1/B. To designate this convention, we append the symbol B to the units. For example, if the
distribution of a parallel beam fills an ellipse with xo = 1.0 cm and xo' = 30 mrad, then the
emittance in SI units should be given as

Note that the symbol B is a flag attached to the dimensions to signify the standard emittance
convention. The specification does not mean that the dimensions have been multiplied by the
number B. The dimensional units are chosen for convenience; units of B- cm-mrad are often
encountered. In the older convention, where emittance equals the ellipse area, the beam
emittance for the given parameters is quoted as 

The B symbol does not appear in the unit declaration.
   In a transport system with no acceleration, the emittance is  proportional to the effective phase
volume of the beam. Focusing and steering elements preserve the continuity of the distribution if
the forces are linear. If this is true, the emittance ellipse has a constant area throughout the length
of the system. Emittance has an important physical interpretation — it is a conserved quantity
when a beam is subject to reversible processes. In contrast, irreversible processes distort and 
convolute the boundaries of beam distributions, even if they preserve a constant phase space
area. When the distribution is distorted, the ellipse must enclose a larger area containing empty
regions of phase space. Irreversible processes lead to emittance growth of a distribution. Usually,
emittance growth is undesirable because it degrades the parallelism of a beam. 
   The final emittance of a beam represents the sum of the intrinsic emittance from the source and
emittance growth during acceleration. Figure 3.9 illustrates sources of intrinsic emittance of a
low-current-density electron beam emerging from an injector.  The device (Fig. 3.9a) generates a
parallel sheet beam of kinetic energy eVo. The thermionic electron source operates at temperature
Tc. If the combined applied and beam-generated electric fields are purely linear, then the average
orbit inclination angle equals zero at all positions, . Nonetheless, the beam has
non-zero emittance because of the thermal motions of electrons leaving the source. If the source
electrons have a Maxwell distribution (Sect. 2.6), the average thermal velocity in the x direction
is . The resulting trace space distribution (Fig. 3.9b) is rectangular with an

angular spread of , or: 
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Figure 3.9. Origins of non-zero emittance in an electron beam injector. (a) Typical electron injector with
a cathode (K) (consisting of an electron source and a focusing electrode) and an anode (A). Lines at point
(a) represent divergence of thermal electrons from the source. Line at point (b) shows non-linear
deflection by fringing electric fields. (b) Trace-space distribution of orbit vectors, electrons emerging
from the source. (c) Trace-space distribution of orbit vectors for electrons emerging from the anode
aperture, including thermal divergence plus effects of distortion and defocusing at the anode.

   The transverse electric force in injectors always has a non-linear component. Usually, the force
is stronger near electrodes — particles near the beam envelope are overfocused. The resulting
distorted trace space distribution is shown in Fig. 3.9c. The emittance ellipse shown includes all
particle orbits at the injector exit. The total area reflects contributions from both the thermal
velocity spread and distortions from optical errors.  
   Emittance is defined in terms of an elliptical boundary because this curve plays an important
role in linear focusing systems. For example, we saw in Section 2.1 that particles subject to a
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continuous linear focusing force follow elliptical trajectories in both phase space and trace space.
Section 4.1 shows  that an elliptical distribution that enters a system with discrete linear optical
elements maintains an elliptical shape.  Ellipses have special significance for periodic linear
focusing  systems. In such a system, there is a special elliptical trace space boundary called the
acceptance (Sec.tion 4.3). An incident beam distribution that fits within the acceptance exhibits
minimal envelope oscillations and propagates through the focusing system without striking
physical boundaries. In this context, the elliptical acceptance boundary sets an upper limit on the 
emittance of the incident beam.

3.3. Measurement of emittance.

   In Section 3.2, we defined emittance for an idealized distribution with a sharp boundary in
trace-space. In this section, we shall discuss how to calculate emittance for the type of
distributions encountered in experiments. We apply the root-mean-square emittance, or RMS
emittance, when distributions have diffuse boundaries. We shall first summarize methods for 
measuring the distribution of particles in position and inclination angle. We shall concentrate on
techniques for low energy beams. Such measurements are made near the entrance of an
accelerator to gauge the operation of particle sources and extractors. The input beam emittance
sets a limit on the quality  of the output beam from an accelerator. Emittance diagnostics for  low
energy beams are simple devices. Because of the low power density, it is usually possible to
place the analyzer in the path of the beam. Devices that stop beams are called destructive or
interceptive diagnostics — they are usually inserted and removed  from the beamline by vacuum
translators during accelerator operation. 
   To infer emittance, we must measure particle displacement in both position and angle.
Measurements of spatial variations of charged-particle beams are straightforward. Moving
collectors are  used for continuous beams. The spatial profile of pulsed beams is  measured with
arrays of collectors or imaging detectors, such as  phosphor sheets, fast scintillators, and channel
electron multiplier arrays. Information on the distribution in angle must be obtained indirectly.
There are no simple detectors that measure the angle of a particle orbit directly. Instead, we must 
convert an angular distribution into a related spatial distribution. The conversion occurs when
particles are allowed to drift freely after passing through a slit or aperture. 
   Figure 3.10a illustrates the free-space propagation of particles emerging from a narrow slit.
The particles have an angular spread  )2 normal to the slit. As they drift they move transversely
according to their angle. If D is the distance between the aperture and the detector, a particle
with incident angle x' moves a transverse distance

Fig. 3.10b shows a trace-space representation of the collimation process and drift. The spatial 
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Figure 3.10. Free-space propagation of a beam with a uniform angular divergence emerging from a slit.
(a) Configuration-space view of orbits. (b) Trace-space view of orbit-vector distributions at the slit and at
the detector. 

profile of particles at the detector gives  a direct measurement of the incident angular distribution
under the following conditions:

   1. The width of the particle profile at the detector must be large compared with the dimension
of the aperture, or
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Figure 3.11. Principle of the pepperpot emittance diagnostic. Schematic view showing aperture
and projected images of beam particles.

If Eq. (3.16) is true, inspection of Fig. 3.10b shows that the beam distribution stretches to a thin
line at the detector — the spatial distribution is almost independent of the aperture geometry.
   2. Particles must follow ballistic trajectories to the detector — space-charge forces must be
small. We review criteria for this condition in Section 5.4.   
   3. The aperture should admit all particles over its width, independent of their angle.
Unfortunately, aperture plates must have a non-zero thickness and vignetting can occur — the
plate intercepts a portion of the particles with large angle. If the plate has thickness * and the slit
has width d, then vignetting is small if 

   The pepperpot, illustrated in Fig. 3.11, is a common aperture plate geometry used with an
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imaging detector. The front plate has a two-dimensional array of apertures. The apertures are far 
enough apart so that beam projections from adjacent holes do not interfere. Analysis of the light
distribution in the photograph gives a variety of information, illustrated schematically in Fig.
3.12:

   1. An integral of the intensity of a beam spot gives the relative current density of the beam
(Fig. 3.12a). Values from the different apertures can be combined to construct a current density
profile of the beam in the aperture plane.
   2. Measurements of the displacement of the spot centroid from the position of the
corresponding aperture gives information on beam aiming in the aperture plane (Fig. 3.12b). We
can find whether the beam is converging or diverging.
   3. A scan averaged over the y direction gives the relative distribution in x' at the position (x)
(Fig. 3.12c). Among other information, this process yields a value of the average divergence
angle, )2x(x).  A similar analysis gives )2y(y).
   4. We can estimate complete four-dimensional trace-space distributions by combining scans of
images from all apertures in the pepperpot. Figure 3.12d shows the portion of an aperture
projection subtended by a detector with angular resolution )x' and )y'. The dimensions of the
aperture define the spatial resolution, )x and )y. If the aperture is at position (xo, yo) and the
detector position corresponds to angles (xo', yo'), then the detector signal is proportional to the
trace-space density multiplied by the entrance phase volume of the detector. If we denote the 
continuous distribution function in trace-space as g(x, x', y, y'), then the signal is proportional to

Although we carry out the analysis at discrete locations, we can infer the complete continuous
distribution function by interpolation.
   Often, it is unnecessary to perform a complete analysis to find g(x, x', y, y'). For example, if
particle motions are separable in x and y, the relative distribution of x' should be the same at all
values of y. In this case we can generate an emittance plot from scans in x' at one location in y.
   Fig. 3.13 illustrates the wire scan, an alternative method to measure trace-space distributions
when x and y motions are decoupled. A detector with an analyzing slit moves over the cross 
section of a beam to sample different values of x. A wire beam collector moves within the
detector to sample different values of  x'. The extended  geometry of the slit and wire gives
averaging along y and y'. Wire scans are useful only for steady-state or continuously pulsed
beams.
   The detectors that we have discussed generate extensive information on diffuse distributions
— usually, we represent this information through contour plots. Often we want a single number 
that characterizes the quality of a beam for quick comparisons. The RMS emittance, calculated
from the full distribution measurement, is such a quantity. For the upright distribution of a
parallel
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Figure 3.12. Information available from pepperpot emittance diagnostic — beam projections in the
detector plane. (a) Spatial  integral of spot signal intensities (region of dashed line) gives the spatial
profile of beam current. (b) Displacement of the spot center shows aiming errors and the convergence or
divergence of  the beam. (c) A measurement of the relative intensity along .x (integrated over y') gives the
angular divergence at x, )2x), and the emittance, ,. d) A full analysis of the spot intensity along .x and .y
leads to the angular distribution function, g(x, x', y, y') at (x, y).
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Figure 3.13. Scanned wire emittance diagnostic. The entire detector moves sideways to sample different
values of x while the wire translates within the assembly to give the distribution in x' at x.

beam, the following equation defines the RMS emittance:

Again, g(x, x') is the continuous trace-space distribution function. The quantity )xrms is the RMS
beam width and )x'rms– is  the RMS divergence angle:
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Figure 3.14. Data generated by a scanned wire emittance diagnostic. Ordinate: Motion along x', abscissa:
motion along x. Signal strength of current collected on wire displayed as horizontal length of lines.
Skewness and distortion of distribution reflect the optics of the simple planar injector (Courtesy, H.
Rutkowski, Lawrence Berkeley Laboratory). 

We introduce the factor of four so that Eq. (3.19) gives the correct emittance when applied to an
ideal distribution, a uniformly filled ellipse. We can prove the result by evaluating the integrals
in Eq. (3.19) for a uniform value of g(x,x') between the  limits 

   In experimental measurements, we cannot expect that the location of diagnostics will
correspond to a beam waist, a position where the beam envelope is parallel to the axis.
Generally, 
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TABLE 3.1.  Emittance calculation example

function RMSEMIT (var PartDist : Distribution;
                 var Npart : PartIndex): real ;
{---------------------------------------------------------}
{-     Returns RMS emittance in pi-m-rad.                -}
{-     Upright or skewed distributions.                  -}
{-     NPart is the number of particles                  -}
{-     PartDist is a particle distribution consisting    -}
{-        of an array of particle records.               -} 
{-     Each particle record consists of two real         -}
{-        quantities:                                    -}
{-             x (position, m)                           -}
{-             v (angle, radians)                        -} 
{---------------------------------------------------------}
var
  xav, vav, skewav : real;
 j : PartIndex ;
 xsqav, vsqav : real;
begin
       {-Find xav and vav---}
 xav := 0.0;
 vav := 0.0;
 for j := 1 to Npart do
   with PartDist[j] do
     begin
       xav := xav + x;
       vav := vav + v
     end;
 xav := xav/Npart;
 vav := vav/Npart;
       {-Find skewav---}
 skewav := 0.0;
 for j := 1 to Npart do
   with PartDist[j] do
       skewav := skewav + (x-xav)*(v-vav);
 skewav := skewav/Npart;
       {-Compute average of squares---}
 xsqav := 0.0;
 vsqav := 0.0;
 for j := 1 to Npart do

   with PartDist[j] do
     begin
       xsqav := xsqav + (x-xav)*(x-xav);
       vsqav := vsqav + (v-vav)*(v-vav);
     end;
 xsqav := xsqav/Npart;
 vsqav := vsqav/Npart;
       {-Compute emittance---}
 RMSEmit := 4.0*sqrt(xsqav*vsqav - skewav*skewav)
end; {RMSEMIT}
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the trace-space distribution is skewed as in Fig. 3.14. Then, we must use the following corrected
version of Eq. (3.19)+: 

Table 3.1 illustrates the application of Eq. (3.21). The table lists a computer subroutine to
evaluate the RMS emittance for a beam distribution generated by a one-dimensional computer
simulation. The distribution is stored as an array of particles;  each particle is a record consisting
of two real values, the position, x, and angle x'.

3.4. Coupled beam distributions, longitudinal emittance, normalized emittance,
and brightness

   In this section, we shall discuss several topics related to emittance, including normalized
emittance and brightness. To begin, we shall extend definitions of emittance to include cases 
where particle motions in different directions are coupled. In previous discussions of emittance,
we limited attention to one-dimensional beams or we assumed that motions in the x and y
directions were independent. Transverse particle motions in many practical focusing systems are
not separable — therefore, we must extend the emittance definition to include four-dimensional 
trace-space volumes. Furthermore, when axial motion couples to transverse motion, we must
deal with trace-space volumes in a six-dimensional space. 

A. Coupled transverse beam distributions

   The focusing system of a high-energy particle accelerator consists mainly of quadrupole lenses
and dipole bending magnets.  In these optical elements, particle motions in the x and y directions
are independent. Motion is not separable in a variety of other focusing devices. Some common
examples are solenoidal magnetic lenses, liquid metal lenses, or cylindrical electrostatic lenses in
acceleration columns [CPA, Chapter 6]. 

  Consider a paraxial beam in a focusing system where x and y motions couple but transverse
motion is independent of axial motion. Emittances in the x and y directions are no longer 
separately-conserved quantities. Instead, the total four-dimensional trace-space volume in

+ See, for instance, C. Lejuene and J Aubert, Emittance and Brightness Definitions and Measurements in
Applied Charged Particle Optics, A. Septier, Ed., Academic Press, New York, 1980, p. 159.
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(3.22)

(3.23)

(3.24)

(x, x', y, y') is constant in the absence of acceleration. The four-dimensional extension of 
emittance is called hyper-emittance. The definition is similar to that for the two-dimensional
quantity. For example, suppose a parallel beam has a uniform distribution in four-dimensional 
trace-space with a sharp boundary. If the distribution fits into the four-dimensional ellipsoid: 

then the hyper-emittance (,4) is 

   The symbol V4 in Eq. (3.23) represents the four-dimensional volume occupied by the
distribution. If the distribution ellipsoid is not upright, we must calculate the orientation and 
volume of the ellipsoid by more advanced methods. We can easily extend the equations for RMS
emittance (Section 3.3) to coupled distributions. Finally, if particle motions in the x and y
directions are independent, we can identify separate emittances,  ,x and ,y. The hyperemittance
is the product of the two-dimensional emittances: 

   The definition of emittance presents some problems when we deal with cylindrical beams. We
transport and focus such beams with cylindrical lenses that exert only radial forces. We would 
like to define a quantity, ,r, that characterizes the velocity spread in the r direction and the radial
pressure force of the beam. Unfortunately, the simple geometric interpretation of emittance in
terms of a trace-space plot (Section 3.2) does not hold for motion in a curved coordinate system
—  the size of a differential element in configuration space varies with position by a factor
proportional to 2Brdr. Also, motion in r and 2 is not  strictly separable. 
    Nonetheless, we shall adopt an approximate quantity, ,r, for use in the paraxial ray equation.
We define the quantity so that it gives the correct value of radial pressure force (Section 3.5). 
We set B,r equal to the area in r-r' space circumscribed by the orbit of a particle that reaches the
envelope with vr = 0. This quantity has the dimensions of emittance and represents the effect of a
spread in vr. For diffuse beams, we take the envelope  radius as an RMS radius. To avoid
confusion, we must remember that ,r is an approximate quantity that does not follow directly
from the theoretical framework used to define ,x, ,y and ,4. 
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B. Longitudinal emittance

   Early researchers in particle-beam physics created the quantity emittance to describe the
transverse motion of low energy electron beams in cathode ray tubes and electron microscopes.
These continuous beams are generated by electrostatic accelerators — they are uniform in z with
a single value of vz. Therefore, there are no axial forces that arise from velocity spreads. In
contrast, longitudinal motions play an important role in modern high energy accelerators such as
RF linacs. Conservation of the effective longitudinal phase-space volume, (z, pz), is an important
principle with many applications.  In extending emittance to the axial direction, we recognize
that  angles and orbit traces are undefined. Therefore, we must plot orbit vectors to represent
distributions directly in z-pz space.  In RF accelerators, we measure and plot longitudinal
distributions relative to a point of constant phase of the accelerating wave. Here, common
distribution coordinates are N,  the phase position of the particle relative to the wave, and )T, 
the difference in kinetic energy from the average value. 
   Figure 3.15 illustrates a method to construct a complete axial distribution plot for a pulse of H-

ions emerging from the buckets of an RF linac [CPA, Chapter 13]. A short pulse laser irradiates
an axial slice of a beam bunch at a phase N. The tuned laser radiation detaches the loosely bound
electron of the negative ion, creating an energetic neutral hydrogen atom, Ho. A  magnet deflects
the main beam, while the atoms continue forward.  The time variation of atomic flux is measured
at the end of a drift length. The integral of the signal gives the relative beam density at N. The
time variation of the signal gives the velocity dispersion and hence the relative distribution of
beam kinetic energy error, )T. The diagnostic measures the full axial distribution by varying the
laser delay with respect to the bunch. 
   Sometimes, longitudinal and transverse particle motions couple. For example, the forces in
most focusing elements are energy-dependent — transverse deflections depend on the axial
velocity. This effect, chromatic aberration, leads to a increase in a focal spot size when beams
have a substantial energy spread. Other examples of transverse-longitudinal coupling include
instabilities that transfer longitudinal energy to transverse motion (Chapter 13), orbital
resonances in circular machines, and  intense electron beams where the transverse kinetic energy
is comparable to the longitudinal energy. When there is strong coupling, we cannot apply the
conservation of transverse emittances or even hyperemittance. The only conserved quantity is
the total six-dimensional phase volume. Here, we must quote the emittance in terms of a
boundary around the full distribution in  (x, px, y, py, z, pz) space. 

C. Normalized emittance

   Acceleration generally reduces emittance. The transverse momentum of particles may remain
constant while the axial momentum increases, leading to a reduction in x'. We shall find it useful
to designate an alternative quantity that remains constant during acceleration, the normalized
emittance. With the effects of acceleration removed, changes in the normalized emittance 
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Figure 3.15. Schematic diagram of an apparatus to measure the longitudinal distribution of H- ions from
an RF accelerator. A synchronized laser pulse dissociates the negative ions to Ho at a  position in the
micropulse. The shape of the pulse of atoms after a downstream drift gives the axial velocity distribution
about the mean at a point in the beam. The distribution is measured over many shots by changing the
timing of the laser pulses relative to the ion micropulses. (Adapted from W.B. Cottingame, J.H. Cortez,
W.W. Higgins, O.R. Sander, and D.P. Sandoval, Longitudinal Emittance Measurements on the ATS, in
Proc. 1986 Linear Accelerator Conf., Stanford Linear Accelerator Center.)

indicate a degradation of beam quality resulting from non-linear forces or beam perturbations.
Also, normalized emittance is useful to quantify improvements in beam quality from beam
cooling methods (Section 4.6). 
   Although the trace-space volume of a beam decreases during acceleration, we know that the
phase-space volume stays constant in a linear focusing system. The transverse momenta are
related  to the inclination angles by 

We calculated normalized emittance from the boundary of the distribution of orbit vector points
in a modified trace-space, [x, $(x']. The correction factor ($() assures that the normalized
emittance is invariant when the beam accelerates. The normalized emittance of a relativistic
paraxial beam is: 
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(3.26)

(3.27)

Note that the symbol B appears in the dimensions to signify that the quantity includes the factor
of (1/B). For non-relativistic beams, Eq. (3.26) has the form: 

D. Brightness 

   The quantity brightness was adopted from conventional optics where it characterizes the
quality of light sources. In charged  particle beam applications, beam brightness is the current
density per unit solid angle in the axial direction. Bright beams  have high current density and
good parallelism. 
   Figure 3.16 illustrates the meaning of brightness for a cylindrical charged-particle beam. The
beam has current I, average radius )r, and average divergence angle )2. In the limit  )2 n 1, 
the brightness is 

Figure 3.16. Cylindrical beam with non-uniform current distribution. Figure shows the
root-mean-squared radius ()r) and  divergence angle ()2).
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(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

We can rewrite Eq. (3.28) in terms of the average current density, jb: 

  When beams have Cartesian symmetry in the transverse direction, we can write an expression
for brightness in terms of the emittances. As an example, suppose a beam has an ideal
distribution. Orbit vectors uniformly fill an ellipse with axes (xo, xo') and (yo, yo'). The associated
brightness is: 

The following approximation holds for isotropic beams with average emittance, ,: 

Note that if , is constant, the beam brightness is also a conserved quantity. 
   We can appreciate the significance of brightness by reviewing the example of non-laminar
beam focusing from Section 3.1. A parallel cylindrical beam with angular divergence )2 carries
current I. The beam passes through a lens of focal length f. The  minimum size of the focal spot
is about  — the average current density at the focus is, 

Taking R as the useful lens radius and beam radius at the lens,  we can write Eq. (3.32) as 

The f/number depends on the focusing system — the high power density can be attained with with
low f/number optics. For a given optical system, the power density at the focus is proportional to
the beam brightness. 
   Like the emittance, brightness is not constant during beam acceleration. We can define a
conserved quantity, the normalized brightness, in analogy with the normalized emittance. The 
relativistic expression is, 
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(3.25)

(3.26)

3.5. Emittance force

   We derived equations for the effective force resulting from particle velocity dispersions in
Section 2.11. In this section, we shall express the transverse pressure force of a paraxial beam in 
terms of its emittance. We shall also review the principles of beam envelope equations [CPA,
Chapter 7] — Chapter 9 develops this topic in detail. In this section, we shall limit attention to 
modifications of the envelope equation to include the effects of emittance.
   An ideal laminar beam with parallel orbits propagates indefinitely with no change in radius. In
contrast, a beam with  non-zero emittance expands — some of the particles are aimed outward.
To maintain a constant radius for a beam with emittance,  focusing forces must be applied to
reverse the outwardly directed  particles. In a sense, we can view non-zero emittance in terms of 
an outward force that balances the focusing force to maintain a  constant radius beam. In this
section, we shall calculate the effective emittance force by seeking the focusing force that 
guarantees radial force balance.
   To simplify the discussion, we adopt the following assumptions:

   1. The cylindrical beam has azimuthal symmetry.
   2. All particle orbits are contained within a maximum radius R. 
   3. The beam is paraxial. This condition implies that the axial distance for a substantial change in
the envelope radius is much larger than R. We can therefore ignore axial forces and describe the
beam in the infinite-length limit. 

We recognize that only the radial motions of particles are important because there are no forces in
the 2-direction. An azimuthal velocity spread makes only a small modification to the  centrifugal
force. 
   Suppose a linear, axicentered force confines the beam — the force varies in z over scale lengths
long compared with the envelope radius, R. We write the linear focusing force as: 

If no other forces act on the beam, the orbit vector points of individual particles follow ellipses in
trace-space as the particles perform radial oscillations. The oscillation frequency for all particles
is 

when vr n vz. In Eq. (3.36), mo is the particle rest mass and ((-1)moc2 is the kinetic energy. A plot 
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(3.38)

(3.39)

(3.40)

Figure 3.17. Phase-space orbit-vector trajectories for particle motion in a linear, radial force. 

of the boundary beam orbit  is shown in Fig. 3.17. The family of trace-space orbits is a nested set
of ellipses that fill the area inside the boundary orbit. If the beam is in radial equilibrium, particle
orbit vector points are distributed uniformly in phase along the ellipses. 
   By the definition of Section 3.4, the radial emittance of the beam equals the product of the
maximum displacement and angle of  the boundary orbit: 

Solving Eq. (3.37) for the oscillation frequency gives,

We can equate the expressions of Eqs. (3.36) and (3.38) to find the focusing force needed to
balance emittance on the beam envelope:  

The expression on the right hand side of Eq. (3.39) is the effective emittance force.
   In the special case we have considered with linear focusing forces and no beam-generated
forces, Eq. (3.39) guarantees radial  force balance at all positions in the beam cross section.
Generally, this is not true. In practice, we cannot measure detailed characteristics of beam motion
over the whole cross-section. Without a complete knowledge of transverse motion, a common
approach is to seek conditions for force balance only on  the beam boundary to generate a rough
global prediction of beam  behavior. Envelope equations summarize this information.
   To construct a paraxial envelope equation, suppose that changes in the envelope radius and
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(3.40)

(3.41)

(3.42)

(3.43)

focusing force occur over long time scales compared with the betatron frequency, Tr. In the
quasistatic limit, the following approximate equation describes changes in the envelope radius of
a beam with non-zero emittance  subject to a linear focusing force: 

It is usually more informative to calculate the envelope trace of a paraxial beam, R(z), rather than
temporal variations of the radius, R(t). Accordingly, we convert Eq. (3.40) from a force equation
to a trace equation by exchanging axial derivatives for all time derivatives. We use the chain rule
for derivatives:

Equation (3.41) is valid for paraxial beams where ( and vz are uniform over the beam cross
section at an axial location. For a constant velocity beam, the resulting equation is 

When the beam distribution does not have a sharp boundary, the emittance in Eq. (3.42) can be
taken as an RMS value and R can be associated with the RMS beam radius. Note that additional
terms must appear in Eq. (3.42) when the beam accelerates — the procedure to convert a force
equation to a trace equation in the presence of acceleration is reviewed in [CPA, Chapter 7].
Section 3.6 discusses the application of Eq. (3.42) to beam expansion in a drift region. 

3.6. Non-laminar beams in drift regions

   We can apply Eq. (3.42) to study propagation of a beam with non-zero emittance in a field-free
drift region. We retain only the emittance term on the right hand side. The equation 

governs the envelope radius. Figure 3.18a shows the geometry of the calculation. Define the axial
coordinate so that the beam envelope is parallel to the axis at z = 0, or R'(0) = 0. A position where
a beam has a minimum radius and zero envelope angle is called a beam waist — let the radius at
the waist be Ro. Because the outward emittance force is the only radial force, the envelope radius
increases as the beam moves downstream.  
   To solve Eq. (3.43), we multiply both sides by 2R'. The left-hand side, 2R'R", is a perfect 
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(3.44)

(3.45)

Figure 3.18. Free-space expansion of a cylindrical beam with non-zero emittance. (a) Geometry for
calculation. (b) Calculated axial variation of the normalized envelope radius.

differential of the quantity (R')2. We can integrate both sides of Eq. (3.43) from the origin to a
position z. Applying the boundary conditions at z = 0, we find  that: 

Manipulation and integration of Eq. 3.44 gives an expression for  R(z): 

The solution is plotted in Fig. 3.18b. At z = 0, the envelope has zero slope. At long distances from
the origin (z o Ro

2/,), R(z) approaches a straight line with slope: 
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Figure 3.19. Axial expansion of beam from a waist point. Configuration-space plot of selected orbits on
the boundary of a  beam with an elliptical distribution (Ro = 1, Ro' = 0.2). 

According to the Eq. (3.13), the quantity ,/Ro equals the maximum orbit angle of particles in an
upright elliptical distribution at z = 0. Note that the beam is parallel to the axis at this point. After
the particles drift downstream, the envelope expansion angle approaches the angle of particles
with the maximum inclination. 
   We can modify Eq. (3.45) to describe converging or diverging beams that have a waist point at
any position zo: 

Imagine a beam traveling in the +z direction that converges to a waist at z = 0 and then expands.
In the microscopic view, particles follow ballistic orbits through the convergence point without
interaction. In the macroscopic view, we say a repulsive emittance force reflects the beam when it
converges. The force is proportional to 1/R3. Figure 3.19 clarifies the relationship between the
microscopic and macroscopic descriptions. Orbits on the periphery on an elliptical distribution are
plotted in configuration space for a focused beam. Inspection of Fig. 3.19  shows how the
summation of a large number of straight line orbits leads to the envelope curve of Eq. (3.45). 
   Figure 3.20 illustrates the trace-space behavior of a freely expanding beam. We take an ideal
elliptical distribution of orbit vector points. At the waist point (Fig. 3.20a), the axes of the ellipse
are parallel to the trace coordinates. The inclination angle of the beam envelope (R') equals the
angle of individual particles on the envelope. Inspection of Curve A shows that particles at r = R
have zero inclination angle. As the beam moves downstream, free particle motion results in the
deformation of the ellipse, shown as Curve B. The envelope radius, indicated by a dashed line,
increases. For z > 0, particles with positive inclination angle move to the boundary; therefore, the 
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Figure 3.20. Trace-space view of the orbit-vector distribution of a beam expanding in free space (Ro = 1,
Ro' = 3). (A) Beam waist. (B) Downstream from waist — dashed line shows envelope radius. (C)  Farther
downstream.

Figure 3.21. Geometry — propagation of a cylindrical beam with non-zero emittance through a tube. The
beam enters through a thin lens.

envelope angle appears to increase. At a long distance from the waist (Curve C), the particles on
the periphery are those with almost the  maximum inclination angle. Therefore, the envelope
angle 
approaches the value of Eq. (3.46). 
   We can apply Eq. (3.47) to a practical problem, the field-free propagation of a beam through a
tube. We want to find the maximum length pipe that the beam can traverse without losses. Figure
3.21 shows the geometry —  the tube has length L and radius Ri. A beam with emittance , fills the
tube entrance — the envelope radius is Ri at z = 0. From the symmetry of Eq. (3.47), we expect
that the best solution corresponds to a beam that converges at the pipe entrance (z = 0), reaches a
waist at the midpoint (z = L/2), and expands to radius Ri at the exit (z = L). 
   We assume that a focusing lens at the entrance allows us to adjust the input convergence angle.
Different angles give different values of the waist radius, Ro. We seek an maximum tube length by
expressing L as a function of Ro and then setting dL/dRo equal to zero. Substituting (z-zo) = L/2 in
Eq. 3.47, we  find: 
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(3.49)

(3.50)

(3.51)

Taking the derivative, the following value of Ro gives the maximum value of L: 

The maximum allowed tube length is: 

The envelope angle at the pipe entrance for the optimum solution  is 

   As an application example, suppose we want to inject a low energy neutral particle beam
through the shield of a fusion reactor. The atomic beam fills a pipe of radius Ri = 0.02 m. The 
beam orbit vector distribution fits in an ellipse with a maximum angular deflection of )Ri' = 10-2

rad (0.6°). The corresponding emittance is , = RiRi' = 2 x 10-4 B-m-rad. At the center of the  pipe,
the waist envelope radius is Ro = 0.0141 m. Equation (3.50) implies that the length of the pipe is
1.22 m. Inserting values in Eq. (3.51) gives the injection envelope angle as Ri' = -10-2 rad. The
focal length of a lens to match a parallel beam into the tube should be f = -Ri/Ri' = 2.0 m.

3.7. Non-laminar beams in linear focusing systems

   This section examines the propagation of non-laminar beams through the multi-element optics
systems used in accelerators. Accelerator transport systems combine electric or magnetic field 
lenses, bending elements, and drift spaces to steer beams and to confine them about an axis. All
transport systems accept particles only within a limited range of displacement and inclination
angle from the main axis.  We must make certain that  all particles in the beam can travel through
the system without striking a boundary. We display the allowed particle orbits through a
trace-space boundary called the acceptance. This section introduces the topics of acceptance and
beam matching. Section 4.1 presents general mathematical methods to transform trace-space
distributions through linear focusing systems, while  Section 4.4 describes the effects of
non-linear optics. 
  We shall limit the discussion to beam propagation at constant  energy through combinations of 
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Figure 3.22. Examples of orbit-vector distributions in trace-space. (a) Hot distribution - beam at a focal
point (waist). (b) Cold distribution of an approximately parallel beam with the same emittance as Part a. (c)
Skewed elliptical distribution representing a converging beam. Dashed ellipse shows distribution at a latter
time. (d) Skewed elliptical distribution representing a diverging beam. Dashed lines emphasize that the
angular divergence at a particular relative position in the beam decreases as the beam expands. 

drift spaces and linear lenses. Again, we use one-dimensional distributions in (x, x') for 
illustration. Furthermore, we limit attention to elliptical distributions — we shall find that the
acceptance boundaries of  linear focusing systems are often elliptical. To begin, we shall review
the relationship between the shape and orientation of the distribution ellipse and the properties of
the beam. Figure 3.22a shows a beam distribution that is narrow along x and wide along x'. The
associated configuration space diagram shows that the beam is at a focal point. Such a distribution
is sometimes called  a hot distribution — there is a large spread in angle and transverse velocity.
In contrast, Fig. 3.22b represents a cold distribution — the angular width is small. The
distributions of  Figs. 3.22a and 3.22b have the same emittance — linear optical elements can
convert one distribution into the other. Depending on the application, focusing systems can 
produce beams with small  spatial dimension or small angular spread.
   The upright ellipses of Figs. 3.22a and 3.22b represent beam waists. The average angle at all
positions of the beam is zero —  the beam neither converges nor diverges and the beam envelope
is  parallel to the z axis. Generally, distributions are inclined, as in Figs. 3.22c and 3.22d. Particles
in the ellipse of Fig. 3.22c have  a negative average angle for x > 0 and a positive angle for x <  0.
Therefore, the beam converges toward the axis — the envelope  angle is negative. The dashed
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(3.52)

(3.53)

(3.54)

line shows the same distribution after drifting a distance downstream — the spatial dimension is
smaller while the angular spread at each position inside the beam is larger. The beam of Fig.
3.22d diverges. Again, the dashed line shows how a drift transforms the distribution. The spatial
width increases while the angular spread at each position shrinks. We say that the beam cools as
it expands. The inclination or skewness of the distribution ellipse determines the envelope
convergence or divergence angle. 
   Transfer matrix algebra is applied to calculate the effects of  linear optical elements on the orbit
parameters of individual particles, [xn(z), xn'(z)]. Section 4.1 reviews the topic while [CPA,
Chapter 8] gives a detailed discussion of matrix methods. As an example, if a particle enters a
drift space of length d with orbit vector [xon, xon'], then the exit vector is: 

The transfer matrix for the drift space is 

The transfer matrix of a thin lens of focal length f is

   A simple method to find the effect of a lens or drift space on  a distribution ellipse is to apply
Eq. (3.52) to a large number of orbit vectors on the boundary. Figure 3.23a depicts the 
calculation  for a free drift length. In Section 4.1, we shall prove that the output distribution is
another ellipse with the same area. As expected, the diverging beam distribution cools. Figure
3.23b demonstrates the effect of a thin focusing lens that changes the angle of particles but not
their position. The net effect is to modify the orientation of the distribution ellipse. The lens of 
Fig. 3.23b transforms a diverging beam into a converging beam.  
   The beam telescope of Fig. 3.24 illustrates the effect of combined optical elements on a
non-laminar beam. The function of  the device is to focus a beam from an accelerator to a small
spot  a long distance from the lens. We saw in Section 3.1 that the angular divergence of the beam
at the lens limits the minimum size of the focal spot. If the output beam from the accelerator were
focused directly by a small diameter lens, the focal spot would be large. To reduce the spot size, 
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Figure 3.23. Calculation of the effects of linear optical elements on a beam trace-space distribution by the
projection of the position and angle of several particles on the beam boundary. (a)  Effect of a drift length.
Circles represent boundary particle orbit vectors at a beam waist. Squares show orbit vectors a distance L =
0.2 m downstream. (b) Effect of a lens with f = 0.2  m. Circles represent boundary orbit vectors of a
diverging beam  at the lens entrance, squares show orbit vectors at the lens exit.

the telescope first expands the beam and then focuses the cooled beam with a large diameter lens.
Figure 3.24 contains trace-space distributions at various points in the telescope. The beam is 
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(3.56)

(3.57)

Figure 3.24. Configuration-space and trace-space views of beam motion through a one-dimensional beam
telescope.

parallel at the entrance. The first lens expands the beam diameter by focusing particles through a
point. The final lens directs particles in the average direction of the focal point. The particles
converge  at a distant point with a focal spot size limited by the angular  divergence of the
distribution at the final lens. 
  We shall introduce the idea of beam matching with the example of propagation in a continuous
linear focusing force. Assume the  force is uniform in z and linear in x: 

In the paraxial limit, individual particles follow orbits described by: 

where .
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Figure 3.25. Evolution of orbit-vector distributions in trace-space for a beam moving in a continuous,
linear focusing force. (a) Beam mismatched at the entrance (z = 0). Initially, the envelope width decreases
and the angular divergence increases. Envelope oscillations occur at the betatron wavelength, 8. (b)
Contour lines for a distribution matched to the focusing force.
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(3.58)

(3.59)

   Equations (3.56) and (3.57) are the parametric equations of ellipses in trace-space with
dimensions xon and xonkx along the axes. Although the amplitude and phase of individual particle
orbits vary, all particle orbits rotate in trace-space at the same frequency. 
   Suppose we pick an initial distribution with a boundary of arbitrary shape, such as the ellipse of
Fig. 3.25a. We can use Eqs. (3.56) and (3.57) to predict the boundary of the ellipse at any  axial
position z. Figure 3.25a shows results of the calculation -  the ellipse rotates, completing a circuit
after one betatron wavelength, 8 = 2B/kx. The envelope width of the beam, marked by a dashed
line in Fig. 3.25a, corresponds to the maximum spatial extent. The envelope width oscillates as
the beam propagates.  Here, we say that the distribution is mismatched to the focusing  force. 
   A matched beam exhibits minimal envelope oscillations. The advantage of matching a beam
with a given emittance to a focusing system is that the beam has the smallest possible spatial
width as it propagates. This characteristic is important in large accelerators — lenses with small
bore diameters cost less. We can  easily find a matched distribution when focusing is performed
by  a continuous force [Eq. (3.55)]. Take xo as the maximum allowed width of the beam. A
particle with oscillation amplitude xo defines a trace-space ellipse: 

We choose a distribution boundary where particle orbit vectors are uniformly distributed along
the ellipse of Eq. (3.58) — Figure 3.25b shows the matched distribution boundary. We further
specify
that the distribution enclosed by the boundary has uniform density contours along the curves of
Eqs. (3.56) and (3.57).  The distribution density does not change as the beam propagates, even
though individual particles rotate in trace-space. The departure of particles at any point [x, x'] in
the distribution is  balanced by the arrival of an equal number of particles. The distribution is
matched to the focusing system — the envelope width is constant. 
   The matched beam defined by Eq. (3.58) is in equilibrium. Even though individual particles
move, macroscopic properties of the beam do not change with time as it propagates. Note that 

the ellipses of Eqs. (3.56) and (3.57_ are curves of constant transverse total energy. The total
energy, Wx, is the sum of transverse kinetic energy plus potential energy: 
The condition for a stationary distribution is that the continuous distribution function, f(x, x'), is
constant along the ellipses. This is equivalent to saying f must be a function of the constant of
motion for a beam in equilibrium. 
   For four dimensional distributions, f(x, x', y, y'), there are two constants of the motion. If 
motions in the x and y directions  are uncoupled, then the constants are the total energy in each 
direction, Wx and Wy. Any function f(Wx, Wy) represents a potential beam equilibrium that
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(3.60)

(3.61)

(3.62)

automatically satisfies the Vlasov equation when Mf/Mt = 0. An example is a uniformly-filled  

Figure 3.26. An array of thin, linear lenses. By definition, a focusing cell extends from the entrance of a
lens to the entrance of the following lens. 

matched ellipse: 

where N is the total number of particles and 

Another example is the truncated Maxwell distribution, 

   Next, we shall extend the concept of matched beams from a continuous focusing force to a
periodic focusing system. As an example, we shall use a one-dimensional beam in the thin lens 
array of Fig. 3.26. The cell is the fundamental unit in a periodic focusing system. In the thin lens
array, a cell consists of one lens with focal length f and one drift space of length d.  Figure 3.27
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(3.63)

Figure 3.27. Propagation of a mismatched beam through an array of thin lenses. Configuration-space view
of 250 particle orbits on the distribution boundary and trace-space views at lens entrances. :o = 60°.

shows a mismatched beam in the thin lens array. The envelope width varies from cell to cell. A
distribution is matched to a periodic system if it has identical properties at the boundaries of all
focusing cells. Although the envelope of the beam varies passing through a cell, the width is the
same value at cell boundaries. A matched beam exhibits minimal envelope oscillations. 
  Sect. 4.3 describes analytic methods to find matched distributions. In this section, we shall
concentrate on a simple  mathematical method to find the matched distribution of any 
periodic system. The method consists of the following steps: 

   1. Choose a focusing cell boundary — the boundary can be any location that divides the
focusing system into the smallest possible repeating sections. As an example, we take the
boundary of the lens array at the entrance to the lens. 
   2. Find the total ray transfer matrix for a focusing cell. The transformation matrix for any
combination of linear elements is a single matrix resulting from multiplication of the matrices of
individual components. The transfer matrix for the a focusing cell consisting of a thin lens
following by a drift distance is 

   3. Take a test orbit that enters the focusing system at the chosen cell boundary, such as (x, x')o =
(xo,0). Advance the orbit from cell to cell using the transfer matrix. The result is a set of orbit
vectors, (x, x')i. 
   4. Plot the locus of orbit vectors on a trace-space diagram. The orbit vectors trace an ellipse as
long as the phase advance per focusing cell is not a rationale number. 
   5. The ellipse created is a boundary for a matched distribution. We can adjust the size of the
curve to achieve the desired envelope width at the cell boundary. 
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   The method relies on the on the fact that the test orbit intersects the cell boundary with all
possible phase values for orbits on the distribution periphery as long as the vacuum phased 
advance, mo, has an irrational value. Figure 3.28 shows a numerical  calculation of a matched
distribution in the thin lens array and  the corresponding configuration space orbits. Note that the 
matched ellipse at the entrance to the lens is skewed. Inspection of the configuration space orbits
shows that the matched beam must be diverging when it enters the first lens. 
   Acceptance refers to the region in trace-space accessible for particle transport. We can define
acceptance for optical systems with multiple elements or for single devices. For example, Fig.
3.29a shows the acceptance of a slit of width 2d. The aperture transmits particle orbits with any
inclination angle as long as their position lies between ±*. Figure 3.29b shows the acceptance of a
continuous focusing system [defined by Eqs. (3.56) and (3.57)] with boundaries at ±xw. Entering
particles with orbit vectors in the unshaded ellipse have oscillation amplitudes smaller than xw. 
Similarly, Fig. 3.29c shows the acceptance diagram for a thin lens array with wall boundaries ±xw
in the planes of the lenses.  
    The thick aperture of Fig. 3.29d is an interesting example of  an acceptance calculation. The
aperture has width 2xw and length L. Orbit vectors at the entrance must have positions in the range
-xw < x < +xw. In contrast to the thin aperture, the thick aperture constrains the allowed angles at
the entrance. Inspection of Fig. 3.29d shows that entering particles with x = 0 pass through the
aperture if their angle is in the range -xw/L <  x' < xw/L. Particles that enter at +xw can have no
positive angle — the allowed negative angle is -2xo/L. The acceptance region is the trapezoid of
Fig. 3.29d. 
   We can apply the following procedure to find the acceptance of complex optical systems with
many elements. We project the acceptance regions for all individual elements back to the entrance
of the system. To implement the projection, we first find the total transfer matrix of all elements
between the entrance and the element in question. Next, we transform several vectors on the
element acceptance boundary back to the entrance to define a modified boundary. Finally, we
combine the projected  acceptances to create a global entrance acceptance diagram. The  allowed
input beam emittance corresponds to the maximum area ellipse that can fit inside the combined
boundaries. Figure 3.30  illustrates the combined acceptance for a region of continuous focusing
force followed by a thick aperture of length L. The beam performs an integral number of betatron
oscillations in the continuous force region. 
   The ion microprobe is a good example of transport of a non-laminar beam through linear optical
elements. The goal is to focus an ion beam to a very small spot size (~ 1 - 5 :m) on a surface.
Analysis of emissions stimulated by the beam gives information of the local surface composition.
The measurement usually requires an accumulated charge of 10 - 100 nC.  To probe a single point
in 100 s, the beam current must in the range 0.1 to 1 nA. High-energy probe ion beams (>1 MeV)
are usually generated by Van de Graaff accelerators. The emittance of  beams from these
machines is usually in the range 10-6 - 10-5 m- rad. 
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Figure 3.28. Derivation of a matched trace-space distribution boundary for a linear thin lens array (f =
0.76 m, d = 1 m, :o = 70°). The cell boundary is at the lens entrance. (a) Trace-space distribution — the
points show orbit vectors of a test particle on the distribution boundary at the entrance to 35 lenses. (b)
Superimposed configuration-space trajectories of the test particle show the matched beam envelope.
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Figure 3.29. Examples of acceptance diagrams for one-dimensional  beams. (a) Thin aperture. (b)
Continuous focusing force. (c) Thin lens array - lens entrance. (d) Thick aperture. Inset shows 
geometry.
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Figure 3.30. Combined acceptance of a continuous focusing force followed by a thick aperture. (a)
Geometry. (b) Acceptance diagram.  The shapes represent the acceptances of individual elements projected
to z = 0. The shaded area is the combined acceptance.
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Figure 3.31. Acceptance diagrams for emittance selection in an ion microprobe. System geometry and
trace-space plots at selected  locations. (a) Single-stage focusing. Emittance selection at a 
narrow aperture at the entrance, then focusing of the narrow image to the target. (b) Double-stage focusing
with beam cooling by expansion. Transverse dimensions not to scale. (From High-energy ion microprobes, 
in Applied Charged Particle Optics, edited by A. Septier. Used by permission, Academic Press).
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(3.64)

  We have seen that the best strategy to achieve a small focal spot is to expand the beam to a large
diameter at the final focusing lens. The maximum lens diameter is limited by spherical aberration.
This effect restricts the beam envelope convergence angle to less than about 0.05 radians. The
emittance of a 5 :m beam at the focal spot must be in the range 

The value of Eq. (3.64) is much lower than the source emittance. The only way to achieve the low
emittance value is collimate the beam and accept only a fraction of the incident particles. As a
result, the accelerator must generate a continuous current of 10 nA or more. 
  Figure 3.31 shows a scale drawing of two approaches for the optics of an ion microprobe. Either
particles with high angular divergence or particles with high displacement are discarded, leaving
behind a low emittance beam. In Fig. 3.31a the beam from the accelerator is projected on a
narrow collimator that accepts only the fraction of the initial distribution with small displacement.
The beam is subsequently cooled by expansion and then focused by a lens with the shortest focal
length allowed by  spherical aberration. The geometry of Fig. 3.31b illustrates another method to
select particles. The beam from the accelerator is strongly focused and expanded. An aperture in
the plane of the  final focusing lens selects particles from the cooled distribution with the
convergence angle set by lens aberrations.  

3.8. Compression and expansion of 
non-laminar beams

   We can control the dimensions of a charged particle beam by changing the magnitude of
focusing forces. This process is often applied to compress or to bunch beams for transfer between 
different types of accelerators. The velocity spread of non-laminar beams limits the dimension
change for a given change in  focusing force. In this section, we shall apply the principle of 
conservation of emittance to beam compression. 
   In the derivations, we shall find it useful to use the equivalent beam temperature, a quantity
proportional to the mean-squared velocity dispersion (Section 2.11). The relationship between 
volume and temperature in a medium, be it a gas, a plasma, or a charged particle beam, is called
an equation of state. We can apply emittance conservation to find equations of state for beams 
that are thermally isolated. In other words, there are no mechanisms, such as collisions, where the
beam exchanges energy  with external systems. Sometimes, we can find a simple equation of state
that circumvents the need for higher-order moment equations (Section 2.10). 
   To begin, we shall study compression of a one-dimensional beam  normal to the direction of
propagation. The term compression denotes reduction of the spatial dimension of the beam by 
increasing the focusing force. We should note that the results are directly applicable to beam
expansions where the force decreases. To simplify the model, we adopt the following
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(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

assumptions:

   1. The focusing force is almost continuous along the z direction. 
   2. Particles sense a slowly varying focusing force compared with their betatron frequency. 
   3. The beam is almost in transverse equilibrium - the magnitude of the emittance force is
approximately equal to the focusing force.

   Consider beam particles with uniform axial velocity vz in a  linear focusing force. If vx n vz, we
can use an equation of motion with a non-relativistic form. The following equation describes the
transverse motion of particles: 

The quantity T(t)2 is proportional to the transverse force. The condition that the forces change
slowly over a betatron period is: 

In the limit of Eq. (3.66), we can show by direct substitution [CPA, pg. 336] that the solution of
Eq. (3.65) is

where

and 

Equation (3.67) has the following implications. Particle oscillations at time t are almost harmonic
with frequency equal to T(t). Also, the particle trace-space trajectory is close to an ellipse with 
dimensions

Taking the product of Eqs. (3.70) and (3.71), we find that the area of the trace-space ellipse is
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(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

constant, although the relative shape may change. 
   Suppose that the orbit of Eqs. (3.70) and (3.71) defines the boundary of a matched beam
distribution. Initially, particles have trace-space trajectories that follow nested ellipses inside the
boundary orbit. Because all orbits have a solution of the form of Eq. (3.67), the trajectories
remain within the boundary orbit as the focusing force changes. Therefore, the boundary
trajectory encloses a distribution ellipse with constant area:

Equation (3.72) is a statement that emittance is conserved when linear focusing forces vary
slowly.
   Extending the development of Section 2.11, we define the transverse beam temperature as an
average over the beam velocity  distribution: 

The root-mean-squared velocity must be proportional to the velocity width of the distribution, or 

We can write Eq. (3.72) in the alternate form,

Combining Eqs. (3.74) and (3.75), the transverse temperature and beam  width are related by the
equation: 

In an ideal one-dimensional compression, particle orbits change only in the x direction — the
quantities  and  remain constant. Because the beam dimensions in the y and z directions do 
not change during the compression, the beam volume, V, is proportional to xo(t). Rewriting Eq.
(3.76) in terms of the volume gives the equation of state for a one-dimensional compression:
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(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

   We can extend the reasoning that led to Eq. (3.77) to a two-dimensional compression. Assume
that beam focusing is performed by forces that vary slowly in the axial direction and are separable
in the x and y directions. Furthermore, forces in the two directions have equal magnitude and the
beam distribution is initially isotropic, . For a slow compression,  conservation of
emittance leads to the relationship, 

The assumption of symmetry implies that

and

Applying Eqs. (3.79) and (3.80), we can write the transverse beam temperature as 

The following equation of state holds for a symmetric two-dimensional compression: 

Equation (3.82) holds when particles gain energy in the x and y directions but not in the axial
direction. The equation is also valid if x and y motions are coupled, as in a rising solenoidal 
magnetic field.
   We can apply the same arguments to the symmetric three-dimensional compression of an
isotropic beam. The net beam temperature has proportionality

The principle of emittance conservation has the form
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(3.85)

(3.86)

(3.87)

(3.88)

Eqs. (3.83) and (3.84) imply the equation of state,

Comparison of Eqs. (3.77), (3.82) and (3.85) leads to a general form for the equation of state of
isotropic beams:

The quantity ( is the number of degrees of freedom, equal to 1, 2 or 3. Equation (3.86) is a
familiar relationship in gas dynamics - it applies to collision-dominated particle distributions in
thermal isolation. We can see that it also describes collisionless particle distributions. 
   We seldom encounter ideal spherical compressions in charged particle beam applications.
Beams are focused and bunched, but usually the dimension changes are widely different in the 
transverse and axial directions. When axial particle motion is decoupled, we can define separate
transverse and longitudinal temperatures and invoke conservation of emittance to derive two 
separate equations of state in terms of the width and length of  the beam. Sometimes, we can
derive a hybrid equation of state when axial motion couples to transverse motion. For example, 
suppose that a beam enters a region where the transverse force increases along the axis. Although
the forces are predominantly  normal to the axis, there is a small component of force in the z
direction. As particle orbits compress, some of the extra kinetic energy transfers to random axial
motion about a mean velocity. If  the coupling is strong, we expect that the distribution viewed in 
the beam rest frame approaches an isotropic state. 
   To illustrate how coupling modifies the equation of state, suppose that forces compress a beam
in the two transverse directions. Although the axial length of the beam is constant, there are
mechanisms that couple energy to an axial velocity spread. For simplicity, we take the velocity
distribution as isotropic in three dimensions. In each direction, conservation of  emittance implies
that 

The product of the components of Eq. (3.87) is:
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(3.89)

(3.90)

(3.91)

With the definition of beam temperature from Eq. (3.83), Eq. (3.88)  leads to the same volume
dependence as Eq. (3.85):

On the other hand, the scaling of temperature with the transverse dimension of the beam is
different from Eq. (3.85) because of the  modified dependence of volume on dimension:

Eq. (3.90) implies that

We will use Eq. (3.91) in Section 11.4 to study details of neutralized beam focusing.
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4

Beam emittance - advanced topics
____________________________

   In this chapter, we continue our study of emittance by discussing several critical areas for
beam applications. The first three sections outline the linear transformation theory of beam
distributions. Here, we extend the method of transfer matrices to deal with particle distributions.
Transfer matrix theory simplifies the description of single particle motion in linear optical
systems. A 2 × 2 (or 4 × 4) matrix summarizes the effect of any linear focusing element.
Similarly, transport theory leads to matrices that describe the action of an optical  element on an
entire beam distribution. 
   Section 4.1 reviews the special nature of beam distributions with elliptical trace-space
boundaries. We shall find that a linear optical element transforms an elliptical distribution to 
another ellipse. The ellipse area (or distribution emittance) is  constant, but the shape may
change. The section introduces the transport parameters: ", $ and (. These quantities specify the
geometry of an elliptical distribution. We derive equations that give the change in the transport
parameters of a distribution passing through an optical element in terms of the element's transfer
matrix. Section 4.2 presents an alternative derivation of  the transport parameters from the
properties of particle orbits in a circular accelerator with a periodic focusing system. Section  4.3
illustrates beam matching, an application of transport theory. Often, we need specific
distributions for injection into accelerators and beam transport devices. Transport theory leads to
systematic methods to choose matching lenses that convert a given beam to a desired
distribution.
   Section 4.4 discusses periodic focusing systems with non-linear  forces. This topic is important
for intense beam transport because beam-generated forces are inevitably non-linear. Although
the emittance of mismatched beams grows in non-linear periodic focusing systems, we shall find
that the emittance of matched beams is constant. The section presents methods to calculate
matched distributions and to compress beams in focusing channels  with arbitrary variations of
transverse force.
    Section 4.5 reviews the importance of low emittance for beams  in storage rings for high
energy physics research, particularly  colliding beam experiments. The quality of a beam in a
storage ring is expressed in terms of luminosity. The rate of reactions  for high-energy physics
experiments is proportional to luminosity — a high value of luminosity demands a stored beam
with low emittance. Section 4.6 reviews methods for beam cooling, the reduction of beam
emittance. The techniques, which depend on the  long-term storage of beams, have application



Beam emittance - advanced topics Charged Particle Beams

134

mainly to circular  accelerators. Beam cooling circumvents the principle of phase volume
conservation. Understanding cooling methods will give us  insight into the limitations of fluid
models for beams.

4.1. Linear transformations of elliptical distributions

   Transfer matrix theory [CPA, Chap. 8] succinctly describes the motion of single particles
through complex linear optical systems. When we treat non-laminar beams, we must deal with
large numbers of particles with different orbit characteristics. In this section, we shall extend the
method of transfer matrices to a form that advances an entire elliptical distribution rather than a
single particle orbit. If we know the properties of the input distribution ellipse and the ray
transfer matrix for an extended system of linear elements, we can predict the output distribution
directly. This approach is more efficient than the calculation of multiple orbits discussed in
Section 3.7. 
   The theory of linear transformation of distribution ellipses, which forms the basis for the
well-known computer code TRANSPORT, is often called distribution transport theory.  The
quantities  that characterize ellipses are called the transport parameters. Distribution transport
theory has many applications in accelerator design:

   1. Estimation of macroscopic beam properties, such as the envelope width and convergence
angle, within complex optical systems.
   2. Calculation of matched beams for periodic focusing systems.
   3. Prediction of the distribution at the entrance to an accelerator or transport system required to
obtain an exit distribution suitable for an application.
   4. Calculation of optical elements for a matched beam transfer between periodic focusing 
systems with different focal properties.

Following a brief review of transfer matrices for single particle orbits, this section introduces
distribution transport theory for collections of discrete optical elements. Section 4.2 addresses 
periodic focusing systems and beam matching. 

A. Linear transformations of single-particle orbits

   Transfer matrix theory describes particle motion relative to a  known main equilibrium orbit.
The first order theory employs two assumptions:

   1. Particle motions are paraxial. The inclination angles are small and all particles have
approximately the same axial velocity, vz, at an axial location. 
   2. Transverse focusing forces vary linearly with displacement from the main axis and are
independent of the transverse velocity.
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(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

Particle orbits are characterized by displacement from the main axis and inclination angle. In
Cartesian coordinates, a particle orbit at some axial position is specified by a set of four 
quantities that we write as a vector:

The quantities x and y are the displacement from the main axis while x' and y' are the inclination
angles.
   Charged-particle beam focusing elements generate localized regions of transverse forces.
Examples include bending magnets, quadrupole lenses and drift lengths. Some focusing
elements,  such as acceleration gaps, also have axial forces. If the transverse forces are linear, we
display the effect of an optical  element on an orbit vector by :

The quantity M1 is a 4 × 4 matrix called a transfer matrix. If there are no accelerating forces in
the element, the transfer matrix has the property:

where det designates the matrix determinant.
   Equation (4.2) follows the standard rules for the multiplication of a  4 × 4 matrix times a four-
component vector. We denote the individual components of M as mij, where i is the row index
and j is the column index. Equation (4.1) is a linear transformation if the components of the
matrix are constants with no dependence on x, x', y or y'. Here, the terms of the output orbit
vector are linear combinations of the terms of the input vector, such as

   When a particle travels through two sequential optical elements, the net change of the orbit
vector is

The quantity xo is the input vector, M1 and M2 are the transfer matrices of the elements, and x1
and x2 are the vectors at the exits of the two elements. We can write the result as
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(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

Evaluation of the quantity in parentheses follows the standard rules of matrix multiplication. If
there is a third optical element, the cumulative effect of the system is given by

Note that the matrix multiplication operation is not commutative;  multiplications must be
carried out in the order that the particle traverses the elements. The input vector is multiplied by
the matrix for the first element, then the second element, and so forth.
   The forces in a charged-particle transport system are often separable in the x and y directions.
In this case the transverse force along x does not depend on y or y'. Applications where forces are 
separable include storage rings with dipole bending magnets and quadrupole focusing magnets,
electrostatic quadrupole arrays for low-energy ion beam transport, and radio-frequency
quadrupole ion accelerators. The transport matrix reduces to the simple form, 

Orbit vectors in the x and y directions are advanced independently by 2 × 2 matrices, a subset of
the matrix of Eq. (4.8):

We will concentrate on 2 × 2 matrices for the remainder of this section; the extension to 4 × 4
matrices is straightforward. For reference, the determinant of a 2 × 2 matrix is

   We shall illustrate transfer matrices with two simple examples  - the thin lens and the field-free
drift space. We can often approximate more complex elements, such as a quadrupole lens, with
combinations of these two elements. The matrix for a thin lens with focal length f is 
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(4.12)

(4.13)

(4.14)

(4.15)

Equation (4.11) shows that the lens changes the angle of a particle orbit by a factor proportional
to the displacement but it does not affect the displacement. The matrix of a field-free drift region
of length D is 

The matrix of Eq. (4.12) modifies the displacement of an orbit vector by a factor proportional to
the inclination angle but leaves the angle unchanged. 
   Transfer matrix theory is well suited to periodic focusing systems. A periodic system consists
of a series of identical elements or collections of elements called cells. The most common
periodic system in accelerator science is the quadrupole lens array [CPA, Section 8.7].
Quadrupole lenses must be arranged in focusing-defocusing combinations to assure containment
in both the x and y directions. We denote an array with a focusing lens in the x direction followed
by a defocusing lens as FD. Because a quadrupole lens that focuses in the x direction defocuses
in the y direction, the designation for the y direction is DF. In circular accelerators, quadrupole
arrays usually consist of a focusing lens, a drift space to accommodate a bending magnet, a
defocusing lens and another drift length. This geometry is called a FODO system, where the O
denotes "open." The cell of the  FODO system consists of two lenses and two drift lengths. 
   We can represent the effect of each optical element in a periodic focusing cell by a transfer
matrix. Matrix multiplication of the elements of the cell gives a matrix M that  represents the
total effect of the cell. When forces are separable, two 2 × 2 matrices, Mx and My, advance orbits
through a cell independently in the x and y directions. Passage through a number n identical
focusing cells transforms an incident orbit vector according to 

The symbol Mx
n in Eq. (4.13) represents matrix multiplication of Mx  by itself n times.

B. Elliptical distributions

   We have seen in Chapter 3 that beam distributions enclosed by elliptical boundaries play an
important role in accelerators with  linear focusing systems. Trace-space ellipses have geometric 
properties that lead to a compact beam transport theory. A linear  transformation always
transforms an elliptical distribution into another ellipse. Furthermore, with no acceleration, a
linear transformation does not change the area of a distribution ellipse — the beam emittance is
constant. If the optical element has transfer matrix M, emittance conservation holds if



Beam emittance - advanced topics Charged Particle Beams

138

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

   Section 3.7 showed that distribution ellipses at different positions in a linear system may be
either skewed or upright. To  begin, we shall write an equation for an upright ellipse. Suppose 
the elliptical distribution has dimensions Xo and Xo' at a beam waist. The phase-space equation
for the boundary is

Multiplying both sides of Eq. (4.16) by XoXo' gives a standard form  for elliptical boundaries that
emphasizes conservation of emittance, ,:

The beam represented by Eq. (4.17) has zero envelope angle. 
   The envelope angle is non-zero for converging or diverging beams. Here, the distribution
ellipse is tipped. We can find the general form for an inclined ellipse by applying a coordinate
rotation to an upright ellipse. The following equation represents the upright ellipse in a
coordinate system (X, Y):

We express the curve in terms of coordinates X' and Y' rotated by  an angle -2. The coordinates
are related by

Substituting Eqs. (4.19) and (4.20) in Eq. (4.18) gives

In the transformed coordinate system, the ellipse has the mathematical form

where A, B and C are constants. Later, we will use the fact that the equation for a tipped ellipse,
Eq. (4.22), always contains a cross product term proportional to XY.

C. Linear transformations of ellipses
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(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

   We shall now derive the general form for a skewed distribution ellipse by applying a linear
transformation to an upright ellipse. This is equivalent to finding the effect of a linear optical
system on the input elliptical distribution, because any combination of optical elements can be
represented by a single transfer matrix. We can generate any distribution ellipse by applying a
linear transformation to an upright ellipse with the same area. We take the ellipse of Eq. (4.17)
with dimensions Xo and  Xo'. Individual orbit vectors on the distribution boundary transform

according to 
where xo is the input vector to the system and x1 is the output  vector. The inverse forms of Eqs.
(4.23) and (4.24) are

Note that the inversion is valid if det M = 1. We let the input vectors lie on the upright ellipse of
Eq. (4.17).  To find the equation of the elliptical boundary at the output of  the optical system,
we substitute Eqs. (4.25) and (4.26) into Eq. (4.17). Performing the operation and collecting
terms, the trace-space boundary of the output beam is 

   We recognize that Eq. (4.27) has the form of a tipped ellipse. The values of the coefficients in
Eq. (4.27) are given by the parameters of the initial upright ellipse and the properties of  the
optical system:

The quantities ", $ and ( are called the transport parameters (or sometimes Twiss parameters).
Combined with the emittance, ,, they  specify the distribution at the output of the optical system.
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(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

D. Significance of transport parameters

   We shall adopt Eq. (4.27) as the general mathematical form for a distribution ellipse:

The parameters ", $ and ( take on different values as the beam  moves through an optical
system. The values give the size and orientation of the distribution ellipse. To find the
relationship  between the transport parameters and the beam properties, we assume that the beam
has constant kinetic energy and emittance.  To begin, we recognize that the distribution is
upright when "   equals zero because there is no cross-product term. The condition  " = 0
implies that the beam is at a waist point. Comparison of  Eqs. (4.17) and (4.31) (without the xx'
term) shows that the spatial and angular halfwidths of the beam at a waist point are

Taking the product of Eqs. (4.32) and (4.33) and remembering that , =  XoXo', we find that

Applying the above condition, Eqs. (4.32) and (4.33) can be rewritten  

For an upright ellipse, the quantity $ gives the spatial width of the beam envelope and (
determines the angular width. 
   Figure 4.1 shows the association between  ", $ and ( of a skewed  ellipse and the physical
properties of the beam. We shall first cite the relationships and then prove them mathematically.
The  halfwidth of the beam distribution is equal to the point of maximum extension of the
distribution boundary along the spatial  dimension. The expression is identical to that for an
upright ellipse: 
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(4.37)

(4.38)

(4.39)

(4.40)

Figure 4.1. Trace-space distribution with a skewed elliptical boundary. Relationship of transport
parameters (", $, () to the ellipse geometry.

Similarly, the maximum extent in the angular direction is

The quantity " determines the envelope angle of the beam, d(xmax)/dz. The envelope angle equals
the orbit inclination of peripheral particles at xmax. Figure 4.1 indicates that 

   We shall prove Eqs. (4.37) and (4.39) and leave the proof of Eq. (4.38) to the reader. To
expedite the derivations, we shall first find a relationship between the transport parameters
equivalent to emittance conservation. Consider the expression ($ - "2. By direct substitution
from Eqs. (4.28)-(4.30), we can show that the expression reduces to 

for any choice of the transfer matrix. Therefore, Eq. (4.40) holds  for all distribution ellipses with
the same value of ,. The quantity on the right hand side of Eq. (4.40) is the determinant of the
transfer matrix; it equals unity for a transformation that conserves emittance. The result is
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(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

In beam physics, the quantity ($ - "2 is called the Courant-Snyder invariant. 
   Applying the quadratic formula, we can solve Eq. (4.31) for x:  

Applying the Courant-Snyder condition, Eq. (4.42) reduces to

Inspection of Fig. 4.1 shows that the periphery of the beam, xmax, is defined by the condition
dx/dx' = 0. Setting the derivative of Eq. (4.43) equal to zero and applying the Courant-Snyder
condition implies that the orbit angle at the periphery is 

verifying Eq. (4.39). Substituting Eq. (4.44) into Eq. (4.43) gives Eq. (4.37).

E. Transformations of beam distributions

  In a linear optical system, the transfer matrix M advances the orbit properties of a single
particle through optical elements. We would like to find a similar operation that advances the
properties of an entire distribution through the optical system.  We take the distribution as
elliptical with an area and shape given by values of ,, ", $ and (at the entrance and exit of the
system. We can write the transformation operation symbolically as  

The quantity A is an operator that depends on the transport system matrix M. 
   The boundary of the initial distribution is given by the equation: 

For a known matrix M, we can transform the coordinates of points on the boundary by Eqs.
(4.23) and (4.24). Substituting into Eq. (4.46) and collecting terms yields the following equation
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(4.47)

(4.48)

(4.49)

(4.50)

for the distribution ellipse at the exit of the optical system: 

We can identify the transport parameters of the exit ellipse as: 

To reduce the expression for "1, we invoked the condition det M =  1. We can represent the
transformation operation in the matrix form: 

F. Focusing a beam with non-zero emittance

   In a multi-element transport system, Eq. (4.49) can lead to complex expressions. We shall
illustrate implications of the equation with a simple example — focusing a non-laminar beam.
Suppose a parallel beam enters a thin lens followed by a drift space. We want to find the distance
to the best focus and the size of the  smallest focal spot. Previously, we found an approximate
solution (Section 3.1) valid in the limit of small emittance. With distribution transport theory, we
can find an exact solution for a beam with high emittance. 
   Multiplying the matrices of Eqs. (4.11) and (4.12) gives a total ray transfer matrix for a thin
lens of focal length f followed by a drift length d: 
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(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

Substituting the components of Eq. (4.50) in Eq. (4.49), we find:

The condition that the input beam is parallel is equivalent to "o  = 0. The ellipse of the incident
beam is upright with dimensions xo and xo' — the emittance is , = xoxo'. The exit transport 
parameters are:

   We shall review some of the implications Eqs. (4.52) - (4.54). First, we verify that the results
agree with our previous treatment of focusing for small emittance. In this limit, the incident
emittance is small enough or the lens is strong enough so that beam halfwidth at the focus is
much less than xo. An equivalent condition is that the angular width of the input distribution is
small compared with the envelope deflection angle caused by the lens: 

Furthermore, we expect that the focus occurs at a distance from the lens close to the focal length,
d – f. With these conditions,  Eq. (4.54) reduces to $1 – (0f2. The focal spot size is

The predicted focal spot size agrees with Eq. (3.1). 
   When the limit of Eq. (4.55) does not hold, the distance of best focus does not equal the lens
focal length. We find the point where the envelope width is a minimum by setting the derivative 
of $1 with respect to d equal to zero. Performing the operation on Eq. (4.54), we find that the best
focus occurs at a distance from the lens, 
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(4.58)

(4.59)

(4.60)

In the limit of small emittance, we can show that (0 n1/f and $ o f. Inserting these conditions,
Eq. (4.57) reduces to 

Equation (4.58) implies that the focal point of a non-laminar beam is closer to the lens than the
focus of a zero emittance beam. Fig. 3.19 illustrates the basis of this result. 
   The envelope angle of the beam must be zero at the best focal  point. We can confirm the
existence of a beam waist at the focal point specified by Eq. (4.57) by substituting the value of d
in Eq. (4.53). We find that "1 is identically equal to zero. To find the beam width at the focal
point, we must find the transport parameter $1. Inserting Eq. (4.57) in Eq. (4.54) gives: 

After some algebraic manipulation, we find the exact expression for the beam halfwidth at the
focal spot: 

4.2. Transport parameters from particle orbit theory

   In this section, we shall study an alternative derivation of  the transport parameters. Section 4.1
used transfer matrix theory to introduce ", $ and (. In this view, optical elements make discrete
changes in orbit vectors - distributions are defined at  the boundaries between elements. Here, we
shall derive the transport parameters by studying the properties of particle orbits focused by
continuous forces that vary periodically in the axial direction. This approach is often applied to
circular accelerators, such as synchrotrons, where a beam circulates many  times through the
identical focusing cells. The derivation introduces some ideas that are often used in circular
accelerator theory such as the machine ellipse and the $ function.
   To develop the theory, we make three assumptions:

   1. Transverse forces vary linearly with displacement from the main axis.
   2. Focusing forces vary smoothly along the direction of beam propagation. 
   3. Acceleration takes place slowly compared with the particle revolution time in the accelerator
(or equivalently, the kinetic energy is approximately constant).

Because most circular accelerators use quadrupole focusing, we shall limit the treatment to
motion in a single dimension, (x, x').
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(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

   Consider a particle focused by a transverse force Fx(z). The force function repeats periodically
over a cell distance L. The following form for the force displays the linear variation:

The periodic function k(z) has the property

We can represent the transverse component of paraxial orbits by an equation with the
non-relativistic form:

If k is constant, Eq. (4.63) describes a simple harmonic oscillation. For variable k(z), we shall
assume that the solution for x(z) has the form: 

The quantity , is an arbitrary amplitude factor. Later, we  shall associate , with the beam
emittance enclosed if the orbit represents a particle on the boundary ellipse of the distribution.
The functions $(z) and Mx(z) are periodic over length L. The quantity N is an arbitrary phase
factor. 
   We can justify Eq. (4.64) and find a relationship between $(z), k(z) and Mx(z) by substituting
the form into Eq. (4.63). Evaluating derivatives and eliminating the constant factor , Eq. 4.63 
becomes: 

Equation (4.65) holds at all positions in the system and for all values of N; therefore, the sine and
cosine terms are independently equal to zero. The sine terms imply the following equation:

Equation (4.66) has the solution Mx’$ = A, where A is a constant. With the specific choice A = 1,
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(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

we shall  find that $(z) has a physical meaning similar to that of the transport parameter $
derived in Section 4.1. For this choice,  the following relationship holds: 

Collecting the cosine terms, we find a non-linear differential equation that determines the $
function in terms of applied force:

   We can find an expression for the orbit angle by taking the axial derivative of Eq. (4.64) and
applying the relationship Mx' =  1/$ : 

We can simplify the expression further by defining a quantity "  in terms of the axial derivative
of the $(z) function: 

Substituting Eq. (4.70), Eq. (4.69) becomes 

We can write the orbit angle in an alternative form by using the  trigonometric relationship
Equation (4.71) becomes

where . The quantity ((z) is defined by the relationship 
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(4.73)

Figure 4.2. Particle orbits in a twisted electrostatic quadrupole field with a focusing force Fx(z) ~
sin(2Bz/L). (a) Schematic view  of the electrode geometry. (b) Numerical calculation of a particle orbit for
:o = 36°. (c) Matched distribution ellipse at the system entrance (z = 0) — circles show vectors of a
particle orbit with x = 0.01and x' = 0 at z = 0, L, 2L, 3L, .... (d) Matched distribution at z = L/4.

   We assume that the focusing forces and the functions "(z), $(z) and ((z) vary periodically over
length L. To understand the  physical implications of the functions, imagine a plot of the locus of
orbit vectors in a plane for a particle confined in a circular accelerator. At a specific location zo, a
particle defines a new orbit with each revolution. The locus of orbit vectors at zo  generates a
curve in (x, x'). The curve is given by Eqs. (4.69) and (4.72) with the parameters "(zo), $(zo) and
((zo) . The two equations are parametric equations in the variable N. We  can derive an explicit
expression for the curve by eliminating N and combining Eqs. (4.69) and (4.72). The algebraic
manipulations are  complex (see, for instance, K. Brown and R. Servranckx, Optics models for
circular accelerator design in Charged Particle Optics, S. Schriber and L. Taylor Eds., North-
Holland, Amsterdam, 1987, p. 480); we shall simply quote the final result: 
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(4.74)

(4.75)

Figure 4.2 (Continued)

   Equation (4.74) is a trace-space ellipse of area B, — note that the  form is identical to Eq.
(4.31). The curve of Eq. (4.74) could represent the boundary of a beam distribution for a group
of particles uniformly spread over all values of N. Here, the quantities $(zo), ((zo) and "(zo) have
the same relation to the beam width, angular width and envelope angle as the transport
parameters of Section 4.1. The defining equation for ( (Eq. 4.73)  states the Courant-Snyder
condition. Furthermore, the beam envelope angle is given by 
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(4.76)

Eq. 4.75 agrees with Eq. 4.39.
   A distribution bounded by the curve of Eq. (4.74) is matched to the focusing system of the
accelerator. If particles are uniformly spread over all values of phase, the distribution is identical
each time the particles revolve around the machine. The matched shape is called the machine
ellipse. The shape and orientation of the machine ellipse varies moving from position to position
around the machine. We can find the machine ellipse at  any point in a circular accelerator by
creating numeric solutions of Eq. (4.68) for known spatial variations of force over a large
number of particle revolutions. For example, suppose that we construct the machine ellipses at
the injection point of a storage ring. The distribution is matched to the ring and has envelope
oscillations of minimum value if it fits into a machine ellipse. 
   Figure 4.2 illustrates the matched ellipse of a periodic focusing system that repeats indefinitely.
The transverse force varies continuously according to: 

A focusing cell has length L. The force of Eq. (4.76) can be produced with the helical quadrupole
electrodes of Fig. 4.2a. Figure 4.2b illustrates a numerical solution for a particle orbit with a
phase advance per cell of 30°. Figures 4.2c and 4.2d show the matched ellipses at z = 0 and z =
L/4. The curves were generated  by following the trajectory of a single orbit through many
focusing cells. Characteristics of the matched beam are evident  in Figs. 4.2c and 4.2d. At the
point z = 0 the force is changing from defocusing to focusing — it has zero amplitude. At this 
point the envelope of the matched beam converges. The beam reaches a minimum diameter waist
at the midpoint of the defocusing  region.
   The function $(z) gives the envelope width of the beam at all points of the focusing system
through Eq. (4.37). Knowledge of this  function is important to design the lens arrays, or
focusing 
lattice, of a circular accelerator. For example, in many machines  the envelope width must meet
criteria at different points in the ring. Consider a collider, a synchrotron with counter-rotating 
beams. The envelope must be small at the beam intersection point to achieve an acceptable
interaction rate (Section 4.5). Portions of the accelerator with small envelope are called low-$
regions.  In another application , we can use Eq. (4.67) to find the total phase advance for
particle orbits circulating around a circular accelerator in terms of the $ function. To avoid
orbital resonances, the integral of Eq. (4.67) must be a non-integer number for all operating
regimes of the machine.

4.3. Beam matching

   A beam matched to a periodic focusing system has envelope oscillations of minimum
amplitude. Furthermore, we shall find in Section 4.4 that the emittance growth caused by lens
non-linearities is smallest for a matched beam. We outlined a numerical method to find matched
beam distributions in Section 3.7.  In this section, we shall study analytic methods that use
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(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

distribution transport theory. These methods lead to algebraic solutions to the important problem
of beam matching between periodic focusing systems with different properties. An example  is
the transfer of a beam in a high intensity ion accelerator from a radio-frequency quadrupole to a
drift-tube linac. We can  find the matched distribution in either focusing system — the challenge
is to find optical elements that convert the output distribution from one system into a matched
input distribution for the next. Transport theory is an organized approach to  the matching
problem. 
  We can represent the transformation between two focusing systems symbolically as: 

The transport parameters ("0, $0, (0) represent the output distribution from the upstream system,
while ("1, $1, (1) gives the desired matched distribution in the downstream system. We want to
find a combination of linear focusing devices that accomplishes the transformation. The
combined optical elements constitute the matching system. We can represent the effect of the
matching system on particle orbits with the transfer matrix M. 
   To begin, we shall derive an alternative expression for M in  terms of the input and output
transport parameters, ("0, $0, (0) and ("1, $1, (1). The matching system has linear transverse
forces  that vary over its length. Following the development of Section 4.2, the displacement and
angle of a particle orbit are:

The function Mx(z) is the phase of the orbit as the particle passes through the system. We assign
the phase a value of zero at  the system entrance:

Similarly, we define the phase at the exit of the matching system  as:

We say that : is the total phase advance of the orbit in the matching section. 
   Expanding the trigonometric functions in Eqs. (4.78) and (4.79),  we find that: 
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(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

Using Eq. (4.80), the orbit vectors at the entrance are: 

Substituting Eq. (4.81) in Eqs. (4.82) and (4.83), the exit orbit vector is given by: 

   We can eliminate the quantities cosN and sinN in Eqs. (4.84) through (4.87) to find expressions
for the output orbit vector in terms of the input vector and the transport parameters at the
entrance and exit of the matching section: 

By inspecting Eqs. (4.88) and (4.89), we can find the terms of the transfer matrix of the matching
section, M:.

   Equations (4.90) through (4.93) are the starting point for beam matching calculations. The
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(4.94)

(4.95)

(4.96)

(4.97)

choice of :, the known values ("0, $0, (0) and the desired values ("1, $1, (1) uniquely determine 
the components of the transfer matrix. The problem resolves into a search for a combination of
optical elements to give the known components of M. The procedure is complex if simultaneous
matching in the x and y directions is required.
   In this section, we shall limit the discussion to a simple but useful application, how to find the
matched distributions of a periodic focusing system. In terms of the above derivation, we
identify the matching optics as one cell of the periodic system.  The cell connects identical
upstream and downstream cells. The condition for a matched beam means that the input and
output distributions are identical, or $0 = $1 = $, "0 = "1 = ", and (0 = (1 = (. Using Eqs. (4.90)
through (4.93), the transfer matrix for a cell  has the form: 

As a specific example of matching, we shall study the FODO geometry, consisting of alternating
focusing and defocusing quadrupole lenses separated by a drift distance. We must address 
motion in both the x and y directions. 
   Figure 4.3a shows the discrete quadrupole lenses that comprise the focusing system. Each lens
is rotated 90° relative to the previous one. Figure 4.3b illustrates an alternative optical system
that is often used to model the FODO array — thin lenses of focal  length ±f separated by a
length D. The quantity D represents the total distance between quadrupole lens centers, including
the lens and drift lengths. The choice of the cell boundary depends on where we want to know
the matched distribution. To begin, suppose that the focusing cell begins and ends at the center
of a  quadrupole lens and that this lens focuses in the x direction. Figure 4.3c represents a cell.
Particles first travel through half  a lens with focusing in the x direction but defocusing in y. We
represent the effect of the half lens by a thin lens of focal length 2f — the associated transfer
matrices are 

The next element is a drift path of length D — it has the same effect in both the x and y
directions: 
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(4.98)

(4.99)

The next element is a full length lens, defocusing in x and focusing in y: 
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Figure 4.3. Ion beam focusing by a quadrupole lens array. (a) Electrostatic quadrupoles — electrode
geometries for a FODO system. (b) Approximate model for focusing in a uniform FODO system in either
x or y. Array of thin lenses with alternating focal length, ±f. (c) Definition of a focusing cell — the cell
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(4.100)

(4.101)

(4.102)

(4.103)

(4.104)

(4.105)

(4.106)
(4.107)

(4.108)

(4.109)

(4.110)

boundary is at the center of a lens (dashed line " in part a relative to the x direction). d) Definition of a
cell with the boundary at the midpoint between two lenses (dashed line $ in part a). 
Another drift length and a half lens complete the focusing cell.  
   We find the transfer matrix for a cell by multiplication of the matrices of the individual
components. The results are: 

Comparison of Eqs. (4.100) and (4.101) with Eq. (4.94) gives the parameters of the matched
ellipse at the cell boundary and the phase advance per cell:

We can rewrite the expressions for the $ parameters entirely in  terms of : by recognizing that

The final expressions are:

   The results imply that the beam envelope should be parallel to the axis at the centerof the
quadrupole lens because "x = "y = 0. At this point, the ratio of the $ parameters in the x and y 
directions is 
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(4.111)

(4.112)

(4.113)

(4.114)

If the injected beam has equal emittance in both directions, ,x = ,y = ,, then the ratio of the
envelope widths of the beam at the  center of the lens is 

 As in all FD systems, the envelope width is larger in the focusing direction than in the
defocusing direction. As an example, for a phase advance of : = 60°  the ratio of the envelope 
widths is xo/yo = 1.316. 
   Figure 4.4 shows plots of the beam envelope in the x and y directions to illustrate the physical
meaning of Eqs. (4.102) through (4.111). The width in the y direction is maximum in the 
second lens. As an exercise, the reader could derive the transport parameters of a matched beam
distribution in the same FODO channel, but with the focusing cell boundary at the center of the
first drift space. Figure 4.3d illustrates the cell. The results are: 

Figure 4.4. Envelope projections in the x and y directions for a  matched beam in a FODO system. Cell
boundary at the center of a  lens (focusing in x and defocusing in y).
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Assuming equal emittances in the x and y directions, the envelope widths are equal and the
envelope angles have equal magnitude but opposite sign. The beam converges in x and diverges 
in y.

4.4. Non-linear focusing systems

   The force in a non-linear lens is not linearly proportional to distance from a symmetry axis.
Usually, accelerator designers take care to minimize non-linearities in charged particle focusing
systems. There is an important reason for this precaution in strong focusing circular accelerators.
In these devices, it is essential to avoid orbit resonance instabilities that occur when the machine
circumference equals an integral number of betatron wavelengths. Elimination of resonances is 
difficult in a non-linear optics system because the betatron wavelength depends on the amplitude
of transverse motion. 
   On the other hand, non-linear lenses have potential advantages for beam transport in linear
accelerators. In these devices, a spread in betatron wavelength can prevent many of the
instabilities described in Chapters 13 and 14. Furthermore, we shall see (Section 10.9) that some
inherently non-linear focusing arrays, such as magnetic cusps, have stability advantages for high-
current beam transport. Nonetheless, non-linear lenses are seldom used in linacs. This reflects, in
part, a general belief  that non-linear focusing forces inevitably lead to beam emittance growth.
In this section, we shall review the properties of non-linear focusing systems and discuss their
advantages and disadvantages. We shall see, for example, that emittance growth occurs only
when a beam is mismatched to a non-linear focusing channel. We can always find matched
distributions that propagate with no change in emittance even for focusing systems with highly 
non-linear lenses.

Figure 4.5. Focusing by a non-linear lens with spherical aberration. Configuration-space orbits for an
incident laminar beam.
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(4.115)

(4.116)

A. Non-linear lens

   To begin, we shall review the properties of individual non-linear lenses. Figure 4.5 shows that
a non-linear lens cannot focus a beam to point, even if the beam is laminar. The force of the lens
in Fig. 4.5 exceeds the linear value at large displacement,  resulting in overfocusing of peripheral
particles. There is no downstream location where the particle orbits meet. A related problem
occurs in imaging applications — a non-linear lens cannot relay a point focused beam to another
point. This property is called spherical aberration, where aberration implies a deviation  from
ideal behavior. The term spherical comes from light optics —  the problem arises if the surfaces
of lenses are spherical sections rather than paraboloids.
   We can represent the transverse force of a lens with cylindrical symmetry in the form:

There is no r2 term because of the symmetry — terms with order  higher than r3 are generally
small. The cubic term is responsible for spherical aberration. An alternative form of Eq.  (4.115)
emphasizes the cubic term as a perturbation to a linear lens:

The quantity 0 is an error parameter — a lens is almost linear if:

Figure 4.6. Trace-space views — focusing a beam with a rectangular distribution (uniform angular
dispersion at all transverse positions). (1) Lens entrance, (2) lens exit, (3) position of best  focus. (a) Ideal
linear lens - dashed lines show beam width at the focal point. (b) Non-linear lens with spherical aberration
— dashed lines shows beam width at the point of maximum convergence.
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(4.117)

(4.118)

(4.119)

(4.120)

The quantity ro in Eq. (4.117) is the maximum radius of the beam or the radius of the lens
aperture. Equation (4.116) shows that focusing errors depend strongly on radius. Spherical
aberration limits the useful bore of charged particle lenses.
   Figure 4.6 shows trace-space plots of a parallel beam focused by  linear and non-linear lenses.
The linear lens tips the beam distribution so that it converges to an emittance-limited focal spot.
In contrast, the non-linear lens distorts the shape of the distribution. There is no downstream
location where the entire distribution aligns with the r' axis. The focal point for paraxial particles
occurs at a different axial location than the focus of envelope particles. The beam reaches its
minimum width at an intermediate location — the profile at this location is called the disc of
least confusion. 
   We represent the departure of a lens from ideal focusing properties by the spherical aberration
coefficient, Cs. To illustrate the definition of Cs, consider a lens with a paraxial focal length f and
a maximum usable radius ro. The quantity " is the approximate envelope convergence angle,

Because of the error in the lens deflection angle, particles on  the beam envelope pass the
paraxial focal point at a distance ~ "0ro2 from the axis. Therefore, the radius of the disc of least
confusion, *, is close to 

Equation (4.119) shows that the spot size is proportional to the cube of  the convergence angle
for a given focal length lens. Accordingly,  we define the spherical aberration coefficient in
terms of the disc of least confusion and the convergence angle:

   In practical lenses the cubic error of the focusing force is small — following the example of
light optics, we might hope to correct the errors by designing multi-element lenses with positive
and negative values of 0. Unfortunately, this approach  is impossible for cylindrical electrostatic
or magnetic lenses. All such lenses, whether electrostatic and magnetic, have positive values of
0. The transverse force invariably increases  more rapidly near the electrodes or coils that
generate the fields. For common lenses, the only options to reduce spherical aberration are to
design for highly linear fields and to limit the useful lens aperture. 
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B. Emittance growth in an array of non-linear lenses

   Section 3.7 showed that periodic focusing systems with linear lenses preserve both the area and
general shape of beam distributions. In particular, an elliptical distribution remains an ellipse,
even if the distribution is mismatched to the focusing system. Non-linear focusing systems do
not have this property. A non-linear lens array distorts the shape of a mismatched distribution,
leading to emittance growth. 
   To illustrate emittance enhancement in a non-linear focusing  system, consider a beam
confined by an axially uniform transverse force with radial variation given by Eq. (4.116).
Without the cubic term, all particle orbit vectors follow elliptical trace space trajectories that
circulate at the same rate. In other words, particles have the same betatron wavelength. All parts
of a mismatched distribution rotate in trace space at the same rate — the distribution returns to
its original form after one betatron  oscillation. 
   In contrast, particle oscillations in a non-linear force are anharmonic. Although all paraxial
particles have about the same value of 8b, the betatron wavelength of peripheral particles is
shorter (for 0 > 0) because the average focusing force is higher. In trace space, outer portions of
the distribution circulate faster than inner parts — as a result, the distribution wraps around
itself. Figurer 4.7 a trace-space views of a mismatched beam propagating in a continuous
non-linear force. Although the initial beam is almost laminar, longitudinal  phase mixing
ultimately creates disorder.
   A similar process happens in periodic focusing systems. Here, we represent the trace space
distribution at focusing cell boundaries — the change in particle orbit vectors between
boundaries is given by :, the phase advance per cell. In a linear  system, : is the same for all
particles — a mismatched distribution can eventually return to its original orientation and shape
after crossing 

Figure 4.7. Trace-space view of a mismatched beam distribution propagating in a non-linear transverse
force, uniform in the axial direction. The focusing force has the form Fx(x) = ($2c2mokb

2x [1+0.2(x/xo)2],
where kb is the betatron wavenumber for paraxial particles.
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Figure 4.8. Trace-space views of the propagation of a mismatched  beam in an array of 60 non-linear
lenses with spherical aberration. Thin lenses with focal length f(x) = fo [1 + (x/xo)2)  separated by a
distance D. Cell boundary at lens exit. Paraxial phase advance: :o = 0.51 radians. Dashed lines at entrance
and exit show trace-space trajectory for particles on the beam periphery.

several cells. With non-linear lenses : is larger for peripheral particles, resulting in distortion of 
the distribution. Figure 4.8 shows a trace space view of a mismatched beam transported in a
array of non-linear thin lenses.  In the example, the focal length of the lenses is: 
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where 0 = 1. The phase advance per cell for paraxial particles is :o = 0.51. Figure 4.8 shows that
state of the distribution propagating through 60 lenses, an axial distance of about 58b. 
   Figure 4.8 illustrates some characteristics of beam propagation in a non-linear system. 

   1. In principle, the distribution distortion illustrated in Fig. 4.8 could be corrected because the
actual area occupied in trace space is constant. In practice, there is no hope of unwinding the
final distribution with any combination of conventional lenses. For practical purposes, the
process is 
irreversible.
   2. The beam emittance is higher because the smallest elliptical curve that can surround the
final distribution is larger than the boundary of the input distribution.
   3. The emittance of the unmatched beam does not grow without bound — the particle orbits
are stable. The emittance growth results from phase mixing of transverse oscillations — growth
ends when orbits are uniformly distributed in phase. 
   4. We can find the upper limit on the final emittance by inspection of Fig. 4.8. In the final state,
the distribution fills the area circumscribed by the trace space orbits of particles on the envelope
of the mismatched beam. 

C. Matched distributions in non-linear channels

   For the beam shown in Fig. 4.8, emittance growth stops when orbit vectors uniformly fill the
boundary defined by the peripheral particles. Therefore, we conclude that a distribution  that fills
the region is matched to the non-linear channel. If we injected the beam with the matched
distribution, the emittance would not increase although the focusing forces are non-linear.
   From the discussion of Section 3.7, we know that the distribution function of a matched beam
has constant value along single particle orbits in trace space. We can generate contours of a
matched distribution simply by plotting the phase space loci of orbit vectors at the focusing cell
boundary. By choosing test particles with different oscillation amplitudes and phases, we can
find a family of continuous trace space curves that correspond to isodensity contours of the
distribution function. Figure 4.9 shows the results of such a calculation for a thin lens array with
focal length given by Eq. (4.121) and a paraxial phase advance of :o = 0.51. At large
displacement, the curves clearly are not elliptical. 
   All particle orbits in a linear lens array are stable if :o <  B [CPA, Chap. 8]. In contrast, the
orbits of peripheral particles in a non-linear periodic focusing system may be subject to resonant
instabilities even if paraxial particles are stable. This behavior arises because the phase advance
per cell is a function of the orbit displacement amplitude. In non-linear systems, there is a
bounded region of stable orbit vectors in trace space. We can find the stability boundary
numerically by 
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Figure 4.9. Isodensity contours of matched distributions in a lens array with spherical aberration. Thin
lenses with focal length f(x) = fo [1 + (x/xo)2) separated by distance D, cell boundary at  lens exit. Paraxial
phase advance: :o = 0.51 radians. 

computing single particle orbits through several cells and checking for a diverging amplitude.
Figure 4.9 shows the stability boundary for the thin lens array. Several distribution function 
isodensity lines have been included inside the stability boundary. Note the contours near the axis
are skewed ellipses, identical to the matched distributions of a linear lens array. The non-linear
forces distort the large amplitude orbits. Particles with orbit vectors outside the boundary are
unstable because they have :o greater than B.

D. Beam compression by non-linear forces

   We define a compression as any process than reduces the width of a beam while increasing the
spread in transverse angle. Although we saw that a single non-linear lens cannot direct a beam to
an emittance limited focal spot, we shall see that an array of non-linear optical elements can
compress a beam to a minimal spot size. The validity condition is that the non-linear  elements
induce gradual changes in the beam distribution. The term gradual means that the time for a
change in the distribution is long compared the oscillation time of the particles.
   To illustrate compression by non-linear forces, we shall study beam propagation in a
converging pipe. The pipe wall is a region of localized transverse force that reflects particles that
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(4.122)

(4.123)

(4.124)

(4.125)

move outward. The transverse force variation is non-linear — it  is zero inside the pipe and rises
to a high value at the wall. The idealized pipe is a good approximation for some transport
schemes, such as dense plasma channels with embedded magnetic fields to confine intense light
ion beams for inertial fusion. A  major issue in light ion fusion studies is how much compression
can be achieved in a channel.
   To simplify the calculation, we shall first address particle orbits in a sheet beam that has mirror
reflections at two converging planar walls (Fig. 4.10). The planes incline at an angle " with
respect to the symmetry axis. Imagine the orbit of a particle that enters the converging pipe
parallel to axis at a distance x1 from the axis. The variable n represents the number of the orbit
reflections from the walls. Figure 4.10 shows the first and second reflections, n = 1 and n = 2.
Notice that the transverse velocity of the particle increases with each collision. Because kinetic
energy is conserved, longitudinal velocity is converted to transverse velocity. After many
collisions, the axial velocity becomes negative - the particle reverses direction. The point of
reversal defines a maximum penetration distance into the pipe. To define focal limits, we will
calculate the maximum number of reflections, N, that take place before a particle reaches the
turning point and the minimum transverse dimension of the particle orbit, xN, at the point of 
maximum penetration. 
   Figure 4.10 shows that y1+y2 is the axial distance the particle travels between the first and
second reflections. Over this length, the halfwidth of the pipe decreases by an amount
(y1+y2)tan". Therefore, the orbit displacements at the first and second reflections are related by:

The rule of similar triangles constrains the quantities in Eq. (4.122):

We can define additional relationships in terms of 2, the angle between the wall and the particle
orbit after the first collision.

   We can combine Eqs. 4.122 through 4.125 and eliminate the quantities y1 and y2, arriving at an
equation that relates the orbit displacements after the first two collisions: 
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(4.127)

Figure 4.10. Non-linear focusing by reflection from a tapered converging pipe. (a) Geometry. (b)
Construction to calculate the displacements and angles at particle reflections. 

For an initially parallel orbit, Fig. 4.10 shows that that 2 = "  for a specular reflection. Eq.
(4.126) becomes:

   Similarly, after the second reflection the orbit inclination  relative to the wall is (q+2a) = 3a.
Extending the equations for  the first and second reflections, we can show that the displacements
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(4.128)

(4.129)

(4.130)

(4.131)

(4.132)

(4.133)
(4.134)

(4.135)

on the second and third reflections are related by: 

By induction, the orbit displacement at the nth reflection is

   Next, suppose a particle enters the pipe with an inclination  angle )2. After a reflection, the
angle between the orbit and the  wall is 

Reviewing the arguments leading to Eq. (4.129), we can show that the displacement at the nth
reflection is 

The minimum value of the orbit displacement occurs when the denominator equals unity, or:

We can find the maximum number of wall reflections from the equation:

Consider the implications of Eq. (4.132) for an incident beam of  particles distributed between
±x1 with an angular spread ±)2. The  beam emittance is , – x1)2. Section 3.1 showed that if we
focused such a beam with an ideal linear lens, the minimum spot size is approximately:

The quantity (x1/f) is the envelope convergence angle; the highest possible beam convergence
angle is about one radian. The minimum spot size using a single ideal single lens is on the 
order of
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(4.137)

A comparison to Eq. (4.132) shows that the same focal spot size could be achieved with a
non-linear converging channel if the beam compression is gradual. Equation (4.132) implies a 
relationship to define gradual:

To produce an emittance-limited focus, the convergence angle must be small compared with the
input beam divergence. In the limit of Eq. (4.137), the compression is reversible. 
   We can easily extend the above derivation to a two dimensional  compression. Imagine a
converging pipe with a square or rectangular cross-section. Because there are no applied forces 
inside the pipe, particle motions in the x and y directions are  independent. Also, wall reflections
do not couple x and y velocities. Therefore, displacements in the x and y directions can be
described independently according to Eq. (4.131). 
   As a final point of interest, we can represent the orbits of particles in a converging pipe by the
geometric construction of Fig. 4.11. We draw a set of radial lines in the upper half plane of a
polar coordinate system (r, N) at angles ", 3", 5", ..., (2n- 1)",.... Again, " is the pipe
convergence angle. We next draw an orbit line starting at a point on the N = " ray a distance x1 
from the origin. The line inclines at an angle )2 relative to the axis. We leave it as an exercise to
show the following characteristics of the construction:
   1. The intersections of the orbit line with the rays represent reflections from the wall. The
angle between the line and the intersected ray equals the angle between the orbit and wall before
the reflection.
   2. The distance from the origin to the intersection of the orbit line with the nth ray equals the
beam displacement at the nth collision.
   3. The construction gives the history of particle reflections in the pipe. The particle axial
velocity is positive for reflections in the range x > 0 and negative in the range x < 0.

4.5. Emittance in storage rings

   Elementary particle physics has been a major motivation for the development of high-energy
charged-particle accelerators. In the early days of particle research, beams were injected into
fixed targets, blocks of solid density material at rest in the accelerator frame. Although fixed
targets are practical for incident beams of moderate energy (<10 GeV), the approach is
ineffective in the TeV energy range of the largest modern accelerators. The figure of merit in
elementary particle research is the net kinetic energy of incident and target particles in the
center-of-momentum reference frame+ — this energy is available to create particles or to liberate 

+ In the center-of-momentum reference frame, the vector sum of  the momenta of the target and incident
particles equals zero.
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the components of composite particles. With a fixed target, most of the incident beam energy 
transforms to the kinetic energy of reaction products — the energy is wasted. For example, a 1
TeV proton incident on fixed  protons in a target provides only 42 GeV of center-of-momentum
energy [CPA, pg. 541]. Colliding beams provide a solution to this problem. When a 1 TeV
proton collides head-on with another 1 TeV  proton, the maximum available
center-of-momentum energy is 2 TeV.  
   Generation and storage of colliding beams takes place in large circular accelerators called
colliders. Magnetic lenses compress the beams to small diameters at positions in the ring called 
interaction regions. Particle detectors are located near these regions. Present high energy
colliders use beams of protons on protons, protons on antiprotons, electrons on positrons, or
protons on electrons. A machine with two proton beams is called a p-p collider — it requires two
separate rings with opposite polarity magnetic bending fields. Straight sections of the rings 
intersect at small angle at one or more interaction regions. A collider requires only a single
ring. Antiprotons  have the same mass as a proton but have a negative charge; hence,  p and 
beams circulate in opposite directions in the same magnet array. 
   Although the principle is simple, the practical realization of colliding beams is difficult. The
application demands the most complex accelerator systems ever built. A fixed target has a high
density of target particles, giving a good probability for interaction. Therefore, the intensity and
emittance of the incident beam are not usually a major concern in fixed target experiments. In
contrast, the density of a colliding beam target is extremely small compared with that of a solid
target. To a achieve sufficient reaction rate, the beams must be bright with the highest  possible
intensity and lowest emittance. Furthermore, the momentum spread must be small enough to
match the longitudinal acceptance of the accelerator. 
   The emittance requirements for a collider are expressed in terms of the quantity luminosity. To
understand luminosity, we must first review the concept of reaction cross-sections and their
relationship to the reaction rate. Cross-sections describe  the probability of reactions between
particles. To illustrate the meaning, Fig. 4.11a shows a beam particle aimed toward a target
particle. The impact parameter, D, is the projected distance of closest approach. Generally, an
interaction occurs only if the incident particle passes close to the target. Depending on the nature
of forces between the particles, the reaction probability, P(D), is a decreasing function of D.
   The reaction cross section, F, is a probability-weighted interaction area:

The cross section has the following interpretation. If an incident particle passes through a plane
of area 1 m2 that contains one target particle, then the probability of an interaction is
F(m2)/1(m2). Colliding charged particles may have a variety of interactions — each reaction has
a cross section. The probability function and the cross section generally depend  on the relative
kinetic energy of the particles. The cross sections for many atomic processes have values close to
the physical area of an atom, 1 D2 (10-20 m2). The standard unit for nuclear reactions is the barn,
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Figure 4.11. Particle collisions. (a) Definition of impact parameter, F. (b) Geometric construction to
define the collision cross section. 

where 1 barn =  10-28 m2. Nuclear cross sections are much lower than atomic cross  sections
because of the small size of the nucleus. Cross sections decrease as the relative velocity of the
particles increases —  the particles spend less time near each other. A cross-section value typical
of high energy processes is 10-37 m2. Designers of colliding beam systems face two problems in
achieving  adequate reaction rates: the beam densities are low and the reaction probabilities are
small. 
   For a known cross section, we can calculate the rate of reactions in the laboratory between
colliding beams. The construction of Fig. 4.11b illustrates the method. As an example, suppose
that a single proton impinges on a slab of antiprotons with unit area. The slab has thickness )z
and the antiprotons have density n2. The total convergence velocity in the laboratory frame is v ~
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(4.140)

(4.141)

(4.142)

(4.143)

(4.144)

2c. When the proton passes through the slab, the probability of a reaction equals the product of
the cross section times the number of antiprotons in the slab: 

The reaction probability for a proton passing through a 1 m length of the target distribution with
cross section area 1 m2 is 

The total rate of reactions occurring in 1 m3 of the target is the product of P in Eq. (4.140) times
the number of protons incident per second per square meter. The flux of protons incident on the
target is n1v, where n1 is the beam density. The reaction rate is  

   Luminosity L measures the inherent ability of a colliding beam system to produce reactions. It
is proportional to the normalized reaction rate, R/F; therefore, the product of L times F for a
particular reaction gives the total number of events expected. As an example, suppose a collider
has counter-rotating  bunches consisting of N1 protons and N2 antiprotons. If each bunch has
length )z and cross-section area A, then the densities are n1 = N1/A)z and n2 = N2/A), From Eq.
(4.141), the reaction rate during the time the bunches intersect is

The total number of reactions during an intersection equals the product of R times the volume
(A)z) and the interaction time ()z/v):

The luminosity per crossing equals the reactions per crossing divided by F, or

The luminosity per second equals the product of the luminosity per crossing times f, the number
of bunch crossings per second:
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   We can increase the luminosity by trapping more protons and antiprotons in the ring. Space
charge forces limit the maximum number of particles in a bunch to about N1 ~ N2 ~ 1011. The size 
of the collider ring fixes the rotation frequency f. The ring diameter depends upon the energy of
the particles and the maximum  field of the bending magnets. The only free parameter is the
transverse area of the beam in the interaction region — the quantity A should be as small as
possible. In colliders, focusing magnets compress the beam to a small diameter over the length of 
the interaction region. Following the discussion of Section 4.2, the beam width depends on the
maximum strength of the lenses and the emittance. Low-emittance beams are essential to achieve 
high luminosity.
   To illustrate luminosity requirements, we shall use parameters from the Fermilab TEV I
collider. The bunches contain about 1011 protons and antiprotons. The rotation frequency in the 6
km ring is f = 5 × 104 s-1. The total cross section for all  reactions is about 0.1 barn at a
center-of-momentum energy of 1 TeV. To avoid overloading detectors, there should be no more
than a single event per crossing. Equations (4.143) and (4.145) imply that the maximum
luminosity per crossing is approximately 1029 m-2. For the given parameters, A should equal 10-7

m2. The corresponding luminosity per second of the collider is L = 5 × 1033 m-2s-1. The cross
section for a specific reaction, such as the production of W particles, is much smaller than the
total cross section. A typical value is F ~ 1 nanobarn = 10-37 m2. At a luminosity/sec of 5 × 1033

m-2s-1, it takes 560 hours of operation to achieve 1000 reactions. This is a typical time scale for a
high energy physics experimental run. The integrated luminosity during the run is 1040 m-2. 
   Proton beams trapped in circular accelerators have low emittance. It is not difficult to achieve
proton bunch areas less than or equal to 10-7 m2. The main problem in a  collider is the
generation of low-emittance antiproton beams. Antiprotons result from collisions of high energy
protons with a fixed target. They leave the target with a large spread in angle and kinetic energy.
Even though the net efficiency for antiproton production may be as high as a few per cent, the
resulting beam  has a dispersion in angle and energy that is far too large to fit into the acceptance
of a circular accelerator. The only solution is to capture only the fraction of antiprotons with low
angular divergence within a limited kinetic energy range. To accumulate 1011 antiprotons,
production and capture extends over long periods of time. Even though the captured beam may
fit the acceptance of the accelerator, usually its emittance is too high for the required luminosity.
The antiproton beam must be cooled;  the following section addresses this topic. 
   Figure 4.12 shows the efficiency for the generation of forward- directed antiprotons (x' < 30
mrad) by 120 GeV protons. The efficiency is less than one per cent and the antiprotons have a 
broad spread in momentum. The antiproton production target and beam capture system must be
designed to maximize  production within the acceptance of the downstream transport system.
To begin, we shall discuss methods to reduce the transverse emittance. The angular spread of
antiprotons from the target is an inherent property of the generation process — it does not 
depend on the size of the incident proton beam. With a constant angular divergence, the lowest



Beam emittance - advanced topics Charged Particle Beams

173

antiproton emittance results from  the smaller source diameter. Hence, the proton beam is
focused to a small spot size on the target. 
   Antiprotons diverging from the point source must be formed into a parallel beam for transport
and capture in a storage ring.  A focusing lens placed one focal length from the target performs 
the task. To capture an acceptable fraction of the antiprotons, the lens must have a short focal 

Figure 4.12. Efficiency for the production of antiprotons by the interaction of energetic protons with a
tungsten target. Graphs show the probability for the creation of an antiproton within a momentum range
with angle (relative to the proton beam axis) less  than 30 mrad. Curves show different values of incident
proton beam kinetic energy. (Courtesy, A.V. Tollestrup, Fermi National Accelerator Laboratory. Used by
permission, American Institute of  Physics.)
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Figure 4.13. Sequence of events in the Debuncher Ring, Fermilab.  (Phase diagrams not to scale.) (a)
Antiproton bunch enters rings with short pulse-length and large energy spread. Particles begin  phase
oscillation in a strong RF confining force. (b) During one-quarter period of a phase oscillation, the
confining RF bucket depth drops from 5 MV to 122 kV to damp the phase oscillation and match the RF
bucket to the bunch. (c) The RF bucket depth then drops slowly from 122 kV to 5 kV — the bunch
expands in pulse-length while the energy spread decreases.
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length. The Fermilab lens is a lithium cell 1 cm in radius and 15 cm in length. The liquid metal
carries a pulsed axial current of 500 kA — the strong azimuthal magnetic field creates a linear
focusing force to capture the particles. The effective focal length is only 0.2 m. The lens and
downstream transport system capture antiprotons with an average momentum of  8.9 GeV/c and a
momentum spread of ±2%. 
   It is necessary to reduce substantially the momentum spread of the antiprotons before they enter
the main acceleration ring. The strategy is similar to that applied in the transverse direction — 
the antiprotons are created in a short pulse, the longitudinal analogy of a small area. The protons
that generate the antiprotons are compressed into bunches with a pulse length of only 0.15 ns. The
resulting antiproton pulses enter a storage ring called the debuncher. Figure 4.13 illustrates the 
transformation of the longitudinal beam distribution in the debuncher. At injection (Fig. 4.13a)
the pulse has a large energy spread but fills only a small fraction of the ring circumference.  The
RF accelerating gap of the buncher has a high voltage to define a bucket depth of 5 MV. The
beam pulse, injected at a phase of 0°, fills only a small fraction of the bucket length. Because the
beam is not in axial equilibrium, it expands axially in the bucket — in phase space, the
distribution rotates. If the RF field level were kept constant, the beam would perform phase
oscillations. Instead, the phase motion is strongly damped by lowering the RF field. In the
Fermilab debuncher, the bucket depth drops from 5 MV to 122 kV in a quarter of a phase
oscillation period so that the beam reaches an axial equilibrium. At the end, the beam (Fig. 4.13b)
has an extended length and a  reduced energy spread. A further reduction is achieved by lowering
the bucket depth to 5 kV over a time long compared with a phase oscillation period — Section 3.8
discussed beam cooling by a slow one-dimensional expansion. At the end of the process (Fig. 
4.13c), the beam occupies a substantial fraction of the debuncher circumference and the
longitudinal energy is about ±0.1%.

4.6. Beam cooling

   The goal of cooling is to reduce the phase space volume occupied by a beam distribution. Beam
cooling processes can lower velocity spreads in both the transverse and longitudinal directions.
Existing methods extend over long periods of time;  therefore, applications are limited to high
energy circular accelerators and storage rings. As mentioned in Section 4.4, a  major application
of beam cooling is to condition antimatter beams in colliding beam experiments. In this section,
we shall review techniques of cooling and concentrate on a specific example, stochastic cooling.
   To cool a beam, we must find ways to circumvent the phase volume conservation theorem of
Section 2.4. We have already discussed one exception that occurs when velocity-dependent 
forces act on a beam. One example of cooling by frictional force is the reduction of the
longitudinal velocity dispersion of an electron beam by synchrotron radiation. Synchrotron
radiation results from the transverse acceleration of high energy electrons confined in a circular
accelerator. The electrons emit radiation predominantly in the forward direction, reducing their 
longitudinal kinetic energy. The radiation power loss per electron depends strongly on kinetic
energy — in SI units, the  power radiated by a single electron in a circular orbit is+:
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(4.147)

(4.148)

In Eq. (4.146), E is the electron kinetic energy, R is the radius of the accelerator, and re is the
classical electron radius,

   Electrons in a storage ring are continuously accelerated to compensate for radiation losses. An
electron beam distribution with an initial spread in E rapidly becomes almost monoenergetic. 
Electrons with energy higher than the mean emit more radiation and lose energy faster, while
electrons with low E gain more energy from the acceleration system than they radiate.
Synchrotron damping also reduces the transverse emittance of a beam — the acceleration
associated with betatron oscillations causes emission of radiation by electrons. The damping time
for  random electron motions, either transverse or longitudinal, is roughly*: 

Equation (4.148) implies that synchrotron cooling of electrons is rapid. For example, the cooling
time for a 1 GeV electron beam in a 20 m diameter ring is only about 20 ms. Synchrotron cooling
of ions is insignificant because of the cubic dependence of the cooling time on particle mass.
   The reduction in phase volume by friction depends on the condition that the force varies
smoothly in time and space. In reality, friction results from collisional processes. For an accurate
description, we must superimpose small scale force variations on the average forces represented
by expressions such  as Eq. (2.42). Collisions cause diffusion of particle orbit vectors, a process
that increases the beam phase volume. Real frictional processes have components that
simultaneously cool and  heat beam distributions. Although friction may initially cool a  beam,
the discrete nature of the force (Schottky noise) limits the  process. The discrete nature of
synchrotron radiation sets limits on the minimum phase volume achieved by cooling. On the
quantum  level, synchrotron radiation consists of individual photons.

+ See, for instance, M. Sands, The Physics of Electron Storage Rings (Stanford Linear Accelerator
Center, SLAC-121, 1970), pg.  98 (Available from National Technical Information Service, Springfield,
Virginia 22151)

* See, for instance, F.T. Cole and F.E. Mills, Increasing the phase-space density of high energy particle
beams, Ann. Rev. Nucl. Sci. 31, (1981), 295.
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Figure 4.14. Ion beam cooling by energy transfer to a co-streaming electron beam. (Courtesy, F. Cole,
Fermilab. Used by permission,  American Institute of Physics.)

  We must use alternate methods to cool ions in circular accelerators. Electron beam cooling is
based on the interaction between the high energy ions and a low energy electron beam injected
into the ring. Remember that the theorem of phase volume conservation depends on the condition
that particles in a distribution are isolated. The theorem need not hold if other particles share the
same space as the beam. Figure 4.14 shows the  basis of the electron beam cooling of antiprotons
in a storage ring. The electron beam is injected into the ring so that it moves collinearly with the
stored antiproton beam. The choice of injector voltage gives an electron beam with precisely the
same velocity as the antiprotons — a typical value is 100 kV. The weak magnetic field that bends
the low energy electrons has little effect on the energetic antiprotons. The electron beam has high
current (~1  A) and low beam divergence. After a drift distance, another bending magnet removes
the electrons, directing them to an inverse diode (Section 15.1) to recover most of their energy.
   In the rest frame of the drifting beams, the transverse and longitudinal energy spreads of the
electron beam are much lower  than those of the antiproton beam. Hot antiprotons lose thermal 
energy when they undergo Coulomb collisions with the cold electrons.  The heated electrons
carry the excess energy outside the storage ring. Cold electrons replace heated electrons for
continuous 
refrigeration. The energy transfer rates are described by relativistic extensions of the familiar
energy transfer formulas of plasma physics+. 
   Experiments on storage rings have demonstrated the principles of electron beam cooling. The
process is most effective for antiprotons with low kinetic energy, partly because the energy
transfer rate is higher, and partly because of technological difficulties in generating continuous
high-power electron beams.  Electron beam cooling of antiprotons is a complex process.
Generation of antiprotons must take place at high kinetic energy where the production
cross-section is large. The particles then  must be decelerated to an energy in the range 200-400
MeV for accumulation and cooling. After cooling, the antiprotons are reaccelerated for injection
into a collider. 

+ See, for instance, G. Schmidt, Physics of High Temperature Plasmas, 2nd ed., Academic Press, New
York, 1979, Section 11.3.
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   In the remainder of this section, we shall concentrate on stochastic cooling of beams. The word
stochastic means "involving  chance or probability." Stochastic cooling is a statistical process
based on the fact that a beam is not a perfect fluid but a collection of discrete particles, albeit a
very large number.  Information on random variations of the macroscopic properties of  the beam
associated with discreteness is used to influence specific groups of particles to achieve net
cooling. 
   An underlying assumption of the theorem of conservation of phase volume is that we cannot
apply specific forces to individual particles. If we could individually accelerate antiprotons in a
collider, we could create any distribution desired. Individual control is impossible because the
number of  particles in a bunch ranges from 108 to 1011. Nonetheless, by recognizing trends in the
random distribution of particles, we can sense groups of particles with similar properties. Given 
sufficient time, applied forces can effect an average emittance  reduction.
   Figure 4.15a shows a schematic diagram of a stochastic beam cooling system for a storage ring.
The system lowers the transverse emittance of the beam in the horizontal direction, ,x. A detector,
which we shall call the pickup, measures the centroid of the beam as it passes. After
amplification, the signal from the pickup drives a set of deflection plates, called the kicker.  The
kicker, located across a chord from the pickup, applies an accelerating or decelerating electric
force in the horizontal direction. The cable and amplifier delays are chosen so that the signal
generated in the pickup by a group of particles arrives at the kicker at the same time as the
particles. 
   The pickup cannot resolve the positions of individual particles. Instead, it measures the
centroid, , of a group of  particles. We denote the minimum number of particles that can be 
resolved as Ns. If , random variations in the centroid approach zero and the pickup
generates no  signal. For the finite number of particles in a group, we expect that statistical
variations cause changes in the centroid. Sometimes there are more particles on the inside than
the outside. Then, the centroid shifts inward. Statistical theory predicts that the fractional
imbalance of particles between the inside and outside is roughly

  Suppose we locate the kicker a distance equal to an odd number of quarter betatron wavelengths
from the pickup:

The quantity 8x is the average betatron wavelength for a group of particles. Figure 4.15b shows a
projection of a horizontal particle oscillation for m = 2. The condition of Eq. (4.150) means that a 
positive centroid displacement at the pickup becomes a negative average velocity at the kicker. 
   For antiprotons, a negative electric field in the kicker decelerates the particles in the transverse
deceleration, thereby  reducing the amplitude of the betatron oscillation. Depending on the phase 
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Figure 4.15. Stochastic cooling of an ion beam. (a) Schematic drawing of apparatus. (b) Projected
transverse particle orbit between the detector and kicker. Ideal orbit has its maximum displacement at the
detector and maximum velocity at the kicker.  (Courtesy, F. Cole, Fermilab. Used by permission,
American Institute of Physics.)

of the particle oscillation, an electric field at the  kicker either increases or decreases the betatron
oscillation amplitude. If the particles between the kicker plates are randomly distributed, then the
electric field increases the oscillation amplitude for about half the particles and lowers the
amplitude of the other half. On the other hand, if the electric field at time t is proportional to the
pickup signal at time , then we can achieve a net reduction in the 
amplitude of particle betatron oscillations. The pickup signal shows when there will be an excess
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(4.151)

(4.152)

of particles with inward directed velocity at the kicker. 
   The damping rate for betatron oscillations, or the cooling rate, depends on the fractional
imbalance of particles moving inward and outward at the kicker. According to Eq. (4.149), the 
procedure works best if the number of particles in the group sensed by the pickup, Ns, is small.
There are two ways we can assure a low value Ns: 
   1. The total number of particles in the storage ring, N, is low. 
   2. The detector-amplifier system has high frequency response so that it can sense changes in a
small fraction of the particles in the ring. 

For high beam luminosity, we want to avoid the first option. Ideally, we should design a feedback
system with the highest possible frequency response. 
   If we rotate the pickup and kicker electrodes 90° about the beam axis, the feedback system of
Fig. 4.15a will damp vertical betatron oscillations. Stochastic cooling systems can also reduce the
longitudinal emittance of a beam. One way to approach longitudinal cooling is to design the
optics of the storage ring  so that the beam particles spread in the horizontal direction according to
their longitudinal energy. High energy particles move outward compared with low energy
particles. Such sections of  the accelerator are called high dispersion regions. For this geometry,
measurement of the beam centroid in the horizontal direction yields information on the average
kinetic energy of a  group of particles relative to the mean. The pickup signal drives a kicker with
a longitudinal electric field. An outward centroid displacement at the kicker implies that the group
of particles has an excess of kinetic energy — the kicker should apply a decelerating force. 
   In the following discussion, we shall concentrate on stochastic cooling in the transverse
direction, or betatron cooling. The theory presented gives a good idea of the mechanism of 
stochastic cooling and motivates some important scaling laws.  Nonetheless, for a comprehensive
description of topics such as mixing, a more sophisticated approach based on a frequency domain 
analysis is required. To begin, imagine how the cooling system of Fig. 4.15a would function if it
could sense individual particles. Assume the system responds to a single test particle.  The
frequency with which the particle passes the detector is 1/To, where To is the time to complete a
revolution around the ring. If the average orbit radius of the particle orbit is R, then

The test particle executes betatron oscillations of wavelength 8.  The quantity xk
0 represents the

amplitude of the oscillation. The superscript 0 flags the test particle, while k shows that the
particle has completed k revolutions around the ring. 
   To begin, suppose that the particle has its maximum displacement when it passes the pickup
(Fig. 4.15b). Later, we shall add corrections to represent the fact that particles pass the pickup at
random phases in their oscillations. If Eq. (4.150) holds, the particle reaches the kicker with a
negative velocity:  



Beam emittance - advanced topics Charged Particle Beams

181

(4.153)

(4.154)

(4.155)

(4.156)

For antiprotons, a negative kicker electric field reduces the transverse velocity. There is a specific
value of electron field, Ex0, that will cancel the velocity completely. If the kicker has length D,
then Ex0 is approximately 

Equation (4.153) shows that the kicker field is linearly proportional to the particle displacement at
the pickup.
   We can represent the action of the cooling system on the test particle in one transit by the
equation

Equation (4.154) gives the betatron oscillation amplitude of the particle arriving at the detector on
turn (k+1) as a function of  the amplitude on turn (k). The quantity g is the system gain, which
depends on the signal strength from the pickup, the amplifier gain, and the kicker plate geometry.
If a displacement xk

0 at the kicker results in the electric field of Eq. (4.153), then we take g = 1.
For this choice, the system cools the orbit of Fig. 4.15b in a single pass.
   Stochastic cooling is complicated by two factors that influence actual systems:
   1. The detector-amplifier has a finite frequency bandwidth and senses many particles at once. 
   2. Noise generated in the amplifier distorts the signal applied to kicker.

Regarding the first point, the electronics responds to changes in the beam centroid with a nonzero
time resolution that we shall denote Ts. The effective frequency bandwidth of the system, W, is 
related to the sampling time by:

Suppose that the storage ring contains a total of N particles. For effective cooling, we want the
detector to sense a small number of particles in the time window Ts. Therefore, it is better if the
particles are spread uniformly around the ring rather than bunched. If we assume a uniform beam,
the number of  particles sampled by detector is, 

where To is the average particle revolution time [Eq. (4.151)]. 
   Consider a group of Ns particles completing turn k around the ring. The group includes the test
particle with betatron oscillation amplitude xk

0. The feedback signal from the detector is
proportional to the average imbalance of particles between the  inside and the outside. The
average displacement of the beam at the detector is: 
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(4.157)

(4.158)

(4.159)

(4.160)

The quantity xk
j is the amplitude of the betatron oscillation of the jth particle in the group. We

must modify Eq. (4.154) to include the fact that the test particle oscillation amplitude passing
through the kicker is proportional to the average displacement, , rather than to xk

0. The equation
becomes: 

We have included the possibility of detector noise in Eq. (4.158)  through the quantity >. It is a
random variable uncorrelated with any beam-dependent quantities; the effect of noise appears as
an error in the detector centroid signal that is amplified with the real signal.
   Because the betatron oscillation amplitudes of other particles are randomly distributed relative
to the test particle, we must  construct a statistical theory to describe variations of xoö 
averaged over many transits through the system. We shall construct an equation that describes the
rate of reduction of the root-mean-squared test particle displacement averaged over many 
transits. To begin, the change in the square of the test particle displacement in a single transit is:

The second form of Eq.(4.159) comes from Eq.(4.158). Expanding terms and substituting for the
beam centroid at the detector from Eq. (4.157) gives the following equation:

The sums in Eq. (4.160) are taken over the same range as Eq. (4.157). 
   Next, we take averages of the terms in Eq. (4.160) over many transits through the feedback
system. We apply the condition that the displacement amplitudes of other particles at the detector 
are uncorrelated with the amplitude of the test particle. In other words, the betatron oscillations
become completely mixed each time the group of particles traverses the detector. (We should note
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(4.161)

(4.162)

(4.163)

(4.164)

(4.165)

(4.166)

(4.167)

that this condition is usually violated in actual systems — we shall discuss the consequences of
poor mixing later.) A bar over a quantity denotes an average taken over many  transits. The
assumption of random oscillations leads to the elimination or modification of many terms on the
right hand side  of Eq. 4.160. For example, 

because the displacement of the beam centroid from the main beam axis averages to zero over
multiple transits. 
   We can simplify the notation by defining the root-mean-squared  betatron oscillation amplitude
of particles in the test group:

We want the test particle orbit to characterize the particles in the group. Let the displacement
amplitude of the test particle equal X:

We can write

   Now, consider the other terms on the right hand side of Eq. (4.160). We find that

by the condition that particle orbits mix completely between transits. Also, by the assumption that
the amplifier noise is uncorrelated with the particle displacement amplitude, we find:

Finally, 
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(4.168)

(4.169)

(4.170)

(4.171)

because the particles are statistically independent and the cross terms cancel.  
   Collecting all the non-zero terms of Eq. (4.160) gives the following relationship for the change
in the mean-squared betatron oscillation amplitude of a group of particles in the cooling system:

The quantity >2 is the mean-squared detector noise figure. We must correct Eq. (4.169) to account
for the fact that the original test particle passes the pickup and kicker at random phases in 
its betatron oscillations. We multiply all terms on the right hand side by 0.5 because the random
mean-squared displacement is half the square of the betatron oscillation amplitude. With the
correction, Eq. (4.169) gives the average change of the mean-squared betatron oscillation
amplitude in a single transit. We can write an approximate differential equation by remembering 
that the time per transit is To. The rate of change of the mean- square oscillation amplitude is: 

   Equation (4.170) is the fundamental relationship of stochastic beam cooling. The first term on
the right hand side represents the coherent response of the system to a horizontal imbalance in the 
particle distribution at the detector. This is the desired effect  that we discussed qualitatively at
the beginning of the section.  Note that the cooling rate is inversely proportional to Ns and  To. As
expected, cooling is less effective when there are many particles in the sensed bunch. Also,
cooling is proportional to the frequency of particle transits through the system, 1/To. 
   The second and third terms on the right hand side of Eq. (4.170)  have opposite sign compared
with the first term — they describe effects that heat the distribution. The third term represents
electronic noise in the detector circuit — the noise is amplified  and applied to the kicker plates.
As expected, the noise term does not depend on Ns or X2, the properties of the particle
distribution. The second term in Eq. (4.170) represents statistical  granularity, or Schottky noise,
in the detector signal that results from the finite number of particles sampled. The granularity is
uncorrelated with the detected centroid variations  that allow beam cooling. 
   To understand the implications of Eq. 4.170, we shall first discuss the solution for a perfect
amplifier. With no electronic noise (>2 = 0), the equation takes the form, 
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(4.172)

(4.173)

(4.174)

(4.175)

(4.176)

Equation (4.171) has the solution 

where 8 is the cooling rate, . The transverse emittance of the beam is
proportional to X2; therefore, , varies as:

   Equation (4.172) shows that cooling is most rapid when g = 1. In this case the cooling rate is:

We can write the peak damping rate in terms of the sampling time, Ts and the total number of
particles in the ring:

Equation (4.175) illustrates that beam cooling improves with high bandwidth and a low number
of contained particles. As an example,  take N = 1011 and W = 1 GHz. The e-folding time for
emittance reduction is 1/8max = 100 s. In actual systems, cooling of beam takes much longer
because of imperfect mixing.
   Electronic noise usually has little effect on the initial cooling rate — it limits the final
achievable emittance reduction. At late time, we expect that the time-derivative on the left-hand
side of Eq. (4.170) approaches zero. Setting the terms on the right hand side equal to zero gives
the following value for the minimum mean-squared betatron oscillation amplitude: 

The term in parentheses equals unity if g = 1. Equation (4.176) shows that we can reduce the final
beam emittance by lowering the detector noise, increasing the system bandwidth, and reducing
the  number of particles stored in the ring.
   The above conclusions rely on the assumption that the betatron  oscillations of particles in a
group are completely randomized between transits of the feedback system. Cooling does not take 
place if particle orbits remain correlated between transits. To show this, imagine a monoenergetic
group of particles in a focusing system with perfect linear forces. If the initial distribution of
betatron oscillation phase is random, the pickup initially senses an irregular signal. Nonetheless,



Beam emittance - advanced topics Charged Particle Beams

186

(4.177)

(4.178)

the displacement fluctuations of the beam are coherent — over long times, the signal repeats
periodically. The feedback system senses the initial displacement fluctuations and corrects the 
particle orbits, slightly reducing the beam emittance. After this, there are no more centroid
fluctuations to detect and beam cooling ceases. Only the effects of Schottky and detector noise 
remain — the feedback system subsequently heats the beam.
   The success of stochastic cooling depends on the continuous randomization of the particle
orbits sampled. In storage rings,  randomization results primarily from a spread in the axial
momentum of beam particles. Usually, there is no correlation between axial and transverse
motions. The mixing process is a continuous redistribution of the sampled betatron oscillations so 
that particle displacements at the pickup are random. Unfortunately, stochastic cooling makes
contradictory demands on the mixing process. Ideally, there should be no mixing when the beam
travels from the pickup to the kicker. For effective cooling, a beam displacement at the pickup
must appear as an average transverse velocity at the kicker. The requirement is that the betatron
wavelengths of the Ns particles in the group must be almost the same to preserve a coherent
oscillation. On the other hand, we require that effective mixing occurs when the  particles travel
from the kicker back to the pickup — the beam distribution at transit (k+1) should be unrelated to
the distribution at transit k. 
   In a real system, mixing involves compromises. Information is inevitably lost when particles
move from the pickup to the kicker and randomization of the distribution is incomplete after a 
revolution. A detailed description of stochastic cooling with incomplete mixing requires an
advanced frequency domain theory.  Instead, we shall concentrate on qualitative arguments to 
emphasize the main ideas. The pickup system senses a portion of  the beam in a storage ring of
length cTs = c/2W. Suppose that particles in the ring have a momentum spread )p. As a result, the 
localized group of particles spreads axially as it propagates. We define the quantity )L as the
length of an initially short beam bunch after it makes one revolution around the ring. 
    We define the mixing parameter, M, in terms of )L:

The mixing parameter has the following interpretation. Mixing is effective if M ~ 1 — there is
sufficient coherence between the pickup and kicker while the particles are significantly
redistributed over a full revolution. In many storage rings, the momentum spread is small, so that
M o 1. In this case there is substantial turn-to-turn coherence and the cooling rate drops.
   We can express )L in terms of the momentum spread and the properties of the transverse
focusing system. The transition gamma factor, (t, is an important characteristic of focusing 
systems in circular machines. The definition and implications of (t are discussed in [CPA, pg.
554]. If S is the average pathlength for particle orbits around a storage ring, then changes in the
pathlength are related to the momentum spread by
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Assume that the antiproton beam in the storage ring is highly relativistic (( o (t). Then, all
particles travel at about speed of light and variations in transit time around the ring arise primarily
from differences in path length. After a transit, a group of particles with momentum spread )p
expands to a length 

Substitution of Eq. (4.179) into Eq. (4.177) gives the following expression for the mixing
parameter:

   In a sample of Ns particles, the fraction of the group that remains coherent from turn-to-turn is
not cooled. Although coherency reduces cooling, it does not change the effect of Shottky noise.
The frequency-domain analysis shows that imperfect  mixing enhances the beam noise term by a
factor of M. The revised  cooling equation is: 

Eq. (4.181) implies that the maximum cooling rate occurs when g = 1/M. Ignoring amplifier
noise, the modified cooling rate is:

   As an example, consider the parameters of the antiproton debuncher ring at Fermilab. The ring
has a radius of R = 83 m, corresponding to a antiproton revolution time of 1.7 :s. For typical
operation of the ring, (t = 13, )p/p = 0.002, and N = 108. The bandwidth of the cooling system is
about W = 2 GHz. Insertion of the parameters into Eq. (4.180) shows that mixing is poor, with M
–12. For the optimum system gain, the cooling rate  is 8max = 1.7 s-1. For injection into the next
storage ring, the transverse emittance of the injected beam must be reduced to about 3 per cent of
its initial value. The process takes about 2 seconds. During this time, the beam passes through the
cooling system about 106 times.
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5

Introduction to 
Beam-generated Forces
____________________

   In Chapters 3 and 4 we studied methods to describe beams of particles with diverse orbit
parameters. In this chapter, we address the second main problem of collective beam physics, the 
calculation of orbits when particles exert forces on one another. Collections of charged particles
interact in a different way from familiar systems such as molecules in gas. Charge-neutral
molecules move freely except for collisions with neighboring particles. Furthermore, a molecule
collides with only one particle at a time. In contrast, charged particles create long-range forces.
Large numbers of charged particles interact simultaneously. 
   Section 5.1 reviews expressions for the electric and magnetic fields generated by beams with
simple geometries. Many derivations in this book apply field expressions for cylindrical or sheet
beams of infinite length. We shall find that the focusing force from the magnetic field of a
relativistic beam almost cancels its repulsive electric force — because of this balance, relativistic
beams can propagate at high current. 
    The main effect of beam-generated fields is that they limit transportable beam current. We
distinguish two types of current limits — longitudinal and transverse. The longitudinal
space-charge limit results from the axial electric  fields of a beam. Beam particles decelerate if the
energy associated with the space-charge potential in the beam volume is  comparable to the their
kinetic energy. Space-charge fields can completely stop a high-current beam. The defocusing
electric forces of a beam define the transverse limit for propagation. The  transverse limit occurs
when the beam-generated force exceeds the  force of the focusing system. 
   Section 5.2 covers the derivation of the one-dimensional Child law, a longitudinal limit. The
relationship gives the maximum current density that can be extracted from a particle source. The
Child  law derivation also illustrates a method to find the orbits of charged particles with
self-consistent space-charge fields in a one-dimensional geometry. Section 5.3 illustrates the
calculation of a longitudinal limit in a two-dimensional geometry. We derive the  maximum
current of a cylindrical electron beam in a strong solenoid magnetic field.
   Section 5.4 discusses an example of the effect of transverse beam-generated forces. We study
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(5.1)

(5.2)

(5.3)

the expansion of high-current beams in drift spaces with no applied force. Like the emittance force
(Section 3.6), the space-charge force sets limits on propagation length and minimum focal spot
size. Section 5.5 reviews the transverse forces generated by relativistic beams. The properties of
relativistic coordinate transformations lead to the processes of Lorentz contraction and time
dilation. We shall show that these effects imply the transformation laws of electric and 
magnetic fields [Eqs. (1.49)-(1.54)] and the balance between the electric and magnetic forces of
relativistic beams.

5.1. Electric and magnetic fields of beams

   To describe particle motion in high current beams, we must have expressions for the electric and
magnetic fields generated  by the particles. In most analytic calculations of collective
charged-particle dynamics, we use simple geometries that approximate real beams. It is easy to
derive field expressions for the sheet and cylindrical beams because the beam density varies in only
one dimension. In this section, we shall collect useful  formulas for the electric and magnetic fields
generated by beams  with these geometries. 

A. Sheet beam

   Figure 5.1 shows an ideal sheet beam of particles with charge q.  The beam extends infinitely in
the y and z directions — average  particle motion is parallel to the z axis. The particle density n(x)
varies only in the x direction — particles are contained between ±xo. Derivatives in the y and z
directions are equal to zero. Equation (1.28) reduces to 

For simplicity, we shall take the particle distribution as symmetric about the axis x = 0. In this case
the electric field at the  axis equals zero:

If there is no externally-applied field, integration of Eq. (5.1) and application of Eq. (5.2) gives an
expression for the electric  field in terms of the particle density: 
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Figure 5.1. Geometry of a sheet beam of infinite width in the y direction propagating in the z direction.

   Equation (5.3) gives a good approximation for finite-length beams if their properties vary over
distances long compared with xo 

+. Here,  the gradients of the electric field in the y and z directions
are  non-zero but much smaller than the gradient in the x direction. Figure 5.2 shows equipotential
lines in a cross-section of a sheet  beam in a rectangular box with finite width in the y direction.
The field varies mainly in x except near the edges. The sheet approximation is also useful for
annular beams with radii much greater than their thicknesses. 

+ For relativistic beams, the infinite beam expressions are approximately correct if the beam properties
vary over axial distances much greater than xo in the beam rest frame. In the stationary frame, the axial
length scale is xo/(.

   In the one-dimensional approximation, the magnetic field is related to the z-directed current
density, jz(x), by 

If the particles in the beam of Fig. 5.1 are monoenergetic and have small transverse velocity
components (vx, vy n vz), then the axial velocity is constant over the beam cross-section. The 
current density is

Substituting Eq. (5.5) in (5.4) and integrating, we find that
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(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

Figure 5.2. Lines of constant beam-generated electrostatic potential for a sheet beam in a rectangular metal
chamber. Propagation in z with a finite width in the y direction.

Comparison of Eqs. (5.3) and (5.6) gives a relationship between the transverse electric and
magnetic fields of paraxial sheet beams: 

Note that Eq. (5.7) holds for any variation of n(x).
   We often use the condition that a beam has uniform density to make estimates when we do not
have a detailed knowledge of the particle distribution. Suppose that the density has the form:

Evaluation of the integrals of Eqs. (5.3) and (5.6) gives:

Equations (5.9) and (5.10) illustrate a useful property of the uniform-density beam — the electric
and magnetic fields vary linearly with x (displacement from the axis). This  property makes it easy
to describe the motion of particles through a linear focusing system in the presence of beam-
generated fields.
   We can also find expressions for the electrostatic potential and magnetic vector potential of a
uniform-density beam. Integration of the Poisson equation [Eq. (2.85)] gives
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(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

The quantity N(0) is the potential at the center of the beam. The  difference in electrostatic
potential between the center of the beam and the edge is

We expect that the condition q)Nmax n movz
2/2 holds for paraxial particle orbits.

   The equation that defines the vector potential for a sheet beam is 

We calculate Az by inserting the expression of Eq. (5.10) into Eq. ( 5.13) and integrating.
Adopting the boundary condition Az(0) = 0,  the vector potential is

   Often it is unnecessary or impossible to understand the details of particle motion over the full
cross section of a beam.  Instead, we use an envelope equation that describes the balance of
forces only at the periphery, or envelope, of a beam. The beam-generated electric field on the
envelope of a sheet beam is given by Eq. (5.9) with x = xo. For a paraxial beam, we can write a 
useful alternative expression in terms of the net beam current.  If vz is almost constant, the current
per unit length of a sheet beam is 

The quantity $ is the longitudinal relativistic velocity factor.  The envelope electric field is

Similarly, the envelope magnetic field is

  The beam-generated electric and magnetic forces acting on the  envelope of a sheet beam are
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(5.19)

(5.20)

The ratio of magnetic to electric force is

Equation (5.20) holds at all locations in a paraxial sheet beam, independent of the density
distribution. The equation has an important implication for the transport of high-current beams. 
For non-relativistic particles (such as ions)  the beam magnetic  force is usually negligible. In
contrast, magnetic forces are important for relativistic electron beams. Here, the focusing 
magnetic force almost balances the electric force, allowing transport at high current levels.

B. Cylindrical beams

   Figure 5.3 shows an ideal cylindrical beam. The beam has azimuthal symmetry and infinite
extent in the direction of propagation. The density drops to zero at radius ro. Again, the
assumption of infinite length beam leads to good estimates of the fields of beams that vary over
distances long compared with ro/(. Here, axial derivatives of field quantities are much smaller
than derivatives in the radial direction.    
   Expressions for the fields of cylindrical beams are similar to those for the sheet beam. A uniform
cylindrical beam has density no that extends from the axis to a sharp termination at ro. For a
uniform density, the beam-generated fields vary linearly with radius. The radial magnetic force,
-qvzB2, has magnitude equal to $2 times the electrical forces at all radii. We shall show in 
Section 5.5 that this condition is a consequence of relativistic transformations and holds for all
beam geometries.

Figure 5.3. Cylindrical beam propagating in the z direction.
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(5.3)

(5.6)

(5.21)

(5.22)

(5.9)

(5.10)

(5.11)

(5.12)

(5.14)

C. Summary of equations

I. Sheet beam

1. Varying density in x direction, n(x)

2. Uniform density, n(x) = no in range -xo # x # xo
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(5.15)

(5.16)

(5.17)

(5.18)
(5.19)

(5.22)

(5.23)

(5.24)

(5.25)

3. Envelope fields and forces, paraxial beam

II. Cylindrical beam

1. Varying density in radial direction, n(r)
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(5.9)

(5.10)

(5.11)

(5.12)

(5.14)

(5.9)

(5.10)

(5.11)

(5.12)

(5.14)

2. Uniform density, n(r) = no  in range 0 # r # ro

3. Envelope fields and forces, paraxial beam

5.2. One-dimensional Child law for non-relativistic particles

   The Child law states the maximum current density that can be carried by charged particle flow
across a one-dimensional extraction gap. The limit arises from the longitudinal electric  fields of
the beam space-charge. We shall study the Child law in detail — it is one of the most important
results in collective beam physics. The derivation is significant for two reasons:

   1. The Child limit gives the maximum current density from a charged particle extractor.
Although the derivation applies to a specialized geometry, the results provide good estimates for a
variety of high power beam devices.
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   2. The derivation illustrates the calculation of a charged particle equilibrium with self-consistent
space-charge fields. In latter chapters, we shall apply similar methods to more complex problems.

   The extraction gap is the first stage of an accelerator — low-energy charged particles from a
source are accelerated to moderate energy (~10 keV to ~1 MeV) and formed into a beam. The 
Child law calculation applies to the one-dimensional gap of Fig. 5.4. A voltage -Vo is applied
across a vacuum gap of width d. Charged particles with low kinetic energy enter at the grounded 
boundary. The particles have rest mass mo and carry positive charge +Ze — it is easy to modify
the treatment for electrons. Particles leave the right-hand boundary with kinetic energy eVo —  we
shall assume that the exit electrode is an ideal mesh that defines an equipotential surface while
transmitting all particles. The following assumptions simplify the calculation of self-consistent
flow:

   1. Particle motion is non-relativistic (eVo n moc2). We shall discuss relativistic effects in Section
6.5.
   2. The source on the left-hand boundary supplies an unlimited flux of particles. Restrictions of
flow result entirely from space-charge effects. 
   3. The transverse dimension of the gap is large compared with d. The only significant
components of particle velocity and electric field are in the z direction. We shall develop methods
for finite-width injectors in Section 7.1.
   4. The transverse magnetic force generated by current across the gap is small compared with the
axial electric force. As a result, particles follow straight line trajectories across the gap. This
assumption if valid for ion beams, but it is usually violated in high-current relativistic electron
beam injectors.
   5. Particles flow continuously — the electric fields and space-charge density at all positions in
the gap are constant. 

Figure 5.4. Geometry for the calculation of space-charge limited  ion flow across an infinite planar
acceleration gap.
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(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

  The steady-state condition means that the space-charge density, D(z), is constant in time:

Combining Eq. (5.36) with the law of conservation of particles [Eq. (2.108)] gives: 

Equation (5.37) implies that the current density, equal to Zen(z)vz(z), is the same at all positions in
the gap. We will designate the constant value as jo. The density of particles as a function of
position is

If we take the electrostatic potential equal to zero at the particle source, the velocity and potential
are related by

We express the density as a function of N by inserting Eq. (5.39) into Eq. (5.38). We can then
substitute the result in the one-dimensional Poisson equation:

We can solve Eq. (5.40) with appropriate boundary conditions to find the self-consistent variation
of N(z). We then substitute into Eq. (5.38) to find the variation of particle density. To review, the
steps in the self-consistent equilibrium calculation for this special case are as follows. First, we use
conservation of energy and particle flux to express the beam density as a function of the field
quantity, N. Second, we substitute the expression into the field equation to find N. 
   We can write Eq. (5.40) more efficiently if we introduce the dimensionless variables . = z/d, M
= -N/Vo. The equation becomes  

where 
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(5.42)

(5.43)

Two of the boundary conditions are M(0) = 0 and M(1) = 1. We must have a third boundary
condition to define a unique solution. For space-charge-limited flow, we take the condition that
the electric field at the source equals zero, or 

We can understand the reason for this condition by inspecting Fig. 5.5. The figure shows a set of
possible solutions of Eq. (5.41). If the available current density from the source is low, then a
solution like that of curve A results. The potential variation is almost the same as the vacuum
solution with no contribution from space-charge — the electric field is nearly uniform across the
gap. With higher source flux there is more positive space-charge in the gap. Curve B shows the
potential with space-charge contributions. The average potential in the gap is higher and the
electric field at the source is lower. Suppose we continue raising the flux until the electric field at
the source approaches zero (curve C). Then, particles with low kinetic energy are just able to
leave the source. Higher gap flux is impossible — it would result in a negative electric field at  the
source that repels entering particles. The flux of particles across the extraction gap saturates at the
level where M'(0) = 0,  independent of further increases in the available flux from the source. At 

Figure 5.5. Axial variation of electrostatic potential in an infinite planar acceleration gap. (A) Low beam
current. (B) Moderate beam current. (C) Space-charge-limited beam current.
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(5.44)

(5.45)

(5.46)

(5.47)

(4.48)

(4.49)

this point, we say that the extraction gap passes from source-limited flow to space-charge-limited
flow. Section 6.2 discusses the physical basis of the transition in detail. 
  We can solve Eq. (5.41) by multiplying both sides by 2M', where M' = dM/d.:

The left-hand side is an exact differential of (M')2. Integrating both sides of Eq. (5.44) from the
source to position z and applying the boundary conditions gives:

We can rewrite Eq. (5.45) as:

Both sides of Eq. (5.46) can be integrated — the result is

The boundary condition M(1) = 1 implies that " = 4/9. Substituting the definitionof " from Eq.
(5.42) and solving for  the current density gives the well-known Child law for space-charge-
limited extraction:

For space-charge-limited flow, the electrostatic potential varies with position as

Equation (5.49) determines curve C of Fig. 5.5.
   Equation (5.48) states that for a given gap voltage and geometry, the current density is
proportional to the square root of the charge-to-mass ratio of the accelerated particles, .
The allowed  current density of electrons is roughly 43 times higher than that of protons. In
electron and proton extractors with the same values of d and  |Vo|, the densities are the same but
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(5.50)

(5.51)

the electrons move faster by  a factor . For reference, the Child limit for non-relativistic
electrons is 

The quantity Vo is given in volts. For d expressed in centimeters, the units of Eq. (5.50) are
A/cm2. Similarly, if d is given in meters, jo has units A/m2. The Child limit for ions is

Figure 5.6. Normalized space-charge-limited current densities for a variety of charged particles —  jod2

versus Vo.  
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(5.52)

(5.53)

The quantity Z is the ionization state and A is the atomic number of the ions. Figure 5.6 gives
values of jod2 in amperes as a function of Vo for electrons and some ions. Electron values are
plotted only up to 100 kV; relativistic corrections should be added for higher voltages (Section
6.5).
   The electric field magnitude limits the maximum current density from an extractor — 
electrodes break down at fields exceeding ~10 MV/m. For space-charge-limited flow, the electric 
field varies as 

The electric field is highest at the output boundary, Ez(d) = Emax = 4Vo/3d. We can write the Child
law in terms of the maximum electric field:

Equation (5.53) implies that the maximum current density decreases with increasing applied
voltage when the maximum electric field is fixed. For Emax = 10 MV/m, the highest attainable
current density of a 50 kV proton extractor is roughly 1.37 ×104 A/m2 (1.37 A/cm2). 
   Beams extracted from a one-dimensional, space-charge-limited extractor cannot propagate an
indefinite distance in vacuum. The space-charge of the beam creates electric fields — depending
on the geometry of the propagation region, the fields may be strong enough to reverse the
direction of the beam. Figure 5.7a shows the space-charge potential of a one-dimensional electron
beam propagating between a grounded mesh anode and a grounded collector. In the figure, the
distance between the anode and collector is less than or equal to d, the width of the extraction
gap. We shall find (Section 6.1) that the maximum space-charge potential between the anode and
collector is less than Vo. Although electrons slow down, they still reach the collector. With larger
spacing between the anode and collector, the peak potential in the propagation region increases.
    We can use a simple construction to find the maximum allowed propagation length. To begin,
suppose we locate a plate at potential -Vo a distance d from the anode (Fig. 5.7b). In the region d
# z # 2d, electron orbits are mirror images of those in the extractor. Similarly, the variation of
space-charge density and potential are mirror images — all electrons reach the plate. Next, we
replace the plate with a transparent mesh and locate a grounded collector at the position z = 3d
(Fig. 5.7c). With a perfectly-transmitting mesh, the electron flux is the same in all three regions.
The electron orbits, density, and electrostatic potential in the region 2d # z # 3d are identical to
those in the extractor. Finally, we recognize that the mesh collects no charge  — it can be
removed without changing the potential. The solution of Fig. 5.7c is a limiting case. If the spacing
between the anode and collector exceeds 2d, the electrostatic potential causes electron  reflection
(Fig. 5.7d). The reflection plane, where the potential  reaches -Vo, is called a virtual cathode. We
conclude that beams generated by a one-dimensional space-charge-limited extractor 
cannot propagate a distance greater than twice the extraction gap width. 
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Figure 5.7. Beam-generated electrostatic potential downstream from a planar space-charge-limited
acceleration gap with voltage Vo and spacing d (polarities apply to electrons). (a) Grounded collector at a
distance smaller than d from the anode mesh. (b) Biased collector (-Vo) at a distance d from the anode
mesh. (c) Grounded collector at a distance 2d from the anode mesh. (d) Formation of a virtual cathode
when a grounded collector is moved  to a distance greater than 2d from the anode mesh.
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(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

   To complete the discussion of space-charge flow, we shall consider the Child law derivation as
an example of a self-consistent equilibrium. Section 2.4 showed that the distribution function for a
collisionless beam is constant along a single- particle orbit. If we pick a distribution function that
depends  on constants of single-particle motion, such as total energy, then that function must be a
valid equilibrium solution to the Vlasov equation. For one-dimensional motion, the single constant
is the total particle energy. In an extractor, the total energy is the sum of kinetic and potential
energy contributions: 

We have defined the electrostatic potential so that the total energy is zero at the source, U(0) = 0.
We assume that all particles enter the gap with negligible kinetic energy; therefore, the particle
distribution function has the form

where *(U) represents the delta function. 
   For reference, the delta function has the following properties:

   We calculate the particle density by taking an integral of the distribution function over velocity
space:

We must be careful to express the integral in the proper form to apply Eq. (5.57). If we set X = vz
2

and dX = 2vzdvz, then the Eq. (5.59) becomes
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(5.60)

(5.61)

Comparing Eq. (5.60) with Eq. (5.57) and taking g(X) = 1/ , we find that

Equation (5.61) has the same form as the density function used in Eq. (5.38). The formal method
leads to the same expressions for the self-consistent particle equilibrium. 

5.3. Longitudinal transport limits for magnetically-confined electron beams

   We saw in Section 5.2 that space-charge effects can strongly influence the transport of a
one-dimensional high-current beam injected into a vacuum region. The theoretical description of 
high-current beam propagation can become complex when we address the full three-dimensional
problem. Figure 5.8a illustrates some of the interactive processes that can take place when a
cylindrical beam enters a transport tube through an anode mesh. Some of the particles travel
forward while others are reflected at a virtual cathode — all particles are subject to transverse
space-charge deflections. 
   In this section, we limit attention to a simplified transport geometry so that we can develop
analytic formulas. We shall study a cylindrical relativistic electron beam in a transport pipe with  a
strong axial magnetic field. The magnetic field allows electrons to move only in the axial direction
— we say that electrons are tied to the field lines. As a result, particle motion is straightforward
to describe. In this section, we calculate limits on propagating beam current — we shall look for
conditions where the space-charge potential of the beam is comparable to the 
electron kinetic energy. We restrict attention to electrons because solenoidal magnetic fields are
ineffective for ion beam containment. Section 10.2 discusses conditions for electron confinement
in a magnetic field. 
   Figure 5.8b shows the geometry of the calculation. The steady- state beam enters a conducting
pipe of infinite length through a foil or mesh. The pipe wall has radius rw. The mesh and pipe are 
at ground potential. We assume that the electrons emerge from an electrostatic injector with
applied voltage Vo. The relativistic electrons are monoenergetic with ( = 1 + eVo/mec2. In the
strong magnetic field the electron velocity is directed entirely along the axis, $ – $z. We take the
current density equal to a uniform value, jo, over the region 0 < r < ro. The net beam current is Io 
= jo(Bro

2). 
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Figure 5.8. Injection of a cylindrical beam into a grounded metal pipe. (a) Numerical calculation using the
Trak code showing traces of rays and lines of constant electrostatic potential. Incident  laminar beam
properties: 0.01 m radius, 100 keV energy, 700 A current, uniform current density. (b) Geometry for the
calculation of the limiting current.

   Upon entering the pipe, the beam passes through a transition region with strong axial
components of electric field. We shall use a strategem to avoid detailed calculations of complex
particle orbits in this region. We calculate a beam equilibrium in the downstream region far from
the entrance mesh (z o rw) and match this solution to the input beam distribution by applying
conservation principles. In the downstream region, we expect that  the cylindrical beam is axially
uniform; therefore, axial variations of electric and magnetic field are small. It is acceptable to
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(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

approximate the fields with expressions for an infinite length beam. 
   We can specify some properties of the downstream beam. For instance, the radius is everywhere
equal to ro because electrons are tied to magnetic field lines. Also, the axial current of the steady-
state beam is constant at all positions. As a result, the current density is uniform throughout the
length of the pipe, 

In the region far from the mesh, the space-charge potential is a function of radius only, N(r). By
conservation of total energy, the relativistic gamma factor is

We can apply Eq. (5.63) to calculate the axial velocity as a function of electrostatic potential N.
We then combine the expression with Eq. (5.38) to find an expression for the electron charge
density as a function of N, D(N). Finally, we substitute the charge density in the cylindrical form
of the Maxwell equations to determine the self-consistent space-charge potential.
   We will add one more simplification to calculate the space-charge potential of the downstream
beam — the space-charge is approximate uniform: 

Equation (5.64) is valid if all electrons in the beam have about the same axial velocity. This
condition holds for relativistic electrons if 

For uniform density, the Maxwell equation implies  that the electric field has the
form:

To find the maximum change in electron kinetic energy, we want to  find the electrostatic
potential on the axis. The quantity is given by
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(5.67)

(5.68)

(5.69)

Identifying the total beam current as Io = DoBro
2$c, Eq. (5.67) takes the form:

   In Eq. (5.68), the first term in brackets represents the change in potential across the beam, 
while the second term gives the potential difference between the edge of the beam and the wall.  If
we evaluate the constants in the multiplying factor, we find  that

The potential has units of volts if the beam current is given in amperes. Figure 5.9 shows 

Figure 5.9. Magnitude of the peak beam-generated space-charge electrostatic potential. Cylindrical
magnetically-confined electron beam of radius ro with uniform current density. Normalized potential
plotted versus beam current and the normalized wall radius, rw/ro.
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(5.70)

(5.71)

(5.72)

predictions of Eq. (5.69). A current of 10 kA is typical of high power linear induction
accelerators. Equation (5.69) shows that the corresponding space-charge potential is high, nearly
1 MV. For this reason, induction linac injectors operate at high voltage (Vo $2 MV).
   The assumption of uniform space-charge density in the proceeding calculation applies if electron
deceleration by space-charge forces is small enough so that $z – 1. This condition is  violated in
many intense relativistic beam experiments. We shall next extend our models to account for
differences in $z from the injection value. In a beam with high values of electrostatic 
potential far from the injection mesh, the density and average velocity are functions of radial
position. Conservation of charge  implies that the quantities are related by: 

Conservation of total energy gives the following relationship between N(r) and $z(r):

Substituting from Eq. (5.70), the Poisson equation is:

Outside the beam, the right hand side of Eq. (5.72) equals zero.
   We can apply the following numerical procedure to find the space-charge-limited current. First,
we choose a value of peak electrostatic potential in the range . We then solve Eq. (5.72)
numerically. We start at the origin with the conditions N(0) = No, dN(0)/dr = 0 and match the
potential and its radial derivative at the boundary, r = ro. We carry out the calculation for different
values of jo until we find a choice where N approaches 0 at r = rw. The procedure yields the
current density and net current for the choice of No. We repeat the calculation many times to
estimate Io as a function of No. 
   To find the space-charge limit, we must find the value of peak potential in the range 0 #N # Vo
that gives the highest value of Io for a given (. When No = Vo, electrons at the center of the beam
lose all their kinetic energy. Here, many electrons enter the pipe but their average axial velocity is
low — the net current is small. At the other extreme (No = 0), few electrons enter but they move
at high velocity. Again, the current is low. We expect that the maximum value of current occurs at
an intermediate value of No. 
   We can make a simple estimate of the current limit if the beam radius is small compared with the
wall radius. In this case Eq. (5.68) shows that most of the potential drop occurs between the wall
and  the beam boundary. Electrons in the narrow beam all have about the same kinetic energy —
we can take ( and $z as average values over the beam cross section. If the beam carries a net
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(5.73)

(5.74)

(5.75)

(5.76)

current Io, Eq. (5.68) implies that the average space-charge potential in  the cylindrical beam is
roughly

Conservation of energy implies that

where (o gives the injection energy of the electrons. Combining Eqs. (5.73) and (5.74) and
expressing $ in terms of ( gives an expression for the current as a function of the average (
factor in the transported beam:

   We can find the maximum value of the function on the right hand side of Eq. (5.75) by setting
the derivative with respect to ( equal to zero. The value of ( for the maximum beam current is

Figure 5.10. Geometry of a uniform-current-density annular beam in  a cylindrical pipe of radius rw. 
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(5.77)

(5.78)

(5.79)

(5.80)

(5.81)

(5.82)

Substituting Eq. (5.76) in Eq. (5.75) gives the following formula for  the current limit of a narrow
beam: 

The factor 4B,omec3/e on the right-hand side of Eq. (5.77) equals 17.1 kA. As an example,
consider the propagation of a 0.01 m radius beam in a 0.03 m radius pipe. The injection energy of
1.5 MeV corresponds to (o = 3.94. The space-charge-limiting current is 9.2 kA. At this value, the
space-charge potential of the beam is 1.2 MV — the beam propagates with an average kinetic
energy of  0.3 MeV (( = 1.58). 
   Longitudinal space-charge effects can be reduced, in principle, by using beams with nonuniform
current density. An annular beam can carry more current in equilibrium than a solid  beam. The
beam illustrated in Fig. 5.10 has uniform charge density Do distributed between inner radius ri and
outer radius ro. The electric field inside and outside the beam is given by the following
expressions:

Following the method we used for the solid beam, we integrate Eqs. (5.78) and (5.79) to find the
potential drop between ri and rw.  The maximum space-charge potential is

Introducing the total current, 

Eq. (5.80) becomes

Equation (5.82) is identical to Eq. (5.68) for a solid beam except for the second term in brackets
on the right hand side. This term, which depends on the geometry of the annulus, reduces the
potential difference across the beam. The potential difference between the  beam and wall,
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(5.83)

(5.84)

represented by the third bracketed term, is unchanged. 
  The ratio of the space-charge potential drop across an annular beam of relativistic electrons
compared to the potential across a  uniform-density cylindrical beam carrying the same current is 
given by the reduction factor:

The function F(ri/ro) approaches unity for a solid beam, ri/ro 6  0. For a thin annular beam ( ri/ro 6
1), the potential drop across  the beam approaches zero.
   Ignoring the effects of beam instabilities, one approach to high current (>10 kA) electron beam
transport is to generate a thin annular beam close to the conducting wall of a transport pipe in a
strong magnetic field. The idea is to minimize the potential drops across both the beam and the
space between the beam and the wall. For a thin annulus, we can apply arguments similar to those
that lead to Eq. (5.77) to derive the following limiting current:

As an application example using Eq. (5.84), suppose we have an annular beam with outer radius
ro = 0.09 m in a tube with rw = 0.10 m. At injection into the transport system, the particles have
1.5 MeV kinetic energy. The current limit predicted by Eq. (5.84) is 148 kA compared with the
figure of 9.2 kA for the narrow solid beam. Despite the theoretical advantage of annular beams, in
practice they are susceptible to instabilities that lead to particle losses.

5.4. Space-charge expansion of a drifting beam 

   In this section, we shift attention from longitudinal field limitations to the effects of transverse
electric and magnetic fields on beam transport. Again, we shall introduce the topic with a simple
example — in this case, a high-current cylindrical  beam that expands under the influence of its
own space-charge force in a drift region. We take the beam emittance equal to zero. Section 9.2
describes the complete paraxial ray equation with  emittance, space-charge, and external focusing
forces included.  
   We describe a cylindrical, paraxial beam. The paraxial condition means that particle orbits make
small angles with the axis — variations in beam properties occur over long distances compared
with the beam radius. As a result, we can represent transverse field components using expressions
for an infinite length beam. In addition, paraxial orbits have vr n vz. As a result, the beam $ and (
factors are almost constant in r and z if there is no acceleration. Finally, we assume that the zero-
emittance beam has uniform current density with radius; therefore, the net  transverse force is
linear. Because orbits are laminar, we need treat only particle motions on the beam envelope. We 
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TABLE 5.1. Value of the function F(PPPP)

P F(P) (ln P)1/2 F(P)/P P F(P) (ln P)1/2 F(P)/P

1.10 0.6370 0.3087 0.5791 8.00 7.1148 1.4420 0.8894
1.20 0.9082 0.4270 0.7569 8.50 7.4590 1.4629 0.8775
1.30 1.1209 0.5122 0.8622 9.00 7.7985 1.4823 0.8665
1.40 1.3039 0.5801 0.9313 9.50 8.1338 1.5004 0.8562
1.50 1.4681 0.6368 0.9788 10.00 8.4651 1.5174 0.8465
1.60 1.6193 0.6856 1.0121 10.50 8.7929 1.5334 0.8374
1.70 1.7607 0.7284 1.0357 11.00 9.1173 1.5485 0.8289
1.80 1.8945 0.7667 1.0525 11.50 9.4387 1.5628 0.8208
1.90 2.0220 0.8012 1.0642 12.00 9.7573 1.5764 0.8131
2.00 2.1444 0.8326 1.0722 12.50 10.0732 1.5893 0.8059
2.10 2.2625 0.8614 1.0774 13.00 10.3866 1.6016 0.7990
2.20 2.3768 0.8880 1.0804 13.50 10.6976 1.6133 0.7924
2.30 2.4878 0.9126 1.0817 14.00 11.0065 1.6245 0.7862
2.40 2.5960 0.9357 1.0817 14.50 11.3132 1.6353 0.7802
2.50 2.7017 0.9572 1.0807 15.00 11.6180 1.6456 0.7745
2.60 2.8051 0.9775 1.0789 15.50 11.9209 1.6556 0.7691
2.70 2.9064 0.9966 1.0764 16.00 12.2221 1.6651 0.7639
2.80 3.0058 1.0147 1.0735 16.50 12.5215 1.6743 0.7589
2.90 3.1035 1.0319 1.0702 17.00 12.8194 1.6832 0.7541
3.00 3.1997 1.0482 1.0666 17.50 13.1156 1.6918 0.7495
3.10 3.2944 1.0637 1.0627 18.00 13.4105 1.7001 0.7450
3.20 3.3877 1.0785 1.0587 18.50 13.7039 1.7082 0.7408
3.30 3.4798 1.0927 1.0545 19.00 13.9959 1.7159 0.7366
3.40 3.5708 1.1062 1.0502 19.50 14.2867 1.7235 0.7327
3.50 3.6607 1.1193 1.0459 20.00 14.5761 1.7308 0.7288
3.60 3.7495 1.1318 1.0415 20.50 14.8644 1.7379 0.7251
3.70 3.8374 1.1438 1.0371 21.00 15.1516 1.7449 0.7215
3.80 3.9244 1.1554 1.0327 21.50 15.4376 1.7516 0.7180
3.90 4.0105 1.1666 1.0283 22.00 15.7225 1.7581 0.7147
4.00 4.0958 1.1774 1.0240 22.50 16.0063 1.7645 0.7114
4.10 4.1804 1.1879 1.0196 23.00 16.2892 1.7707 0.7082
4.20 4.2642 1.1980 1.0153 23.50 16.5711 1.7768 0.7052
4.30 4.3473 1.2077 1.0110 24.00 16.8520 1.7827 0.7022
4.40 4.4298 1.2172 1.0068 24.50 17.1321 1.7885 0.6993
4.50 4.5117 1.2264 1.0026 25.00 17.4112 1.7941 0.6965
4.60 4.5929 1.2353 0.9985 25.50 17.6894 1.7996 0.6937
4.70 4.6736 1.2440 0.9944 26.00 17.9669 1.8050 0.6910
4.80 4.7537 1.2524 0.9904 26.50 18.2435 1.8103 0.6884
4.90 4.8333 1.2607 0.9864 27.00 18.5193 1.8154 0.6859
5.00 4.9123 1.2686 0.9825 27.50 18.7943 1.8205 0.6834
5.50 5.3007 1.3057 0.9638 28.00 19.0686 1.8254 0.6810
6.00 5.6788 1.3386 0.9465 28.50 19.3421 1.8303 0.6787
6.50 6.0482 1.3681 0.9305 29.00 19.6149 1.8350 0.6764
7.00 6.4101 1.3950 0.9157 29.50 19.8871 1.8397 0.6741
7.50 6.7654 1.4195 0.9021 30.00 20.1585 1.8442 0.6720
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(5.85)

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

denote the  envelope radius as R.
   The beam-generated electric and magnetic forces at the envelope are listed in Eqs. (5.34) and
(5.35). The motion of envelope  particles in the combined fields follows the equation: 

We apply the chain rule of derivatives to convert Eq. (5.85) to a  trace equation, 

The constant energy condition means that we can extract factors of $ and ( from the derivatives.
The result is

   To simplify Eq. (5.87), we define the following dimensionless parameter: 

The dimensionless quantity K is called the generalized perveance.  The term perveance refers to
the magnitude of space-charge effects in a beam. Section 7.1 discusses the standard perveance, a 
dimensional quantity. Equation (5.87) reduces to the form: 

The prime symbol denotes a derivative with respect to z. The beam-generated forces cause beam
expansion — a converging beam reaches a minimum value of envelope radius and then expands.
We  shall designate the envelope radius at the beam neck as Rm — we  choose the axial position
of the neck as z = 0. The first integral of Eq. (5.87) is            

The quantity P is the ratio of the beam envelope radius to the radius at the neck:
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(5.91)

(5.92)

(5.93)

(5.94)

The variation of envelope radius with distance from the neck is  given by

where

Another useful form of the solution is

Table 5.1 lists the function F(P).
   We shall work through some examples to understand the significance of the results. To begin,
we calculate the expansion  of an unneutralized ion beam. Suppose we inject a 200 mA, 300 keV 
C+ beam into a vacuum region. The generalized perveance is K =  2.8 × 10-3. The envelope angle
is zero at injection — the injection  point is a beam neck. The initial radius of the beam is Rm =
0.01  m. We want to find the beam radius at a position 0.3 m downstream. Inserting Rm, z and K
in Eq. (5.92), we find F(P) = 2.24. Table 5.1 shows that this value corresponds to P = 2.1 — the
final radius is 0.021 m. At z = 0.3 m, Eq. (5.90) predicts that the expansion angle of the envelope
is 65 mrad (3.7°). 
   As a second example, we shall find the maximum distance that a  relativistic electron beam can
propagate across a vacuum region  (Fig. 5.11). Suppose we know the beam energy, current, and 
entrance radius, Ro. We locate a lens at the entrance to the system to adjust the initial convergence
angle, Ro'. We want to find the distance L the beam travels before it expands back to its initial
radius. Furthermore, we want to find the choice of Ro' that gives the maximum value of L. From 
Eq. (5.93), the transit distance is

Inspection of Table 5.1 shows that the quantity F(P)/P attains a maximum value of 1.085 at P =
2.35. The maximum propagation distance is  if we adjust the entrance

envelope angle to . As an example, suppose we have a 100 A, 500 keV electron 
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(5.95)

(5.96)

Figure 5.11. Propagation of a high-current relativistic electron  beam through a drift region. Incident
cylindrical beam has an envelope radius Ro. The converging beam returns to its initial radius after traveling
a distance L.

beam (( = 1.98, $ = 0.863) with an initial radius of 0.02 m. The generalized perveance is K = 2.3
× 10-3. The propagation distance is Lmax = 0.63 m for an injection angle of - 63 mrad (-3.6 °).
   As a final example, we calculate the maximum beam current that can propagate to a specified
focal spot a given distance from a lens. Here, we know the initial beam radius (Ro), the target 
radius (Rm), the propagation distance (Z), and the beam energy. We can substitute these quantities
into Eq. (5.93) to find the generalized perveance and hence the allowed current of each beam. To
illustrate the calculation, we choose parameters relevant to the application of high-power heavy
ion beams for inertial fusion. The goal is to transport 10 GeV U+ beams ( ( = 1.048, $  = 0.29) 
across a vacuum reactor chamber. The chamber radius may be 10 m in radius, while the radius of
the fusion target is only 2.5 × 10-3 m. The total current required for ignition is roughly 50 kA. 
The current must be divided between a number of beams to stay within the limits set by
space-charge effects. If we pick Ro = 0.1  m, the convergence ratio is P = 20, and the convergence
function  is F(P) = 14.8. We find the generalized perveance must be less than 2.7 × 10-5.
Substituting values for the U+ beam, the current of each beam is less than or equal to 2.8 kA —
the total number of beams is about twenty. 
   To conclude, we can use the generalized perveance to compare space-charge forces to the
emittance force in a non-laminar beam.  The ratio of forces on the beam envelope is: 

The beam-generated forces dominate beam expansion if
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(5.97)

(5.98)

(5.99)

(5.100)

(5.101)

The quantity )r' is the spread in particle inclination angles. As an example, a 200 mA beam of 300
keV C+ ions has a generalized  perveance of K = 2.8 × 10-3. Beam forces determine the expansion 
if the angular spread is less than 53 mrad (3.0° ).

5.5. Transverse forces in relativistic beams

  Section 5.1 showed that there is a close balance between the transverse electric and magnetic
forces of a relativistic paraxial beam. The result did not depend on the geometry of the  beam or
the distribution of charge and current density. This section will show that the balance between
electric and magnetic  forces proceeds directly from the properties of relativistic field
transformations. To illustrate the application of coordinate transformations in beam theory, we
shall study a specific example — propagation of a self-contained ion beam in free space. Under
certain conditions, collinear ion and electron flows can achieve radial force equilibrium. As a
preface to the  example, we shall review basic ideas of beam neutralization. Neutralization is
discussed in detail in Chapters 11 and 12. 
   To begin, we shall list the transformation equations for electromagnetic field quantities. The
transformation is between an initial frame of reference and another frame moving at a relative
velocity v. To simplify notation, we take two coordinate systems with aligned axes. The relative
translation velocity is in the z direction: 

We associate a relativistic gamma factor with the transformation: 

Electric and magnetic fields measured in the two frames of reference have the following
relationships+:

+ Adapted from J.D. Jackson, Classical Electrodynamics, Second Ed., Wiley, New York, 1975, p. 552.
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(5.102)

(5.103)

(5.104)

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

(5.111)

The primed quantities in Eqs. (5.99) through (5.104) are measured in  the frame moving at
relative velocity $cz. In cylindrical coordinates, the transformations are:

   The example of a long cylindrical beam of paraxial electrons illustrates the implications of Eqs.
(5.105) through (5.106). We shall view an axial section of the beam in two specific frames of 
reference that we shall call the accelerator frame and the beam rest frame. In the accelerator
frame, the electrons move at velocity $cz. The rest frame moves at velocity $cz —  in the rest 
frame, electrons are stationary.  For this choice of reference frames, the transformation ( factor
equals the kinetic energy factor of the beam electrons in the accelerator frame.
   In the accelerator frame, the beam section has length )z. The electrons have axial velocity $c
and kinetic energy (( -1)mec2.  The beam has radius ro and carries current Io. For simplicity, we 
take a uniform density, no — it is easy to generalize the results  for any radial density variation.
The current is related to the  density by

From Section 5.1, we know that the beam has a radial electric field Er and toroidal magnetic field
B2. The fields are related by:
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(5.112)

(5.113)

(5.114)

(5.115)

(5.116)

(5.117)

(5.118)

(5.119)

The net radial force on the electrons of a relativistic beam is small because magnetic focusing
cancels electric repulsion. The net radial force at the envelope is

Equation (5.113) shows that magnetic focusing reduces the net radial force by a factor 1/(2.
   Next, consider the fields of the beam section viewed in the rest frame. The radius of the beam
still equals ro. Because of the Lorentz contraction, the measured axial length of the beam section
in the rest frame, )z', is larger than )z. The section lengths are related by

As a result, the beam densities in the two frames are:

There is no beam-generated magnetic field in the rest frame because the electrons are stationary:

We can calculate the radial electric field in terms of the density no' [Eq. (5.26)]. The electric fields
measured in the two frames of reference are related by:

We can show that Eqs. (5.116) and (5.117) are consistent with the general rules for field
transformations. Using Eq. (5.112) in Eqs. (5.106) and (5.110) gives:

   We can derive the conclusion of Eq. (5.113) as a direct implication of the Lorentz
transformations [CPA, Section 2.8]. In the rest frame, the only force is electric, F' = Fe'. Because
of  the difference in beam density, the rest frame electric force is a factor 1/( smaller than the
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(5.120)

(5.121)

(5.122)

electric force in the accelerator  frame, Fe. We can apply time-dilation to find the total transverse
force F in the accelerator frame in terms of F'. Suppose a force accelerates a beam particle in the
transverse direction over a small time increment, )t'. In the rest frame, the radial particle
displacement scales with the interval according to 

Now, imagine the same event observed in accelerator frame. The equation for radial displacement
has a similar form, but the measured interval and particle mass are different. 

The displacements observed in both frames are the same, )r = )r' — the intervals are related
through the time dilation law, )t =  ()t'. Therefore, as in Eq. (5.113), the total transverse forces
are related by

  Coordinate transformations are useful in discussions of neutralization of high energy beams. The
term neutralization refers to mixing positively charged particles with negative particles to reduce
or to eliminate beam-generated fields. Beams may be either space-charge neutralized or current
neutralized. In the first process, mixing particles with positive and negative charges lowers the
beam electric field. In the second process, the opposing flow of positive and negative charged
particles reduces the current in the beam, lowering the magnetic field. Both types of neutralization
can take place simultaneously — the division is not definite because the relative importance of 
electric and magnetic fields depends on the frame of reference.
   We can neutralize ion beams with electrons and electron beams with ions. We define the type of
beam in terms of the particle that has the highest kinetic energy. First, consider the neutralization
of ion beams. If an ion beam has density ni(x), complete space-charge neutralization takes place if
we add low energy electrons with density ne(x) = ni(x). In this case there is no charge density in
the beam; hence, there is no beam-generated electric field. If the neutralizing electrons are
stationary in the accelerator frame, the beam carries a net current from the motion of the ions —
there is a beam-generated magnetic field. On the other hand, if the electrons move at a velocity ve
= nivi/ne,  there is no net current. If ne = ni. and ve = vi, the ion beam is both space-charge and
current neutralized. This state often occurs in practice when ions propagate through field free
regions. Because of their small mass, low energy electrons can follow the ions. If the ions are
non-relativistic, the electron kinetic energy for a  matched drift velocity is:
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(5.123)

(5.124)

(5.125)

The quantity Ti is the ion kinetic energy. As an example, a 1 MeV C+ beam can be charge and
current neutralized by 45 eV electrons. 
   We can reduce the electric fields of electron beams with a background of low energy ions.
Again, complete space-charge neutralization results when  ne(x) = ni(x). For relativistic electrons,
partial space-charge neutralization is often sufficient for beam confinement. Accordingly, we shall
define a partial neutralization factor fe for electron beams: 

The average of Eq. 5.124 is taken over the beam cross section. 
   For certain values of the fe, a relativistic electron beam can  propagate in a background of
stationary ions with constant radius. Such a beam is focused by magnetic forces and defocused  by
electric forces. We have seen that the magnitude of the transverse magnetic force equals the 
electric force multiplied by $2. Adding ions reduces the electric force by an average factor of
(1-fe). The approximate condition for radial force balance of a laminar beam is:

   We cannot use ions to neutralize the current of an electron beam. Because the ion density in a
practical beam must be comparable to the electron density, current neutralization requires that vi ~
ve. According to Eq. (5.123), ions that move at the same velocity as electrons have a much higher
kinetic energy. As a consequence we must classify the collection of particles as an ion beam 
rather than an electron beam. Current neutralization may take place when an electron beam travels
through a plasma. Here, the background consists of both low energy electrons and ions. Usually,
the plasma electron density is much greater than the beam density. A small reduction in the plasma
electron density gives space-charge neutralization. The current is neutralized if the remaining
plasma electrons move with a small velocity in the direction opposite to the beam.
   We shall conclude by discussing neutralized ion beams that are self-contained. Here, internal 
fields can provide radial equilibrium for both the ions and electrons, even if they have non-zero
emittance. Such a self-contained beam is sometimes called a plasmoid. Plasmoids are formations
of energetic charged particles that can propagate long distances without expansion. Considerable
effort has been expended to generate and to understand plasmoids for possible defense
applications. We shall use relativistic transformations to investigate the properties of the
self-contained beam. We take an intense ion beam with high kinetic energy that travels into free
space in the z direction. The beam has current Ii, kinetic energy ((i-1)mic2, and radius ro. Without
neutralization, space-charge expansion limits the propagation distance (Section 5.4). We can 
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(5.126)

Figure 5.12. Definition of quantities to describe a self-focused  ion-electron beam.

reduce the electric fields by injecting a collinear electron beam with lower kinetic energy. Total
cancellation of electric and magnetic fields results if the electron beam has the same density and
velocity as the ion beam. The absence of fields is undesirable for beam propagation. Without the
beam-generated fields, there is no transverse force to counteract emittance expansion.
   Figure 5.12 shows an approach to achieve a self-focused equilibrium for both the ion and
electron streams. We inject an electron beam that has a different velocity from the ion beam and a
higher density — the beam region has a net negative charge density. The resulting radial electric
field can confine ions with non-zero emittance. The beam also carries a net current. With the
correct choice of parameters, the resulting magnetic field can balance the effect of the electric
field to give electron confinement.
   To derive parameters for radial equilibrium, we shall carry out initial calculations in the ion rest
frame and then transform the results to the accelerator frame. We denote rest frame quantities
with a prime symbol. We know the following parameters of the ion beam in the accelerator frame:
(i, Ii, ro. We also know the angular divergence of the ions, )2. We can write the ion divergence
angle in terms of the average transverse velocity in the accelerator frame:

where . The accelerator frame density of the ion  beam is .
We want to find the current Ie and  kinetic energy ((e-1)mec2, of a collinear electron beam of 
radius ro that provides radial equilibrium for both particle species. For simplicity, we assume that
the electron stream is cold — the electrons have no transverse velocity. 
   The ion rest frame moves at velocity $ic relative to the accelerator frame. The density of
stationary ions in the rest frame is
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(5.127)

(5.128)

(5.129)

(5.130)

(5.131)

(5.132)

(5.133)

Time dilation implies that the ion transverse velocity is 

We write the rest-frame density of electrons in terms of a rest  frame neutralization factor: 

where fe < 1. 
   We postulate that the electrons move at velocity $e'c in the positive z direction in the rest frame
with kinetic energy ((e'- 1)mec2. From Eq. (5.125), the condition for radial electron equilibrium in
the ion rest frame is

For ion equilibrium, the radial electric force must counteract the effect of the transverse velocities.
Chapter 9 covers the balance between emittance and space-charge forces in detail. For this
discussion, we estimate an equilibrium criterion by setting the transverse ion kinetic energy equal
to the difference in electrostatic potential energy between the axis and the beam envelope. Using
Eq. (5.129), we find that

The electron velocity in the accelerator frame is given by the relativistic velocity addition law
[CPA, Section 2.8], 

The current of the electron stream is 
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   Table 5.2 lists the implications of Eqs. (5.126) through (5.133) for the transport of a 10 A, 800
MeV proton beam. The beam has radius ro = 0.05 m. Laboratory frame values of (e, $e, Ie and
)2 are tabulated as a function of the rest frame neutralization parameter fe. A value of fe n1
implies that the electron stream density is much higher than the ion beam density. In this case the 
electron equilibrium requires almost complete cancellation of the electric force by the magnetic
force. As a result, the electron beam must have high energy and current. The advantage of this 
regime is that the ion beam can have a high divergence. This type of equilibrium is not feasible for
an electron stream with a significant emittance. At the other extreme (fe # 1), requirements on the
electron stream are less severe, but the allowed ion beam divergence is smaller. As an example,
we take fe  = 0.9. In the accelerator frame, the electron beam has current 12.1 A and a kinetic
energy of only 0.75 MeV. The permissible ion beam divergence is )2 = 0.14 mrad. The electron
velocity is 7 % higher than the ion velocity. 
   A fundamental theorem of plasma physics (see, e.g. G. Schmidt, Physics of High-temperature
Plasmas, Second Ed., Academic Press, New York, 1979, p. 71) states that a self-contained
plasmoid cannot exist. How can we reconcile the above results with this limitation? The resolution
is that although the  self-contained beam has radial equilibrium, it is not confined in the axial
direction. Radial force balance depends on axial slippage between the ion and electron streams. In
free space, the velocity difference between ions and electrons in a finite length beam would
immediately lead to charge separation and axial electric fields. The fields would decelerate the
electron stream,  resulting in a loss of radial equilibrium. The self-contained ion beam equilibrium
can exist only in a long conducting pipe. The pipe provides a return path for the extra electron
current, preventing axial electric fields.

TABLE 5.2. Self-contained ion-electron beams

fe (e Ie (A) $e )2 (rad)
0.050 15.086 237.048 0.998 1.787E-03
0.100 10.539 118.249 0.995 1.230E-03
0.150 8.497 78.640 0.993 9.761E-04
0.200 7.263 58.827 0.990 8.201E-04
0.250 6.408 46.932 0.988 7.102E-04
0.300 5.766 38.995 0.985 6.264E-04
0.350 5.258 33.319 0.982 5.588E-04
0.400 4.840 29.056 0.978 5.022E-04
0.450 4.487 25.733 0.975 4.533E-04
0.500 4.180 23.067 0.971 4.100E-04
0.550 3.909 20.879 0.967 3.709E-04
0.600 3.666 19.047 0.962 3.348E-04
0.650 3.443 17.487 0.957 3.009E-04
0.700 3.236 16.139 0.951 2.684E-04
0.750 3.040 14.957 0.944 2.367E-04
0.800 2.852 13.905 0.936 2.050E-04
0.850 2.665 12.954 0.927 1.723E-04
0.900 2.473 12.071 0.915 1.367E-04
0.950 2.259 11.212 0.897 9.407E-05
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6

Beam-generated Forces - Advanced Topics
___________________________________

   In this chapter, we shall continue the study of beam-generated  forces and self-consistent
particle flow calculations. For the most part, the chapter concentrates on one-dimensional
models. With this limitation, we can find analytic solutions with straightforward mathematics.
   Section 6.1 extends the non-relativistic Child model to describe  particles that enter an
acceleration gap with an initial velocity. The results are useful for designing multiple-gap ion 
extractors and high current ion accelerators. Section 6.2 reviews  space-charge limited flow from
a thermionic cathode. We assume that the cathode emits a Maxwell distribution of electrons,
some of which cross the extraction gap. Besides its practical value, the model illustrates a
self-consistent calculation for particles with a non-singular distribution. Section 6.3 derives the
Child law in spherical rather than planar geometry. We shall use the results to understand the
design of high-current electron guns in Chapter 7. Section 6.4 describes the space-charge-limited
flow of counter-streaming ions and electrons. Partial space-charge neutralization allows a higher
flux of each species — this is an example of current flow enhancement. As a final case of one-
dimensional flow, Section 6.5 derives the relativistic Child law. The result is useful for pulsed
electron and ion diodes (Chapter 8).
   Section 6.6 presents a general calculation of a one-dimensional  self-consistent equilibrium for
non-relativistic particles. We shall calculate the transverse density distribution of a
infinite-length sheet beam with non-zero emittance in a linear focusing force. Section 6.7
presents methods to extend equilibrium calculations to beams with two- and three-dimensional
density variations. For the special case of a uniform-density beam with an ellipsoidal shape, we
shall find that electric and magnetic fields vary linearly from the center in all three-dimensions.
The section introduces the KV distribution function, a starting point for many treatments of beam
equilibrium and stability. Velocity  integrals over the KV distribution give a beam with elliptical
boundaries and uniform density.
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(6.1)

(6.2)

(6.3)

6.1. Space-charge-limited flow with an initial injection energy 

  We can extend the one-dimensional Child limit to describe acceleration gaps where particles
enter with a non-zero energy.  The results have application to the gaps of high-current multi-
stage accelerators and the flow of electrons through grid-controlled devices like vacuum triodes.
Suppose that we apply a voltage Vo across a gap of width d — Fig. 6.1 shows polarity
conventions for positively-charged particles. Particles enter with an initial kinetic energy To and
leave the gap with energy  To + qVo. The problem is most easily formulated in terms of the 
absolute potential: N — the absolute potential equals zero at the particle source. The kinetic
energy of a non-relativistic particle is related to N by

  We can combine Eq. (6.1) with the condition of steady-state flux at all positions in the gap to
give the Poisson equation in the same form as Eq. (5.40). The difference lies in the boundary 
conditions on N:

Figure 6.1. Variation of electrostatic potential across a one-dimensional acceleration gap for a
space-charge-limited flow of ions with initial kinetic energy To. The dashed line shows the  potential
variation with no ions.
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(6.4)

(6.5)

(6.6)

(6.7)

Furthermore, because of their initial energy, particles can cross the gap even if the electric field
at the entrance is negative.  Figure 6.1 shows that the presence of particles in the gap increases
N. The limit on current occurs when the absolute potential reaches zero. We denote the position
where N equals zero as d*. Particles reach this point with infinitesimally small kinetic energy. An
increase in the injected flux causes reflection of particles.
   We shall follow the method of Section 5.2 to find an expression for the potential as a function
of position in the gap for the limiting current. The potential at d* satisfies the following boundary
conditions: N(d*) = 0, dN(d*)/dz = 0. We can integrate  the Poisson equation on each side of d*.
For example, the solution in the region d* # z # d is

Combination of solutions from both regions leads to the relationship:

The quantities N1 and N2 are defined in Eqs. (6.2) and (6.3). We can solve Eq. (6.5) for the
limiting current density. We express the result in terms of the one-dimensional Child limit [Eq.
(5.48)] with  a correction factor for the particle injection energy:

The correction factor is 

where .The quantity P is the ratio of the kinetic energy of the particles
emerging from the acceleration gap to the change in kinetic energy in the gap.
   Figure 6.2 shows a plot of F(P). As expected, the solution reduces to the standard Child law
when the injection energy approaches zero (P = 1). The function F(P) grows rapidly for
increasing P. Figure 6.2 emphasizes that the longitudinal space-charge limit drops rapidly as
particles accelerate. For example, the space-charge limit in a post-acceleration gap that doubles 
the energy of particles (P = 2) is 7.2 times the Child limit. 
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Figure 6.2. Enhancement of space-charge limited current density F(P) for ions with an initial kinetic
energy To crossing an acceleration gap with voltage Vo as a function of P = -N2/(N1-N2).

6.2. Space-charge-limited flow from a thermionic cathode

  An inherent assumption in the derivation of space-charge limited flow of Section 5.2 is that the
particle source supplies an unlimited flux of electrons (or ions). This condition is usually true for
electron extraction from a dense plasma, but it may not  hold for sources like thermionic
cathodes. Depending on the surface temperature, a thermionic cathode may generate a current
density less than the space-charge limited value. In this case particle  flow is source limited
rather than space-charge limited. 
   The current density of thermionic cathodes can be highly non-uniform. Small variations in the
surface work function result in large variations of current density (Section 7.4). For the
generation of high-brightness beams, non-uniform emission is a severe drawback — the
asymmetric space-charge forces cause growth of beam emittance in the extractor and
post-acceleration gaps. To avoid this problem, thermionic cathodes are usually operated in the
space-charge limited mode. When the flux from the source is  higher than the Child law value,
only a fraction of the flux given by the space-charge limit crosses the extraction gap. As long as
the cathode is hot enough so that emission from all points on the surface exceeds the Child limit,
the output beam has uniform current density.
   The model we developed in Sect. 6.1 was based on monoenergetic  electrons entering the gap.
This model cannot explain the selection of particles for space-charge limited flow — either all
the entering electrons cross the gap or all electrons are turned back by a virtual cathode. We can
resolve the problem by adding  an energy spread to the injected electron distribution. In this
section, we shall study space-charge limited flow in a one-dimensional gap with a thermal
spectrum of source electrons. In  particular, we shall show how selection of electrons takes place 
at a virtual cathode to give a Child flux limit, even if the initial energy spread is small compared
with the energy gain in  the gap. 
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(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

   Before we address the problem of the space-charge flow, we shall review some properties of
thermal electrons near a conducting surface. Figure 6.3a shows the geometry of the model. A 
planar metal cathode at zero potential emits electrons. The electrons have a Maxwell distribution
of kinetic energy in the z direction, characterized by the temperature Te. The space-charge of
electrons emerging into the half-plane with z > 0  creates a  negative potential in the region. The
associated electric field reflects electrons back to the cathode. The distance an electron  travels
from the cathode depends on its injection energy.
   Following the discussion of Section 2.6, the equilibrium density of electrons in the vacuum
region is a function of  the electrostatic potential:

The quantity no is the density adjacent to the cathode. We can substitute Eq. (6.8) into the
one-dimensional Poisson equation:

If we introduce the following dimensionless variables:

then Eq. (6.9) assumes the simple form 

The scale length in Eq. (6.11) is

The quantity 8d is the Debye length, a familiar quantity in plasma physics. It enters all problems
that involve the interaction of a Maxwell distribution with an electric field. Section 12.1
discusses the significance of 8d in plasmas
  The boundary conditions for the solution of Eq. (6.12) are M(0)  = 0 and dM(0)/dZ = 0. The 
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Figure 6.3. Space-charge-limited emission of electrons from a thermionic cathode. (a) Variation of
electrostatic potential for thermal electrons near a metal surface — the region z > 0 is a field-free volume
of infinite extent. (b) Potential variation with partial collection of thermal electrons by a biased electrode
— zero electric field on the electrode surface. (c) Potential variation for the extraction of electrons from a
thermionic cathode showing the location of the virtual cathode surface.
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(6.14)

(6.15)

second condition assures that the electron density approaches zero an infinite distance from the 
plate. We can integrate Eq. (6.12) after multiplying both sides by 2(dM/dZ), and then perform a
second integral. The result is 

The normalized electric field at the cathode is . Figure 6.4 shows spatial
variations of electrostatic potential and density. Note that significant changes in the density take
place over the characteristic scale length 8d. The electrostatic potential decreases monotonically
away from the cathode surface; all particles leaving the surface are eventually reflected.
Therefore, the particles have a symmetric Maxwell distribution at  any position, with half the
particles leaving and half returning.  
   The Debye length for electrons near a high-current thermionic cathode is small. For example,
suppose we have a dispenser cathode with a surface temperature of Te = 3000° C and
source-limited current density of js = 105 A/m2 (10 A/cm2). Electrons  leaving the surface have an
average velocity [Eq. (2.61)]: 

The density at the surface is

Figure 6.4. Normalized electron density and electrostatic potential near the surface of a thermionic
emitter. Electrons have a Maxwell velocity distribution with temperature Te. The region z > 0 is a
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(6.16)

(6.17)

(6.18)

field-free space of infinite extent. 8d = kTe,o/e2no]½.

Substitution into Eq. (6.13) shows that the electron density extends into the vacuum region a
small distance, only 8d = 2.2 :m  (2.2×10-6 m).
   We next add a conducting anode to extract electrons. The presence of the anode makes the
theory more complex. Some of the emitted electrons do not return to the cathode —  the axial 
velocity distribution is no longer symmetric. Although the emitted electrons may have a
Maxwell distribution, the net distribution is non-Maxwellian and Eq. (6.8) is no longer valid. To
understand self-consistent electron flow, we shall proceed in  two steps. First, we place a
hypothetical collector plate biased  to potential -Nc a distance d* from the cathode (Fig. 6.3b).
Emitted electrons either travel to the collector or are reflected  back to the cathode. A solution of
space-charge flow in the region between the cathode and collector must include two types  of
electrons — collected and reflected. We shall study the solution in Section 15.1. For now, we
shall use two results of the calculation without proof. First, for a given cathode electron 
temperature and flux, we can find a combination of Nc and d* such  that the electric field at the
collector is zero. Second, the full solution shows that d* – 8d.
   The space-charge flow solution depends on the collected fraction of the electron flux. We
denote jo as the current density of thermal electrons leaving the cathode and jc as the collected
current density. Collected electrons have kinetic energy in the range: 

From Eq. (2.60), the ratio of current densities is 

Now, suppose we make the collector perfectly transparent and place an anode a distance d from
the cathode (Fig. 6.3c). We choose the positive potential of the anode Vo so that it attracts all the
current that passes through the collector. The  anode voltage is just high enough to reduce the
electric field at the collector to zero. Because no particles return through the collector, the
space-charge solution in the region 0 # z < d* does not change. We shall concentrate on the
region between d* and d. If d o d*, then Vo o Nc. The thermal energy of electrons  emerging from
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the collector is very small compared with eVo. Therefore, we have a situation where electrons of
approximately  zero energy emerge from a surface at zero electric field. The potential difference
in the region to the right of the collector must be sufficient to give a space-charge limited flux:

Finally, we note that we can remove the hypothetical collector without changing the nature of the
solution. The collector intercepts no current. Furthermore, because the electric field is zero on
both sides, it carries no surface charge. The conclusion is that if Nc n Vo and 8d n d, the current
density that passes the virtual cathode is approximately equal to the Child limit for a gap with
voltage Vo and spacing d.

6.3. Space-charge-limited flow in spherical geometry

   We can carry out space-charge flow calculations in specialized  geometries besides the planar
case of Section 5.2. In this section, we shall address charged-particle flow between concentric
spheres — modifications of the configuration have many applications in beam technology. For
example, we use the spherical flow solution in Section 7.2 for the design of high flux electron
guns.

Figure 6.5. Geometry for the calculation of space-charge limited  electron flow between spheres.



Beam-generated forces – advanced topics Charged Particle Beams

233

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

   Figure 6.5 illustrates the geometry for ideal spherical flow. The particle source and collector
are located on concentric spherical surfaces. The quantity Rs is the source radius, Rc is  the
collector radius, and r represents a radial position between the two. We can find two types of
solutions:  inward flow (Rs > Rc) and outward flow (Rs < Rc). For convenience we treat a
steady-state flow of positive non-relativistic particles with mass mo. We take the source potential
equal to zero while the collector has bias voltage -Vo. 
   The Poisson equation has the following form for a spherically  symmetric potential:

The quantity D is the space-charge density of ions. Conservation of energy implies that the ion
velocity is related to N by:

In equilibrium, the radial current I is constant at all radii. This condition implies that the
space-charge density is related  to the velocity by

Combining Eqs. (6.20), (6.21) and (6.22) gives following self-consistent form for the Poisson
equation:

   We must solve Eq. (6.23) numerically. As with any numerical calculation, we can generate
results of maximum generality if we first rewrite the governing equations in dimensionless form.
We define the dimensionless potential and radius as

Equation 6.23 takes the form:
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(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

The boundary conditions for the solution of Eq. (6.26) are M(1) =  0, dM/dR(1) = 0 and M(Rc/Rs)
= 1. The parameter A and the aspect ratio of the spherical extractor, Rc/Rs, govern the solution.
The current density in a spherical extractor has scaling similar to that of a planar gap. The
differences arise from the electric field enhancement of the spherical geometry. Note that Eq.
(6.27) implies that the current I does not depend on the absolute value of the source radius, Rs. A
proportionally smaller spherical extractor has reduced emission surface area but correspondingly
higher fields at the source. 
   Langmuir and Blodgett [Phys. Rev. 24, 49 (1924)] developed a well-known numerical solution
of Eq. (6.26). Following the anticipated scaling, they assumed the following form for the
electrostatic potential:

The function "(R) is the Langmuir function. We can find an equation for " by substituting Eq.
(6.28) in Eq. (6.26). Defining the  variable ( = ln(R), the equation is:

The following expression for ", valid near ( = 0, comes from a series solution of Eq. (6.29):

Values for the " function are given in Tables 6.1 and 6.2 for a  range of extractor geometries.
Table 6.1 applies to inward flow (Rs > Rc) while Table 6.2 holds for outward flow (Rs < Rc) . 
   We can use the " function tables to calculate the variation of potential between the electrodes
of a spherical injector and the total current. We find the total current from Eq. (6.28) by noting 
that M(Rc/Rs) = 1:

As an example, suppose there is a converging flow of electrons between spherical electrodes
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Table 6.1. Langmuir function versus normalized radius — converging beam

           R = r/Rs     "2              R = r/Rs     "2     

           1.0000    0.0000             0.1923    8.636
     0.9524    0.0024        0.1852    9.135
     0.9091    0.0096        0.1786    10.01
     0.8696    0.0213        0.1724    10.73
     0.8333    0.0372        0.1667    11.46
     0.8000    0.0571        0.1538    13.35
     0.7692    0.0809        0.1429    15.35
     0.7407    0.1084        0.1333    17.44
     0.7143    0.1396        0.1250    19.62
     0.6897    0.1740        0.1176    21.89
     0.6667    0.2118        0.1111    24.25
     0.6250    0.2968        0.1053    26.68
     0.5882    0.394         0.1000    29.19
     0.5556    0.502         0.0833    39.98
     0.5623    0.621         0.0714    51.86
     0.5000    0.750         0.0625    64.74
     0.4762    0.888         0.0556    78.56
     0.4545    1.036         0.0500    93.24
     0.4348    1.193         0.0333    178.2
     0.4167    1.358         0.0250    279.6
     0.4000    1.531         0.0200    395.3
     0.3846    1.712         0.0167    523.6
     0.3704    1.901         0.0143    663.3
     0.3571    2.098         0.0125    813.7
     0.3448    2.302         0.0111    974.1
     0.3333    2.512         0.0100    1144
     0.3125    2.954         0.0083    1509
     0.2941    3.421         0.0071    1907
     0.2778    3.913         0.0063    2333
     0.2632    4.429         0.0056    2790
     0.2500    4.968         0.0050    3270
     0.2381    5.528         0.0040    4582
     0.2273    6.109         0.0033    6031
     0.2174    6.712         0.0029    7610
     0.2083    7.334         0.0025    9303
     0.2000    7.976         0.0020    13015

With Rc/Rs = 0.33. The applied voltage is 50 kV. Table 6.1 shows that "(0.33)2 = 2.512. The
corresponding current from Eq. (6.31) is I = 130 A. The current density at any radius is:

If we set the source current equal to 104 A/m2 (1 A/cm2), then the source radius must be Rs $
0.032 m. Finally, we can use the tables to find " at values of (r/Rs) between the source and 
collector. Substituting this information into Eq. (6.28) gives M(r) between the electrodes.
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Table 6.2. Langmuir function versus normalized radius — diverging beam

           R = r/Rs   "2      R = r/Rs    "2     

            1.0    0.0000      6.5     1.385
      1.05   0.0023     7.0     1.453
      1.1    0.0086     7.5     1.516
      1.15   0.0180     8.0     1.575
      1.2    0.0299     8.5     1.630
      1.25   0.0437     9.0     1.682
      1.3    0.0591     9.5     1.731
      1.35   0.0756     10      1.777
      1.4    0.0931     12      1.938
      1.45   0.1114     14      2.073
      1.5    0.1302     16      2.189
      1.6    0.1688     18      2.289
      1.7    0.208      20      2.378
      1.8    0.248      30      2.713
      1.9    0.287      40      2.944
      2.0    0.326      50      3.120
      2.1    0.364      60      3.261
      2.2    0.402      70      3.380
      2.3    0.438      80      3.482
      2.4    0.474      90      3.572
      2.5    0.509      100     3.652
      2.6    0.543      120     3.788
      2.7    0.576      140     3.903
      2.8    0.608      160     4.002
      2.9    0.639      180     4.089
      3.0    0.669      200     4.166
      3.2    0.727      250     4.329
      3.4    0.783      300     4.462
      3.6    0.836      350     4.573
      3.8    0.886      400     4.669
      4.0    0.934      500     4.829
      4.2    0.979      600     4.960
      4.4    1.022      800     5.165
      4.6    1.063      1000    5.324
      4.8    1.103      1500    5.610
      5.0    1.141      2000    5.812
      5.2    1.178      5000    6.453
      5.4    1.213      10000   6.933
      5.6    1.247      30000   7.693
      5.8    1.280      100000  8.523

    Because Section 7.2 discusses the nature of converging flow, we shall concentrate here on
diverging beams. Figure 6.6 shows a plot of the current between spheres and the source current
density as a function of (Rs/Rc). The figure emphasizes that the current to a collector of given
radius Rc becomes almost independent of the  surface area of the source when Rs/Rc approaches
zero. Here, the enhanced electric field around the small sphere counteracts the  effect of source
area. 
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Figure 6.6. Space-charge-limited electron current from a sphere of radius Rs to one of radius Rc (Rs > Rc).
(a) Inorm = 4B/"2. (b) jnorm = 1/"2 (Rs/Rc)2.
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   The weak dependence of the current in a diverging beam on the source geometry gives insight
into space-charge flow from an array of sharp points. Figure 6.7a illustrates a cathode for pulsed 
high current electron beams. The electrode is covered with an array of fibers, needles or sharp
blades. Upon application of a  high voltage, plasma formation occurs at points of electric field 
enhancement. In contrast to a planar extractor with a uniform emitter, the electrons in Fig. 6.7a
emerge from a small fraction of the electrode surface. The high fields around the needles
enhance the space-charge limited electron flow. As electrons move across the gap, individual
streams coalesce to form a planar beam. Experiments show that if the gap width is large
compared with the distance between emitters, then the net current flow is close to the prediction
of Eq. (5.48) for a planar gap with uniform source. 

Figure 6.7. Space-charge-limited electron flow in complex geometries. (a) Electron flow from an array of
closely-spaced needles. (b) Electron flow from a rod cathode to a grid anode.
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(6.33)

(6.34)

(6.35)

(6.36)

   As a second example, imagine electron emission from a narrow rod (Fig. 6.7b) — the rod
radius r is small compared with the gap spacing d. Space-charge-limited emission occurs over
the surface of the rod. Because of electric field enhancement, emission is particularly strong at
the edges. The flow of electrons away from the rod is roughly hemispheric. The total current
from such an electron gun is much higher than that predicted from the planar formula [Eq.
(5.48)] with area Br2. In practice, the total current is about 

6.4. Bipolar flow

   The term bipolar flow refers to the simultaneous space-charge-limited flow of ions and
electrons emitted from opposite sides of  an acceleration gap. We shall encounter the bipolar
flow solution  when we study intense beam diodes in Chapter 8. In these devices, strong electric
field cause free emission of particles from all exposed electrode surfaces. 
   To construct a physical model, we shall consider a one-dimensional acceleration gap of width
d with applied voltage Vo  (Fig. 6.8a). Particle motion is non-relativistic, eVo n mec2. We 
associate the cathode surface with the origin of the z axis and  the position of zero electrostatic
potential. The cathode and anode can supply an unlimited flux of electrons and ions. The
particles leave the cathode and anode with zero velocity. In equilibrium, conservation of charge
implies that the electron density equals: 

Similarly, the ion density varies as: 

In terms of the dimensionless variables M = N/Vo and Z = z/d, the Poisson equation is: 

where
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(6.37)

(6.38)

Figure 6.8. Calculation of planar bipolar flow, counter-streaming  ions and electrons. (a)
Space-charge-limited flow of both ions and  electrons. (b) Space-charge-limited ion flow with secondary
emission of electrons at the anode grid.

   Again, we multiply both sides of Eq. (6.36) by 2M'. Integrating the equation from 0 to Z gives
the expression:

The form of Eq. (6.38) guarantees that dM/dZ = 0 at Z = 0. The condition that the axial electric
field equals zero at Z = 1 implies that:
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(6.39)

(6.40)

(6.41)

(6.42)

   Solving Eq. (6.36) with the condition of Eq. (6.39) and the boundary conditions M(0) = 0, M(1)
= 1 yields the following expression for space-charge-limited electron current density:

Equation (6.40) shows that the electron current density equals the Child  law value multiplied by
a correction factor, the quantity in brackets. Evaluating the definite integral, we find that:

Similarly, Eq. (6.39) implies that

   The results of Eqs. (6.41) and (6.42) have a straightforward physical interpretation. Because
the electric field equals zero on both sides of the acceleration gap, Gauss's law implies that the
integrals of electron and ion densities are equal. The functional form of the ion density is the
mirror image of the electron density. The ion density at the cathode equals the electron density at
the anode; therefore, the ratio of current densities  is proportional to the exit velocities of the
particles. Because both species exit with kinetic energy eVo, the velocity ratio is inversely
proportional to the square root of the mass ratio, leading to Eq. (6.39). The value of 1.86 in Eqs.
(6.41) and (6.42) is called an enhancement factor for space-charge-limited flow. The increased
flux occurs because the electron density partially cancels the ion space-charge at the anode. A
similar effect occurs for the electron flow. 
   Other solutions for one-dimensional, self-consistent equilibria of ion and electron flow may be
useful in special cases. For example, suppose we have an low field gap for ion extraction (Fig.
6.8b). The ions, created by an anode source, exit the acceleration gap through a cathode grid of
transparency T. Ions in the range 10 keV to 1 MeV have a high probability of ejecting secondary
electrons when they strike a metal surface. This process is characterized by the secondary
emission coefficient ,, the number of electrons emitted per incident ion. The secondary electrons
travel to the anode, attracted by the electric field that accelerates the ions. The ion current
density  is given by 
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(6.35)

(6.34)

(6.45)

The electron density equals

We can solve the Poisson equation with the density expressions of Eqs. (6.43) and (6.44). The
electron flow is source limited if ; therefore, we apply the condition of zero
electric field only at the anode. We do not have to specify the cathode electric field to determine
a unique solution because the magnitude of the electron flux is no longer a free parameter. 

6.5. Space-charge-limited flow of relativistic electrons

   Single gap electron extractors have been operated in the megavolt range. These extractors are
driven either by electrostatic pulsed power generators or by stacked induction linac cavities.
Relativistic effects are important because eVo o mec2.  In this section, we shall extend the theory
of one-dimensional space-charge limited electron flow to include relativistic variations of axial
velocity. 
   We must apply the theory with caution. The beam current generated by pulsed power devices
is usually in the multikiloampere range — forces from beam-generated magnetic fields may be
significant. A strong toroidal magnetic field gives electrons a component of radial velocity that
may invalidate the conditions of the one-dimensional model. There are two common situations
where the one-dimensional model accurately predicts the electron  beam current: 

   1. We can design high-voltage extractors for moderate current beams (#1 kA) with applied
radial electric fields that counteract focusing by beam-generated magnetic fields. Here, electrons
move mainly in the axial direction.
   2. We can apply a strong toroidal magnetic field in the extractor (Bz o B2). Electrons follow the
net magnetic field lines.

   Again, we shall consider a one-dimensional gap with applied voltage Vo and width d. If we set
the electrostatic potential N equal to zero at the cathode, conservation of energy gives the
following expression for the relativistic gamma factor for electrons in the extractor:
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(6.46)

(6.47)

(6.48)

(6.49)

(6.50)

(6.51)
(6.52)

(6.53)

For electron motion in the z direction, the axial velocity is related to ( by 

As in Section 5.2, the product of electron density and velocity is constant at all positions. We can
express the density in terms of  the electron gamma factor:

The quantity je is the electron current density, a constant.
   Equation (6.45) implies that

Substituting Eqs. (6.47) and (6.48) into the one-dimensional Poisson  equation, we find an
equation for ((z):

The boundary conditions for Eq. (6.49) corresponding to a space-charge-limited solution are 

Equation (6.51) specifies zero electric field at the cathode. We multiply both sides of Eq. (6.49)
by 2(d(/dz) and integrate. Following the methods of Sections 6.3 and 6.4, we can express the 
space-charge-limited current density in terms of a definite integral:

The integral is
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Table 6.3 lists the function G and the quantity jed2 as a function of (o and Vo. 

Table 6.3. Space-charge-limited flow in a relativistic gap

        (o        Vo(MV)     G((o)   jed2(kA-m2)

        1.978        0.500        1.053       0.754
        2.957        1.000        1.709       1.986
        3.935        1.500        2.249       3.438
        4.914        2.000        2.721       5.031
        5.892        2.500        3.146       6.724
        6.871        3.000        3.535       8.493
        7.849        3.500        3.898       10.323
        8.828        4.000        4.238       12.202
        9.806        4.500        4.559       14.122
       10.785        5.000        4.864       16.078
       11.763        5.500        5.156       18.065
       12.742        6.000        5.436       20.079
       13.720        6.500        5.705       22.117
       14.699        7.000        5.965       24.176
       15.677        7.500        6.216       26.255
       16.656        8.000        6.459       28.351
       17.634        8.500        6.696       30.464
       18.613        9.000        6.925       32.591
       19.591        9.500        7.149       34.732
       20.569       10.000        7.368       36.886
       21.548       10.500        7.581       39.051
       22.526       11.000        7.789       41.227
       23.505       11.500        7.993       43.414
       24.483       12.000        8.193       45.610
       25.462       12.500        8.388       47.815
       26.440       13.000        8.580       50.029
       27.419       13.500        8.769       52.250
       28.397       14.000        8.954       54.480
       29.376       14.500        9.136       56.716
       30.354       15.000        9.315       58.960
       31.333       15.500        9.491       61.210
       32.311       16.000        9.664       63.467
       33.290       16.500        9.835       65.729
       34.268       17.000       10.003       67.997
       35.247       17.500       10.169       70.271
       36.225       18.000       10.333       72.549
       37.204       18.500       10.494       74.833
       38.182       19.000       10.653       77.122
       39.160       19.500       10.811       79.415
       40.139       20.000       10.966       81.713
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(6.56)

   We can check the validity of Eq. (6.53) by comparing its predictions to expressions for current
density in limiting cases.  We already have results for low-voltage gaps (eVo n mec2) from
Section 5.2. We can easily calculate the space-charge-limited flux in the ultra-relativistic limit,
(eVo o mec2). At high gap voltage,  injected electrons are quickly accelerated to a velocity close
to  the speed of light. We can approximate this condition by taking the electron density as a
constant, je/ec, independent of position. The Poisson equation has the form,

We can solve Eq. (6.55) with the standard boundary conditions to give the result:

Figure 6.9 plots jed2 as a function of Vo as predicted by Eq. (6.53).  The non-relativistic and
ultra-relativistic predictions are also shown. 
   In the range of applied voltage 0.5 MV < Vo < 10 MV, the following equation gives a good 

Figure 6.9. Space-charge-limited planar flow of electrons in a relativistic diode — jed2 versus Vo. Dashed
lines show the predictions of non-relativistic and ultra-relativistic models.
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(6.57)

approximation for Eq. (6.53):

As an applications example, suppose we have a 1 MV electron extractor with gap width d = 0.1
m. The non-relativistic Child Law predicts a current density of 2.33×105 A/m2 (23.3 A/cm2). 
The ultra-relativistic prediction is 5.31×105 A/m2 (53.1 A/cm2). Inspection of Table 6.3 at ( =
2.96 shows that G(2.96) =  1.712. Substitution in Eq. (6.53) gives a predicted current density of 
1.99×105 A/m2 (19.9 A/cm2), while the approximation of Eq. (6.57) gives  2.07×105 A/m2 (20.7
A/cm2). 

6.6. One-dimensional self-consistent equilibrium 

   When we derived the self-consistent space-charge flow solutions of Section 5.2, we used a
singular distribution — particles were monoenergetic. Although simple distribution functions
make calculations easier, they often lead to misleading results when applied in stability analyses.
Sometimes, theories based on singular equilibrium distributions predict instabilities that do not
occur with more realistic distributions. In this section, we shall solve the general problem of
self-consistent transverse beam equilibria in the presence of applied forces, self-forces and
nonzero emittance. The development illustrates  how to incorporate more complex distribution
functions into an equilibrium theory and how to interpret the results. 
   We shall adopt some simplifying assumptions to minimize the mathematics of the calculations: 

   1. We describe a drifting sheet beam with variations only in the x direction. The beam is
symmetric about x = 0. 
   2. The transverse focusing force is uniform along the direction of propagation.
   3. The beam consists of ions. We shall use non-relativistic equations of transverse motion and
ignore the force of the beam-generated magnetic field.

   In the theory of one-dimensional space-charge flow of Section 5.2, only an electric force acted
on the particles. To derive a  self-consistent solution, we expressed the density in terms of the
electrostatic potential and then solved the Poisson equation.  In this section, we want to include
two forces, the space-charge  electric force and a general transverse focusing force. Additional
forces may appear in other problems. As the first step, we shall define a generalized potential
energy function, U(x), that includes contributions from multiple transverse forces. We shall call
the function the confining potential. Our  initial goal is to find an expression for the density of
the sheet beam in terms of the confining potential, n(U).
   We define Uf(x) as the portion of the confining potential associated with a static focusing force,
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(6.58)

(6.59)

(6.60)

(6.61)

Ff(x). The focusing force has odd symmetry about x = 0. We exclude even functions because
they would lead to net displacements of the beam from the  axis of symmetry. The confining
potential energy associated with  the focusing force is 

The constant term does not affect the results; therefore, we take Uf(0) = 0. The confining
potential of a focusing force, Uf(x) increases monotonically away from the axis. 
   We shall also include a confining potential for the defocusing  force from the beam-generated
electric field, Us(x). The function decreases with displacement. Because the transverse forces add 
linearly, we can add confining potentials to give a total potential function: 

In the presence of multiple forces, a partice that moves from position x1 to x2 has a change in the
kinetic energy:

 Figure 6.10a shows the parabolic confining potential from a linear focusing force. Figure 6.10b
illustrates the confining potential of a defocusing space-charge force. For the example illustrated, 
the focusing force exceeds the defocusing force — the total potential function defines a potential
well. In the potential well, contained particle orbits have stability about the point x = 0 — a
particle with zero kinetic energy at position x oscillates between ±x. When the space-charge
force exceeds the focusing force, the total confining potential defines a potential hill (Fig. 6.10c).
Here, particles are repelled from the axis of symmetry. A condition for stable beam transport is
that the sum of focusing potentials exceeds the sum of defocusing potentials at all positions in
the beam.
   Figure 6.10d shows the confining potential where the space-charge force exactly equals the
focusing force — U(x) is everywhere equal to zero. Because the forces balance at every position,
particle orbits in the steady-state beam must be laminar — if this were not true, the beam would
expand. The condition for laminar flow is 

For linear focusing forces, Eq. (6.61) can apply only when the space-charge density of the sheet 
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Figure 6.10. Potential energy functions used to calculate focusing and defocusing of particles in a
one-dimensional beam. (a) Variation of the potential energy function for a focusing force  that varies
linearly with distance from a symmetry axis. (b) Total  potential energy function (U) with contributions
from a linear focusing force (Uf) and the defocusing space-charge force (Us) of a uniform charge-density
beam. The dashed lines show the beam boundary. (c) Total potential energy function resulting from a
linear focusing force and the space charge forces of a high-current, uniform-density beam. (d) Total
potential energy function  resulting from a linear focusing force and the space-charge force of a
reduced-current beam.
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(6.62)

Figure 6.10. (Continued)
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(6.63)

(6.64)

(6.65)

(6.66)

beam is uniform, dropping sharply to zero at the boundary. If the beam density is non-uniform,
the two forces cannot balance everywhere. In this case an equilibrium exists only if the beam has
nonzero emittance. 
   To understand the nature of non-laminar beam equilibria, we shall discuss particle orbits in a
confining potential well. In equilibrium, the total energy is a constant of particle motion,
Suppose a sheet beam has envelope dimensions ±xo. In a non-laminar beam, particles move back
and forth over the cross section. Some of the beam particles reach the envelope — they have a
turning point equal to xo. These particles must have zero kinetic energy at xo; otherwise, the
envelope would expand. The total energy of peripheral particles is 

The beam may also contain particles whose orbits do not reach the boundaries. Figure 6.10c
shows an orbit with turning point x < xo. The particle has total energy less than the maximum
value, Wx <  Uo. For a given confining potential U and envelope width xo the range of total
energy for confined particles is

   When we know the distribution of particles in Wx and the confining potential, we can find an
expression for the particle density as a function of U. We shall illustrate this contention through
the example of a monoenergetic beam — all particles have Wx = Uo. If we divide the space
between ±xo into length elements  )x, the particle density in an element is proportional to the 
number of particles that pass through the element weighted by the relative amount of time they
spend there. In a monoenergetic beam, all particles perform identical oscillations between the 
turning points ±xo. In equilibrium, the oscillations are uniformly distributed in phase.
Furthermore, all particle orbits  pass through all volume elements. As a result, the density is 
inversely proportional to vx. Equation (6.62) implies that vx is related  to the confining potential
by 

Using Eq. (6.65), we find an expression for the particle density:

Figure 6.11 shows the density variation for a parabolic confining  potential: 
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(6.67)

(6.88)

(6.69)

Figure 6.11. Variation of normalized density for a beam with a delta-function distribution in transverse
energy in a linear focusing force.

The density has peaks at ±xo because particles spend a large fraction of the time at the endpoints. 
   We do not expect to observe a discontinuous density function like that of Fig. 6.11 in a real
beam. The peaked density function is not consistent with the smooth variation of total confining
potential of Eq. (6.67). To generate more realistic density functions, we must use distributions
where particles have a spectrum of values of Wx. We shall adopt the methods developed  in
Section 2.5. For a given distribution function f(x,vx), the density is 

The quantity f(x,vx) corresponds to an equilibrium if we can express it as a function of Wx, the
constant of single-particle motion. For the one-dimensional particle distribution, Eq. (6.68)  takes
the following form: 

We determine the limits on the velocity integral from Eq. (6.65).  
   To complete the derivation of a self-consistent equilibrium, we need an equation that relates
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(6.70)

(6.71)

(6.72)

(6.73)

(6.74)

the confining potential to the particle density. For a sheet beam with space-charge and focusing
forces, we can derive such a relationship from the one-dimensional Poisson equation. If Us is the
potential energy associated with electric fields in the beam, then we can write the Poisson
equation as: 

Equation (6.70) leads to the following equation for the total potential

The first term on the right hand side comes from the focusing force — it is a known function of
x. If we have an expression for  n(U), we can solve Eq. (6.71) with appropriate boundary
conditions to find U(x). The confining potential function gives the spatial  variations of density,
velocity dispersion ( ) and other quantities. 
   To illustrate the procedure, we shall follow a specific calculation. We choose a distribution
function that allows an analytic solution of Eqs. (6.69) and (6.71). At the same time, the density
distribution is physically reasonable — it falls smoothly  to zero at the beam boundary. The
distribution is uniform over the allowed range of total energy: 

where A is a constant. Inserting Eq. (6.72) in Eq. (6.69) gives the  following expression for the
density:

We can write Eq. (6.73) in terms of the density on axis, no = n(x=0):

   We take an applied focusing force that varies linearly with x. The quantity Ufo is the magnitude
of the confining potential associated with the focusing force at the boundary xo or    
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(6.75)

(6.76)

(6.77)

(6.78)

(6.79)

(6.80)

(6.81)

(6.82)

With the definition of Eq. (6.75), we can express the the focusing  potential as:

Substituting Eqs. (6.76) and (6.74) into Eq. (6.71) gives the following  equation: 

  To simplify Eq. (6.77), we define dimensionless variables:

In terms of the dimensionless variables, Eq. (6.77) is:

   The two parameters F and S govern the solution of Eq. (6.80). The quantity F is the ratio of the
depth of the potential well created by the focusing system to the total confining potential.
Inspection of Fig. 6.10c shows that F $ 1. The second factor S  is roughly equal to the ratio of the
maximum value of the space-charge potential function to the depth of the total confining
potential, S ~ Us/Uo. We recognize that e2noxo

2/2,o is equal to  the electrostatic potential energy
difference, e)N, across a beam  with uniform density no from 0 to xo. If the beam density is 
zero, there is no space-charge and the focusing force makes the only contribution to the total
confining potential. In this case F = 1, and the beam equilibrium represents a balance between
emittance and the focusing force. For non-zero S, the space-charge electric fields contribute to
the force balance and F must exceed unity. 
   We find a relationship between F and S that describes the nature of the equilibrium by solving
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(6.83)
(6.84)

(6.85)

(6.86)

(6.87)

(6.88)

Eq. (6.80) with the following  boundary conditions:

The first condition is a convention — we take U = 0 at the origin. The second condition follows
from the definition of the  normalized variables [Eq. (6.78)]. The third condition reflects the 
symmetry of the applied forces about the axis. We can calculate the first integral of Eq. (6.80): 

Integration of Eq. (6.86) gives:

   Figure 6.12a shows S as a function of F determined from Eq. (6.87). When the beam density is
small, S approaches zero and F approaches unity. Here, the focusing force is the only
contribution to the confining potential and there is a balance between the focusing force and the
emittance force of the beam.  When the effect of space-charge is high (S o1), the curve
approaches the condition S = F, a laminar flow equilibrium with  no emittance. Figure 6.12b
plots the focusing, space-charge and total potentials for an intermediate case with F = 2.5 and S
= 3.5. Emittance and space charge contribute to the force balance.  Figure 6.12c shows the beam
density for the same parameters.
   To complete this section, we shall briefly discuss calculations of self-consistent beam
equilibria in two dimensions. The treatment of paraxial beams in axially uniform transverse
forces is similar to the one-dimensional theory that  we have discussed. One difference is that
there are two constants of motion when there are two degrees of freedom. For example, when
forces in the x and y directions are independent and decoupled, the total confining potential is the
sum of x and y contributions:

The total particle energies in the x and y directions are independent conserved quantities. The
two constants of particle  motion are:
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(6.89)

(6.90)

Figure 6.12. Self-consistent equilibrium theory for a sheet beam. (a) Space charge function, S =
e2noxo

2/2,oUo, versus the emittance function, F = Ufo/Uo. (b) Variation of the normalized total potential
energy function versus normalized position for F = 2.5,  S = 1.75. (c) Variation of the normalized density
versus normalized position for F = 2.5, S = 1.75. 

   Any function of Wx and Wy is a valid distribution function.  For example, the two-dimensional
form of a Maxwell distribution  is:
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(6.91)

(6.92)

(6.93)

The equilibrium distribution function depends on the confining potentials and the velocities,
f(Wx,Wy) = f(Ux,vx,Uy,vy). We can  find the density as a function of the confining potentials by 
taking integrals over velocity:

   When particle motions are coupled in the x and y directions,  we must use alternate constants
of the motion. An example of coupled motion is the confinement of a cylindrical electron beam
in a solenoidal magnetic field. We can find the constants of motion by considering the symmetry
of the system. One constant is the total transverse energy. In a uniform cylindrical beam, the
transverse energy varies only with radius:

Because there are no forces in the azimuthal direction, the other constant of particle motion is the
canonical angular momentum,

The quantity A2 is the vector potential from the applied and beam-generated magnetic fields.
Any distribution function of the form f(W,P2) gives a valid equilibrium. 

6.7. KV distribution

   Many accelerators use FD quadrupole arrays for transport. The derivation of a self-consistent
equilibria for beams in such systems is more difficult than the simple one-dimensional model of
Section 6.6 for two reasons: 

   1. Beam properties vary in both the x and y directions. At any axial location, the strength of the
focusing system is different in the two directions. 
   2. The transverse forces of the periodic focusing system vary along the direction of
propagation. Also, in accelerators such as synchrotrons and RF linacs, the beam density varies in
the axial direction. 

General derivations require a solution of the full three-dimensional Poisson equation to find the
beam-generated fields. Usually, the fields cannot be represented by closed form expressions.
Iterative numerical processes are necessary to find  a self-consistent equilibrium. 
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(6.94)

(6.95)

(6.96)

(6.97)

   To construct analytic models for beam equilibria, we must seek  special geometries that lead to
simple expressions for beam-generated electric and magnetic fields. In this section, we shall 
discuss two important components for a description of beams in quadrupole arrays — calculation
of beam-generated fields for a three-dimensional beam pulse and determination of beam charge 
density from a three-dimensional distribution. We shall concentrate on a charge density and
distribution function that lead to closed-form field expressions. We shall first study the
properties of an ellipsoid with uniform charge density. The configuration has the important
properties that the electric fields in the three spatial directions are linear and separable.  Because
the forces in a quadrupole array are separable in x and y and do not depend on the accelerating
forces, we can resolve the self-consistent equilibrium problem for an ellipsoid into three
one-dimensional calculations. The critical step to close the self-consistent calculation is to find a
distribution function for a non-laminar beam that gives an uniform ellipsoid of charge  when
integrated over velocity. The KV distribution, widely used  in accelerator theory, fulfills this
condition. 
   Figure 6.13 shows a three-dimensional space-charge ellipsoid. The figure could represent a rest
frame view of a microbunch of  particles in an RF linear accelerator. We denote the rest frame 
coordinates as (X,Y,Z). The ellipsoid may have different dimensions in the three directions,
(Xo,Yo,Zo). The space-charge density in the rest frame has a uniform value, DR, within a boundary
defined by the equation: 

The stationary space-charge creates only electric fields. Following Kapchinski and
Vladimirskij+, the electric fields inside the ellipsoid are separable and vary linearly with X, Y and
Z. The relative strength of the electric field components depends on form factors Mi, functions of
Xo, Yo and Zo: 

Figure 6.13. Geometry of a space-charge ellipsoid viewed in the beam rest frame.
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(6.98)

(6.99)

(6.100)

(6.101)

(6.102)

(6.103)

(6.104)

(6.105)

The general expression for the form factors is

where i = x,y,z and Ai = Xo, Yo or Zo. The form factors have the  property that: 

In the special case of a cigar-shaped (prolate) ellipsoid with a circular cross-section (Xo = Yo), the
form factors satisfy the  equation: 

In the range Xo/Zo # 1, the quantity Mz is

In the opposite limit of an oblate or saucer-shaped ellipsoid (Xo/Zo > 1), the following
expressions hold:

   Usually, we want expressions for the beam-generated forces in the stationary frame. Here, the
centroid of the ellipsoid moves axially at velocity $c. In an RF linac, the centroid of the charge
bunch corresponds to the position of the synchronous particle zs. We can use Eqs. (5.105)-
(5.110) to transform the rest frame electric fields to electric and magnetic fields in the stationary
frame. The net axial beam force in the stationary  frame is: 
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(6.106)

(6.107)

(6.108)

(6.109)

(6.110)

(6.111)

(6.112)

where ( = (1-$)-1/2. We must remember to use the rest frame dimensions of the ellipsoid to
calculate Mz. If the beam has dimensions xo, yo and zo in the stationary frame, then we can write
the form factor as Mz(xo,yo,(zo). The expression of Eq. (6.105) equals the rest frame electric force
multiplied by (. The  factor results from Lorentz contraction of the ellipsoid length;  the
space-charge density observed in the stationary frame is higher: 

We can rewrite Eq. (6.105) in terms of the rest frame charge density:

   We can carry out similar transformations for the transverse field components. We must include
the magnetic field that results from motion of the charge in the stationary frame. The Lorentz
contraction increased the observed charge and current density, but the balance of electric and
magnetic forces reduces the net  force. The total transverse forces are:

Equations (6.107), (6.108) and (6.109) apply to an ellipsoid in free space. Conducting boundaries
close to the beam modify the forces. Section 14.4 discusses field contributions from induced wall
charges and  currents. 
   The Kapchinskii-Vladmirsky (KV) distribution is a special equilibrium distribution that gives a
uniform particle density within a sharp ellipsoidal boundary. In our discussion of the KV
distribution, we shall limit attention to the two-dimensional form in trace-space. Transverse
motion is decoupled from axial motion. The KV distribution has the mathematical form: 

where * is the Dirac delta function. The emittances in the x and y directions are: 
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(6.113)

(6.114)

(6.115)

(6.116)

(6.117)

All particles in the distribution of Eq. (6.110) follow trace-space trajectories that lie on the
surface of a four-dimensional hyperellipse with axes xo, xo', yo and yo'. 
   We can understand the physical meaning of the KV distribution by first discussing an
analogous distribution in one spatial dimension. Consider a sheet beam with particles confined in
the x direction by a linear force that is uniform in the axial direction. Orbits have maximum
displacement xo and maximum inclination angle xo'. Particles follow elliptical trace-space
trajectories — if they have the same total transverse energy, they all follow the curve: 

at different phase angles:
   A delta function in total transverse energy is a valid equilibrium distribution. The trace-space
distribution function for particles that follow the curve of Eq. (6.113) is: 

The emittance in the x direction is ,x = xoxo'. We find the particle density by integrating Eq.
(6.114) over all angles: 

As before, we must take to care convert Eq. (6.115) to a form where we can apply a standard
delta function integral. Making the substitution P = xo

2x'2/,x
2 the equation becomes:

Applying Eq. (5.57), we find the particle density as

where no = A,x/2xo. Equation (6.117) is the familiar density expression  for a collection of
monoenergetic harmonic oscillators. The density is proportional to the relative time spent at a
position x as particles follow their trace-space trajectories — its value diverges at the turning
points. 
   The KV distribution is a delta function in net transverse energy in x and y. The nature of the
density integral changes when we include motion in both the x and y directions. The 
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(6.118)

(6.119)

density for a two-dimensional distribution is: 

 The second form of Eq. (6.118) follows from substitution of Eq. (6.110) for g(x,x',y,y'). We can
also perform a second integral. With the substitutions "2  = [1-(x/xo)2-(y/yo)2] and Y = "
sin(x'xo/,x), Eq. (6.118) becomes

We thus find that the two-dimensional KV distribution indeed gives a uniform beam density. The
result is different from the one-dimensional calculations because particle orbits corresponding to
Eq. (6.110) have a maximum velocity in the y direction when they have a minimum velocity in
the x direction. There is no point where particles have zero transverse velocity;  therefore, there
is no location where the density diverges. 
   Given the properties of the KV distribution, we can sketch the procedure for a self-consistent
equilibrium calculation. Suppose we have axially-uniform linear focusing forces that are
separable in x and y. The total force on particles is the sum of applied and beam-generated
forces. The beam forces are linear if we have a uniform-density beam with an elliptical cross
section. If the net force is linear, we know that particles follow ellipses in trace-space and the
KV distribution gives a uniform-density elliptical beam. The structure is therefore logically
consistent. To complete the  process, we need to choose normalizations to guarantee force
balance. Suppose we start with a given beam emittance; in other  words, we specify the net
transverse energy in the KV distribution. We can find the magnitude of the net forces that gives a
particle orbit with dimensions (xo,xo',yo,yo'). For a given beam charge density and defocusing
beam force, we can then find the applied force that gives the required net transverse force. 
   We can apply the KV distribution to model space-charge effects  in high-energy accelerators
with quadrupole focusing. The transverse forces are linear and separable in x and y. The added 
complication is that the applied forces vary in the axial direction. From the discussion of
Sections 4.1-4.3 we expect that the orientation of the trace-space distribution and  the
configuration-space shape of the beam varies along z. In principle, we can extend the analysis of
Section 4.2 to find a matched distribution at a cell boundary of a periodic focusing system that
includes the beam-generated forces of a KV distribution. Here, the projections of the distribution
ellipsoid  in the x-x' and y-y' planes may be skewed. Although the KV distribution is helpful in
deriving beam equilibria, we must exercise care in using the equilibria as a basis for a stability 
analysis. The KV distribution is singular and physically unrealistic, leading to predictions for
instabilities that often are not observed. 
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7

Electron and Ion Guns
____________________

   The first step in the charged-particle acceleration process is to extract low-energy particles
from a source and to form them into a beam. The particle source and initial acceleration gaps 
constitute the injector. Although an injector may represent only a small fraction of the cost and
size of a high-energy accelerator, it often presents the most difficult physical and technological
problems. The particles move slowly in the first acceleration gap, and the space-charge forces
are correspondingly strong. The limitations of the injector are often the main constraint on the
performance of a large accelerator.
   In this chapter, we shall review methods to create beams of electrons and ions. The initial
acceleration gaps present a challenging theoretical problem. Both transverse and axial forces  are
important — we must deal with three-dimensional variations of electric and magnetic fields.
Section 7.1 introduces the Pierce design technique for charged-particle guns. We shall derive a 
self-consistent solution for the flow of a finite-width beam. Section 7.2 summarizes analytic
techniques to design practical guns for moderate-current beams. Section 7.3 extends the
discussion to the highest currents available from conventional guns. Here, we  must use
numerical techniques to derive the shapes of electrodes.  The section reviews the physical
principles of ray-tracing computer programs.
   The next three sections cover sources of electrons and ions for high-flux beams. Section 7.4
reviews electron sources including dispenser cathodes and laser-driven photo-cathodes. Section
7.5 covers the physical basis of ion extraction from free plasmas. We shall see how the
properties of particle flow in the plasma and the extraction gap combine to define a shaped
plasma emission surface. Successful extraction from a free plasma surface demands a stable,
highly-uniform  plasma source. Section 7.6  gives a brief review of the types of plasma sources
that have been used for high-flux ion beams.

   Section 7.7 describes electrostatic confinement of a plasma and application of the process to
particle extraction from a controlled plasma surface. With this method, the flow of ions or 
electrons in the extraction gap is independent of the properties  of the plasma source. Section 7.8
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reviews modifications of ion extractors to achieve large-area, high-current ion beams. The
techniques include multiple extraction apertures, accel-decel gaps for plasma neutralization, and
multiple-gap extractor designs.

7.1. Pierce method for gun design

   The analytic derivation of Pierce+ gives a self-consistent  solution for a space-charge
dominated injector. The procedure predicts the shapes of accelerating electrodes to produce a
laminar beam with uniform current density. Although the treatment  holds only for the special
geometry of a sheet beam accelerated  through an extraction grid, it gives valuable insights into
the  design of more complex guns. 
   We assume that a space-charge-limited injector creates a sheet beam of width ±xo. The source
and extractor electrodes have an electrostatic potential difference of Vo. Particles emerge from 
the source region with negligible kinetic energy compared with eVo. We can find an analytic
solution with the following limiting  assumptions:

   1. Particle motion in the extraction gap is non-relativistic.
   2. The force from beam-generated magnetic fields is small.
   3. Potentials at the source and extractor electrodes are determined by conducting surfaces —
the beam exits the gap through a grid or foil.

We shall use sign conventions for electrons in the following discussion — the extension to ions
is straightforward. Conditions 1 and 2 are satisfied if the electron energy is in the range eVo  #
100 keV. The theory is useful for the electron guns in high-power traveling wave tubes and
klystrons. 
   Section 5.2 showed how to calculate the space-charge-limited flow of a uniform current
density electron beam of infinite cross  section. For a finite-width beam, we would like to add
boundary  effects in a way that preserves uniform current density and laminar flow. Figure 7.1a
shows a sheet beam of infinite cross section. If the source is located at z = 0 and the extractor
electrode at z = d, then the potential across the gap varies as  

(7.1)

for space-charge-limited flow. Figure 7.1b shows a bounded beam. A  source in the lower half
plane (x < 0) generates electrons.
   We seek a geometry where there are no electrons for x > 0 (Region 1) but the flow in the lower
half plane retains the properties of the infinite sheet beam (Region 2). To satisfy this condition, 
we invoke the superposition property of electrostatic solutions. Suppose we place a large number 
of electrodes along the boundary at x = 0 (Fig. 7.1c) and bias them so that the potential varies as 

+ J.R. Pierce, Theory and Design of Electron Beams, Van Nostrand, Princeton, NJ, 1949.
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(7.2)

In other words, the potential on the boundary follows the variation it would have if Region 1
contained an extension of the  beam. Therefore, the electric fields in Region 2 are purely axial 
and have the same variation as those in an infinite-width beam.  The biased boundary simulates
the effect of the missing portion of the beam in Region 1 — particle orbits in Region 2 are
laminar and the current density is uniform.
   Figure 7.1d shows an alternative method to duplicate the infinite beam condition along the
boundary. Electrodes in the upper half plane create an electrostatic potential. The potential 
function in Region 1 must satisfy two conditions at the boundary  to match the solution in
Region 2:

   1. The potential must follow Eq. (7.2) at x = 0. This condition is equivalent to matching values
of the axial electric field at the boundary. 
   2. The electric field in the x-direction must equal zero at the boundary because there are no
transverse electric fields in Region 2, or MN/Mx = 0.

Figure 7.1. Basis of the Pierce design procedure for a space-charge-dominated electron gun. (a) Planar
gun with beam of infinite width — the electron source covers the left-hand boundary. (b) Electron beam
with a sharp boundary — electron source only in region x < 0. (c) One method to correct electron orbits in
a bounded beam by setting electrostatic potential on the boundary equal to N(0,z) = Vo(z/d)4/3. (d) Shaped
electrodes  to establish correct potential variation along the beam boundary.
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(7.3)

Figure 7.1. (Continued)

  To find the proper electrode shapes, we must solve the Laplace  equation in the upper half plane
with specified boundary conditions. For the Cartesian geometry of Fig. 7.1b, there is a  quick
method to solve such problems using the properties of complex functions. Take the complex
variable u as a linear combination of the real coordinate variables,

where . We can define functions of the complex variable, f(u). An analytic function of a
complex variable varies smoothly  and has finite derivatives over the region of interest. Two
examples are f(u) = u3 and f(u) = exp(-u). We can show that any analytic function f satisfies the
Laplace equation 
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(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

We can verify Eq. (7.4) by using the chain rule of partial derivatives. Rewriting the first
derivatives of the Laplacian operator gives

A second application of the chain rule of derivatives shows that the Laplacian operator applied to
f(u) gives a result that is identically zero:

Equation (7.4) implies that the real part of any analytic complex function is a valid form for the
electrostatic potential. The function N = Re(f) automatically satisfies the static Maxwell
equations in the absence of space-charge. 
   We can generate an infinite set of analytic functions, all giving valid electrostatic solutions.
We shall identify a particular function related to the space-charge flow problem: 

The corresponding electrostatic potential is

Equation (7.8) satisfies Eq. (7.2) along the boundary at x = 0. 
   To extract the real part of the potential, it is convenient to  express the complex function in the
polar coordinates:

Equation (7.8) can be written in terms of the complex exponential function:
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(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

as

We can apply the chain rule of derivatives to Eq. (7.11) to verify  that MN/Mx = 0 at x = 0. 
   We can use Eq. (7.11) to find the shape of conducting electrodes  in Region 1 that will
generate the correct fields. Suppose we take equipotential lines corresponding to two values of
potential, f1– and f2. If we add conducting plates biased to N1 and N2 that follow the correct
lines, the electrostatic solution between the plates is unchanged. We shall choose N1 = 0 (the
source potential) and N2 = Vo (the extractor potential). Figure 7.2  shows the shape of the source
and extractor electrodes in Region 1 and some intervening equipotential lines. For x > 0, the
source  electrode lies on the curve

Equation (7.13) represents a straight line oriented at 67.5° with respect to z axis as shown. The
line inclines at 22.5° with respect to the electron source. The extractor curve is more complex:

   Within the beam volume, the source and extractor electrodes follow the straight lines z = 0 and
z = d. We can add another boundary and a set of electrodes at position x = -2xo without affecting
the solution at x = 0. The electrodes in the vacuum region are the mirror image of those in
Region 1. In a sense, the electrodes outside the beam aim the particles to achieve laminar  flow.
The most important component is the slanted electrode adjacent to the source. This surface,
known as a focusing or Pierce electrode, bends electric fields to generate focusing forces near
the source. The electric force counteracts the defocusing beam-generated forces on the edge of
the beam.
   Many applications require cylindrical electron beams. The design of a cylindrical gun follows
the same procedure as a sheet  beam gun, although we cannot use the method of complex
functions  to find an analytic solution. We can apply numerical methods to  search for cylindrical
electrode shapes that give the variation  of potential along a beam boundary at ro:
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Figure 7.2. Geometry of planar Pierce gun showing calculated equipotential lines within the beam and in
vacuum regions. 

Figure 7.3 shows a cylindrical gun with focusing electrode and shaped anode. The electrode
shapes are close to those for a sheet  beam gun when ro o d.
   There is one type of space-charge limited cylindrical gun that  we can design analytically.
Figure 7.4 illustrates the Pierce column. The design principle is similar that illustrated in Fig.  
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Figure 3(a). Numerical calculation of electron flow in a cylindrical Pierce gun using the Trak code: Vo =
50 kV, I = 79.83 A.. (a) Electrode boundaries, model particle orbits and lines of constant electrostatic
potential (2.5 kV interval). The magnetic field generated  by the beam causes a slight convergence of the
electron orbits.  Non-relativistic planar Child law predicts current of 81.84 A.

7.1c. We locate several ring electrodes along the beam boundary.  The rings are biased so that
the potential varies roughly as (z/d)4/3. The Pierce column is useful for the extraction of
space-charge-dominated ion beams at high voltage (>1 MV). Usually, the column of a
high-voltage 
acceleration column contains grading rings. A resistor string biases the rings to impose an
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Figure 7.3(b) Trace-space  plot of rays in the anode plane. The output beam is almost laminar with small
deviations at large radius resulting from unbalanced electric and magnetic forces.

even electric field along a stack of insulators. Figure 7.4 shows one method to achieve the proper
boundary condition along the beam edge by using reentrant structures to vary the
electrode-to-ring spacing. The rings concentrate the axial electric field near the output. The
Laplace equation shows that  there are radial electric fields when there is a gradient of axial
electric field. The forces of the radial electric fields are just sufficient to balance the
space-charge defocusing of the  ion beam. 
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(7.16)

Figure 7.4. Pierce column injector. Electrode spacing establishes  the electrostatic potential as N(z)
•Vo(z/d)4/3 along the beam  envelope.

7.2. Medium-perveance guns

   Beams exit the planar Pierce gun of Section 7.1 through a conducting mesh or foil anode. This
approach is sufficient for low-current or low-duty-cycle guns where the beams have small
average power density. Many applications call for high power density beams that would quickly
melt an anode mesh. These beams  must exit the extraction gap through an aperture in the output 
electrode.
   An anode aperture modifies the electric fields in an electron  gun. Figure 7.5a shows the
distortion of equipotential lines in an  acceleration gap near a hole. The radial electric fields
defocus exiting electrons. The fields act like an electrostatic lens with  negative focal length — 
the defocusing action is called the negative lens effect. Also, the anode aperture reduces the axial 
electric field at the center of the cathode, leading to depressed beam current density. The change
in cathode electric field is small if the diameter of the anode aperture is small compared with the
gap width:

The quantity ra is the radius of the anode aperture. In the limit of Eq. (7.16), the motion of
electrons is close to that predicted  by the Pierce solution. On the other hand, if 
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(7.17)

(7.18)

(7.19)

Figure 7.5. Lines of constant electrostatic potential between a  planar electrode and an electrode with an
extraction aperture. 

the field perturbation is strong. Then we must modify the geometry of the gun to achieve an
output beam with uniform current density. 
   We can write the condition of Eq. (7.16) in a form that illustrates the ranges of current and
voltage in a cylindrical gun that satisfy the Pierce derivation. Taking the source radius equal to
ra, we apply Eq. (5.48) to estimate the net current from  the planar gun:

If we divide both sides of Eq. (7.18) by Vo
3/2, we find that the quanity (I/Vo

3/2) depends only on
the geometry of the extractor and the type of particle. We call this quantity the gun perveance, 
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(7.20)

   The unit of perveance is the perv, equal to 1 Amp/(Volt)3/2.  If we include the condition of Eq.
(7.16), we find that aperture effects are small for an electron gun when the perveance is in the
range:

Equation (7.20) implies that the planar Pierce derivation of Section 7.1  applies to apertured
cylindrical guns less than one :perv. For reference, a 1 :perv, 20 kV electron gun has a current
of 2.8 A,  while a proton gun has a current of 0.12 A. We should note that values of perveance
are significance only for cylindrical guns with apertures. There is no perveance limit for guns
with grids.  High perveance is possible with alternative geometries such as sheet or annular
beams.
   For cylindrical guns with perveance in the range one :perv and above, we must apply a
different design procedure. In this section, we shall concentrate on methods for moderate
perveance  guns, P # 1 :perv. These guns usually have the the converging geometry of Fig. 7.5b.
Here, a focusing electrode surrounds a concave cathode. The shaped electrodes produce a
converging electron beam that passes through the anode aperture. Compared with a planar gun,
the converging gun has several advantages: 

   1. The aperture diameter can be small because the beam has the minimum radius at the anode.
   2. A source with limited current density can generate a high current beam because the beam
width is large at the cathode.
   3. The space-charge-limited current for a given aperture area is higher than that of a planar gun
because the beam density is smaller near the cathode.
   4. With converging electrons, it is possible to counter the negative lens effect to generate a
parallel output beam.

Figure 7.6. Converging gun geometry for a beam with moderate perveance.
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(7.21)

(7.22)

(7.23)

(7.24)

   For small aperture perturbations, we can design a non-relativistic electron gun by dividing
beam motion through the extractor into three roughly independent phases: 

   1. We treat electron motion from the cathode to the anode using the theory of
space-charge-limited flow between spherical electrodes (Section 6.3).
   2. We assume that aperture field perturbations are localized near the anode and we represent
their effect as a thin linear lens with negative focal length. 
   3. In the propagation region beyond the anode, we treat space-charge expansion of the beam
using the paraxial theory of Section 5.4.

   First, we shall discuss converging electron flow between spherical electrodes — Fig. 7.6 shows
the geometry. The cathode and anode are spherical segments referenced to the same center. 
They have radii of curvature Dc and Da. Although the electrodes do not comprise complete
spheres, we can apply the results of Section 6.3 by extending the method Section 7.1. We look
for a set of  electrodes to place outside the beam volume that produce a potential variation along
the beam envelope that approximates the spherical flow solution of Section 6.3. Trial-and-error
calculations using numerical techniques can be used to  find the electrode shapes. 
   The perveance of a full spherical electron beam is

The quantity "(Da/Dc) is the Langmuir function for converging flow from Section 6.3. It depends
on the radii of curvature of the cathode and anode. The perveance of the electron gun in Fig. 7.6 
equals the expression of Eq. (7.21) multiplied by the ratio of the cathode area Ac to the area of a
full sphere, 4BDc

2. In terms of the coordinate system of Fig. 7.6, a differential surface element of
the cathode equals

Integrating Eq. (7.22) from 0 to 2 gives

If the focusing electrodes have the proper shapes, the gun perveance  is 
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(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

In practical units for electrons, Eq. (7.24) becomes
   After crossing the gap, the beam leaves through the anode aperture. The radial fields near the
aperture defocus the electrons. The focal length for the negative lens action of the  aperture
[CPA, Chap. 6] is roughly

In Eq. (7.26), the quantity Vo is the gap voltage while Ea is the magnitude of the axial electric
field near the anode. To estimate the effect, we set Ea equal to the value of electric field without 
the beam and aperture: 

Inserting Eq. (7.27) into Eq. (7.26) gives the focal length

Passing through the aperture, the beam envelope convergence angle  changes from 2 to 2’,
where

Instead of converging toward a point a distance Da from the anode, the beam approaches a point
at a distance

   In many applications, we want to inject a high-current-density beam of small radius into a
magnetic transport channel. For a matched equilibrium, we should locate the magnetic field
boundary at a neck of the beam. The beam emerging from the aperture of a converging gun
usually has strong space-charge forces and low emittance. We can apply the method of Section
5.4 to find the axial location where the beam reaches a neck. From the gun design, we  know the
beam current (I), kinetic energy (eVo), initial radius  (ra) and envelope angle (-2'). We can modify
Eq. (5.90) to describe  the minimum beam radius in terms of the envelope angle and beam
perveance at the anode: 
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Figure 7.7. Numerical calculations of converging gun properties using the EGUN code. Figures show
electrodes, computational rays,  and electrostatic equipotential lines. Left-hand-side: 
spherical-section cathode and focusing electrode. Right-hand-side: shaped anode and output tube. Vo = 20
kV, Io = 1 A. Calculation extends 0.05 m in radius and 0.08 m along the z axis.  (a) Initial run — most of
the available current strikes the anode. (b) With a corrected focusing electrode, the full current enters the
output tube. Note the effect of non-linear electrical forces on the peripheral rays.

   An example is the best way to illustrate the gun design procedure. Suppose we want to create a
1 A beam of 20 keV electrons. The perveance is only 0.35 :perv, so we expect the analytic
approximations are valid. The gun has an oxide cathode with a current density $ 0.25 A/cm2. For
a 1 A beam, the cathode area is Ac = 4 cm2. We pick a convergence ratio of 3:1 in the extraction
gap, Dc/Da  = 3. Table 6.1 gives the corresponding  value of the Langmuir function as "(3)2 –2.5.
Equation (7.25) implies  that the gun subtends an angle 2 = 20°, a reasonable value. Substituting
for Ac and 2 in Eq. (7.23), we find that the radii of curvature of the cathode and anode are Dc =
3.2 cm and Da = 1.07  cm. The cathode has radius rc = Dc sin2 = 1.1 cm, while ra = 0.36  cm. The
negative lens effect reduces the envelope convergence angle to 2' = (20°)(1 - 3/8) = 12.5° — the
projected convergence point is 1.6 cm from the anode. Inserting values of ra and 2' in Eq. (7.31)
gives a very small value for rmin. Hence, we expect that emittance determines the neck radius and 
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Figure 7.7. (Continued)

that the neck is close  to the projected convergence point. 
   The parameters derived from the analytic theory were used in the ray tracing program EGUN
(Sect. 7.3) to derive the data of Figs. 7.7a and b. The cathode and anode were spherical segments. 
In the first run (Fig. 7.7a), the focusing electrode was a conical segment inclined at an angle of
22.5° with respect to the edge of the cathode. Note the expansion of the beam envelope —
focusing was insufficient and most of the beam intercepted the anode. The high total current of
2.0 A resulted from enhanced emission at the edge of the cathode. In the next run (Fig. 7.7b),  the
angle of the focusing electrode was raised to 37.5°. Here,  all the cathode current emerged from
the anode aperture. The total current was 0.974 A, close to the predicted value. The crossing
orbits in the output of the second run result from non-linear electric forces. We could refine the
focusing electrode geometry further to minimize this effect. 

7.3. High-perveance guns and ray-tracing codes

   A high-perveance cylindrical electron gun (P > 1 :perv) has a large extraction aperture that
strongly perturbs the electric field at both the anode and cathode. Figure 7.8 illustrates the
difficulties associated with increased perveance. Figure 7.8a shows  a low perveance gun with
small aperture diameter. The beam convergence angle is small and the electrodes are similar to 
those of a planar gun. In the medium-perveance gun of Fig. 7.8b, electric field distortions are
concentrated near the anode. Here, the theory of Section 7.2 gives useful predictions of the gun 
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Figure 7.8. Problems of high-perveance gun design. (a) Low-perveance gun follows the Pierce design
procedure — anode aperture has a negligible effect on particle extraction. (b) Moderate-perveance
converging gun — anode aperture has a small effect on electric fields at the cathode. (c) High-perveance
gun — anode aperture reduces the electric field at the cathode center.  (d) High-perveance gun — modified
focus electrode to produce an almost uniform electric field on the cathode surface. (From Ion  Beams with
Applications to Ion Implantation, by R.G. Wilson and  G.R. Brewer, used by permission, John Wiley
and Sons.)

performance. The theory cannot describe the high-perveance gun of  Fig. 7.8c. The large anode
aperture distorts electric fields throughout the extraction gap, leading to two problems:

   1) The axial electric field is lower at the center of the cathode. The resulting beam has
nonuniform current density that can lead to emittance growth during acceleration and transport. 
   2) The transverse electric field components cause particle deflections. A large fraction of the
beam in Fig. 7.8c strikes the anode.

We can compensate for the effect of the large anode with focusing electrodes (Fig. 7.8d). The
extensions to the Pierce electrode reduce the electric field at the periphery of the cathode, 
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resulting in more uniform current density. The extensions also bend the electric field lines so that
all electrons pass through  the aperture.
   Figure 7.9 shows a design for an optimized 1.4 :perv gun. Figure 7.9a illustrates the gun
geometry, equipotential lines, and selected particle orbits. Figure 7.9b plots the radial profile of 
extracted current density.  Although all electrons exit through  the anode, the output of the
high-perveance gun is not ideal. The beam current density is lower at the center and non-linear 
electric fields augment the emittance. These effects are sensitive to details of the electrode shapes.
From the complexity  of fields and particle orbits of Fig. 7.9, we can see that analytic calculations
give little guidance for high-perveance gun  design — numerical methods are essential. The most
common design  tool is the ray-tracing computer program.
   We use ray-tracing programs to find steady-state characteristics of electron or ion guns. The
main validity condition is that changes in the gun parameters take place slowly  compared with
the transit time for particles across the extraction gap. In this case we do not need detailed
information on individual time-dependent orbits, r(t). We know that all particles emitted from the
same point of the source follow identical orbits; therefore, we only need to find the traces of 
particle orbits, r(z). Orbit traces are sometimes called rays, a term derived from light optics. In a
steady-state gun, a continuous stream of electrons populates a ray. The electrons of  a ray
contribute to the electric fields through their space charge. If we know the rays emerging from
different regions of the source and the current density carried by each ray, we can find static
electric and magnetic fields in the gun. Sometimes,  transit-time effects in extractors are
important. For example, laser-controlled photocathodes have generated electron pulses in the
picosecond range. To describe these guns, we must use a full computer simulation program that
can handle time-dependent processes. 
   In this section, we will concentrate on EGUN, a program developed by W.B. Herrmannsfeldt at
the Stanford Linear Accelerator Center. The program describes two-dimensional structures, either
(r,z) for cylindrical beams or (x,z) for extended sheet beams. We shall study electron emission
from a thin rod to illustrate the ray-tracing method. Figure 7.10 shows the gun geometry and the
square mesh used for the finite-difference solution of the Poisson equation. A space-charge-
limited flow of electrons leaves the surface of the rod. The electrons cross the acceleration gap
and enter a drift region with a solenoidal magnetic lens. We provide the program with information 
on the shapes of biased metal surfaces and dielectrics to determine applied electric fields. We also
specify the location  and current of coils to generate focusing magnetic fields. Finally, we identify
particle sources and state whether space-charge or source effects limit the emission. 
   The program proceeds in steps to find an approximate solution by iteration. The first step is to
estimate the electric fields without space-charge. Because of the possibility of complex internal
boundaries, the program applies successive over-relaxation [CPA, Section 4.2] to find the
potential on the square mesh. The program uses interpolation methods to represent curved 
boundaries accurately on the square mesh. The potential function gives values for the vacuum
electric fields, Er(r,z) and Ez(r,z) in the computational region.
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Figure 7.9. High-perveance electrion gun design, P = 1.4 :perv. Top: Rays, electrode outlines and
equipotential lines. Bottom: Current density distribution at cathode.
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Figure 7.10. Electron emission from a rod cathode, boundaries and  parameters for a numerical calculation
using the Trak code. Region 1: emitting cathode surface. Region 2: remainder of the cathode surface.
Region 3: anode foil, transparent to electrons.  Region 4: metal walls around transport region at the anode
potential.

   The second step is to calculate the orbits of several particles in the vacuum fields to define
initial rays. Model particle emission is uniform over the source area — the rays are weighted  by a
current-density factor to account for variations in the normal electric field at the source and
differences in the area element represented by the particle. Given the initial currents  and ray
trajectories, the next step is to assign beam charge to  the mesh points. The procedure follows the
standard particle-in-cell method. When a ray passes through a volume element near a mesh 
point, the program increments the charge density at the point by an amount proportional to the
current carried by the ray and the relative amount of time the particle spends in the element. The 
program also estimates toroidal magnetic fields generated by the beam particles.
   The fourth step is to solve the Poisson equation with the effects of the biased boundaries and the
beam space-charge included. If the contribution of space charge is moderate, we expect that the
resulting field predictions are closer to the actual fields than the initial vacuum prediction. The
program next recalculates the orbits of the test particles in the corrected electric fields with
beam-generated magnetic field forces included. For most gun designs, these orbits are closer to 
those in the actual gun than the first set. In assigning current  density to the corrected rays, the
program makes a local Child-limit calculation with the corrected electric fields near the source
surface. Subsequent iterations of the program apply the following operations: 1) assignment of
space-charge and calculation of beam-generated magnetic fields, 2) solution of the  Poisson
equation, 3) calculation of test orbits, 4) assignment of  current to rays. A run usually converges
with fewer than ten repetitions.
   Figure 7.11 shows output for the example of Fig. 7.10. The calculation used 29 model particles
with 18 iteration cycles. The final current was 24.52 A, with less than 0.1% variation over the last
few cycles. The example of the bare rod cathode solution shows the importance of  Pierce
electrodes to suppress edge emission and to produce good-quality beams. We can compare the
code results to the prediction  of Eq. (6.33).  The planar Child law prediction for a gap with Vo = 
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(7.32)

30 kV and d = 0.025 m is 

where Aeff is an effective emission area. If we set Aeff equal to  the surface area of the rod, the
predicted current is only 1.52  A. Because of enhanced edge emission, the actual current from the 
bare rod is considerably higher. The prediction of Eq. (6.33) is 18.7 A, close to the Trak result. 

Figure 7.11. Numerical calculation of space-charge-limited electron emission from a rod with diameter 1.0
cm using the Trak code. The edge of the rod has a fillet with radius 0.05 cm. The acceleration gap width is
2.5 cm. The rays have weighted currents. Most of the emitted current is produced at the edge of
the rod.
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(7.33)

(7.34)

7.4. High-current electron sources

   High-current cathodes are important for microwave tubes, pulsed RF linacs, and induction
linac injectors. Recently, there  has been considerable interest in sources for high brightness
beams that can drive free electron lasers (Section 15.7). High-current electron sources either
have a large area or produce a high electron flux. We shall concentrate on sources that can
supply high-current density (>10 × 104 A/m2). Thermionic cathodes, with a long history of
development, are the most practical sources for applications that require long lifetime and  high
duty cycle. We shall also discuss laser-driven photocathodes and surface plasma sources. These
devices can supply very high-current density and are useful for some pulsed beam applications. 
For consistency with SI units, we shall give all current densities in amperes per square meter.
The reader should note that most cathode literature quotes current density in amperes per square
centimeter.
   Thermionic sources emit electrons when heated to high temperature. The electrons that escape
constitute the tail of a Maxwell distribution with enough energy to overcome the surface
potential barrier of the material. The magnitude of the surface  potential is the material work
function, Nw. The Richardson-Dushman law describes the emission current density from a 
thermionic source: 

In Eq. (7.33), A is a constant that depends on the material and T is the cathode temperature in
degrees Kelvin. The equation shows that the current density rises rapidly with temperature. The
radiation power loss from the cathode also increases with temperature — the  power flux scales
as T4. The work function of large-area, high-current cathodes must be low to achieve
high-current density with manageable thermal power loss. Equation (7.33) implies that small
differences in the work function or temperature of a thermionic cathode lead to substantial
variations of the available current density. For this reason, electron extractors with thermionic
cathodes are usually operated in a space-charge-limited mode for uniform current density
(Section 6.2). 
   We must must add corrections to the emission law for a thermionic cathode exposed to an
electric field. An extracting electric field reduces the surface electrostatic potential barrier.
Tunneling, an effect predicted by quantum mechanics, raises the current density above the value
predicted by Eq. (7.33).  The corrected Richardson-Dushman equation is: 

Equation (7.34) is the Schottky equation. The quantity Es is the electric field normal to the
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surface in kilovolts per cm. 

   The properties of different thermionic cathode materials are usually compared in terms of the
zero field current density, jeo.  The zero field current density is the value given by Eq. (7.34) 
when   Es = 0. We can determine the value of jeo at a particular  temperature by measuring
extracted current density at different  values of extraction voltage and making a plot of ln(je)
versus  the square root of the applied vacuum electric field, Eo

1/2. The resulting graph, illustrated
in Fig. 7.12, is called a Schottky  plot. At low values of Eo, there is significant negative
space-charge near the cathode — the negative electric field suppresses the current. At values of
Eo where all electrons leave the cathode, the electric field on the surface is roughly equal to  the
vacuum field. We can find the zero field current by extrapolating the measurement to the Eo = 0
axis (Fig. 7.12). 
   Commercial thermionic cathodes consist of a high temperature metal substrate coated with a
material with low work function. A coating of free barium on tungsten has a particularly low
value of Nw. Unfortunately, barium evaporates rapidly at high temperature. Dispenser cathodes
solve the problem with an internal reservoir to replenish the barium layer continuously.
Dispenser cathodes are fabricated by impregnating porous tungsten  with chemical compounds
that generate barium when heated. The barium migrates through the tungsten matrix at a high
enough rate to maintain a surface layer. 

Figure 7.12. Schottky plot, current density from a thermionic electron source as a function of temperature
and applied electric  field.
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   Available dispenser cathodes generate current density in the range 20 × 104 A/m2 at a
maximum operating temperature of 1100 °C.  It is possible to fabricate and to heat large
cathodes — surfaces as  large as 100 cm2 have produced kiloampere electron beams. The work
function of the surface may be severely degraded by the presence of background gas or metal
vapors. To avoid cathode poisoning, dispenser cathodes require a clean vacuum less than 5  ×
10-7 torr. Evaporation of active material limits the lifetime of dispenser cathodes. Over the life of
a device, there is a gradual decrease in emission because the barium must migrate from deeper
layers of the substrate. High-current-density operation demands high cathode temperature — the
penalty is rapid barium evaporation and a shortened lifetime. Dispenser cathodes have lifetimes
of about 10,000 hours at an operating temperature of 1100 °C. 
   A variety of dispenser cathodes have been developed over three decades of research. The three
types in common use are the B-type, the M-type and the scandate cathode: 

   1) The B-type cathode, developed in 1955, is the most widely used electron source for
commercial devices. It consists of porous tungsten impregnated with mixture of BaO and Al2O3. 
These materials react chemically to liberate free barium. The chemical CaO is also incorporated
in the impregnant — observations show that it reduces the barium sublimation rate and increases
emission properties. The names of B-type cathodes reflect the chemical composition of the
impregnant. For example, a 532 cathode contains fives parts of BaO to three parts of CaO and
two parts of Al2O3. 
   2) The M-type cathode is a B-type cathode with the addition of a thin surface layer of
ruthenium-osmium. The layer must be thin enough to permit passage of barium — the thickness 
ranges from 2000 to 10000 angstroms. For a given temperature, the presence of the surface layer
doubles the emission current density. M-type cathodes have longer lifetime than B-types because
they can run at lower temperature. On the other hand, damage to the thin surface layer by
processes such as ion bombardment may degrade the emission properties. 
   3) A scandate cathode has Sc2O3 mixed with the standard impregnant materials of the B-type
cathode. The current density from a scandate cathode is almost identical to that from an M-type
cathode. Because the scandate cathode does not rely on a thin surface film, it is not as
susceptible to mechanical damage and poisoning. 

   Table 7.1 lists Richardson-Dushman equation coefficients for  411 cathodes. This type of
cathode achieves high current density.  The work function of a dispenser cathode surface
depends on the  production, migration and evaporation rates of barium; therefore,  it varies with
temperature. Table 7.1 includes the work function  temperature coefficient "c defined by: 

As an example, the work function of a 411M cathode at 1100 °C is  Nw = 1.98 V. The
source-limited current density is 35.8 × 104 A/m2.
   Lanthanum hexaboride, LaB6, is an alternative to dispenser cathodes — it has some advantages
for pulsed-beam accelerators.  The homogeneous material has adequate mechanical strength and 
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Table 7.1. Cathode emission constants

Type Nw (eV) " (V/°K) A (A/m2-°K2)

411 1.67 2.82 × 10-4 3.68 × 106

411M 1.43 3.99 × 10-4 3.50 × 106

411 scandate 1.43 4.01 × 10-4 3.52 × 106

LaB6 2.66 2.90 × 105

Sources: J.L. Cronin, IEEE Proc. 128, 19 (1981), and J.M. Lafferty, J. Appl. Phys. 22, 299
(1951).

an  inherently low work function. Emission from LaB6 does not depend on an active surface
layer. The material is resistant to poisoning, maintaining its emission properties at pressures in 
the 10-5 torr range. Also, there is less problem with evaporation of the active material.
Lanthanum hexaboride may have application  in high-current pulsed accelerators that often have
poor vacuum conditions and hydrocarbon insulators. 
   The drawback of LaB6 is that it has a higher work function than dispenser cathodes and
requires higher temperature. Table 7.1 lists the Richardson-Dushman coefficients. A practical 
temperature limit is about 1700 °C — higher temperatures result  in evaporation of the cathode
material. At the peak operating temperature, a 15 cm2 cathode requires about 3 kW of heater
power  input. This power level in vacuum present problems of thermal management. 
   Free electron laser (FEL) applications require beams with high normalized brightness. Values
as high as 1010 A/(m-rad)2 may be  necessary for a short wavelength FEL. In principle, it is
feasible to achieve these brightness levels with existing thermionic cathodes. We can estimate
electron source brightness capabilities if we postulate that the beam divergence results mainly
from the cathode temperature. Suppose that electrons from the cathode have a Maxwell
distribution of transverse velocity with a temperature T equal to that of the cathode. From Eq. 
(2.62), a beam accelerated to velocity vz has an angular divergence

If the cathode has radius rc, the normalized emittance of the beam is approximately: 

From Eq. (3.34), the normalized brightness is: 
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The quantity jc is the available current density. Note that factors related to the cathode geometry
and beam energy have canceled — brightness is an inherent property of the cathode material. 
   As an application example, consider a LaB6 cathode operating  at 1900 °K, so that kT = 0.16
eV. The source-limited current from Table 7.1 is jc – 10 A/cm2, leading to a predicted maximum 
brightness level of Bn = 1011 A/m2-rad2. The observed brightness for a large area LaB6 cathode is
lower, in the range 3 x 109 A/m2-rad2. The discrepancy may be the result of spatial variations of
work function and surface roughness. 
   Photoemissive cathodes have long been used in electro-optical  devices at low current density.
The availability of high-intensity pulsed lasers has prompted investigations of photo-cathodes for
high-power beams. The principle of the photocathode  is simple — a high-power laser irradiates
a surface coated with a low-work-function material — the energy of the laser photons is high
enough to liberate electrons. The available electron flux is directly proportional to the photon
flux. 
   Laser-driven photocathodes have some advantages compared with  thermionic cathodes:
   1) The cathodes operate at room temperature, simplifying the mechanical design of the electron
gun.
   2) Power coupling is through photons rather than direct electrical connections — a
photocathode can operate on the high-voltage terminal of an electrostatic accelerator.
   3) It is possible to modulate the output electron beam at high frequency by varying the photon
flux. 
   4) The cathodes generate high-brightness beams because the photoelectrons have a small
average transverse energy (< 0.2 eV).
   5) High values of pulsed current density are possible.

Experiments have demonstrated a current density of 200 x 104 A/m2  from a small Cs3Sb
photocathode with frontal illumination by a 50  ns laser pulse [C.H. Lee and P. Ottinger, IEEE
Trans. Nucl. Sci. NS-32, 3045 (1985)]. One of the most interesting features of laser cathodes is
the ability to initiate and extinguish electron flow  rapidly [J.S. Fraser, IEEE Trans. Nucl. Sci.
NS-32, 1791 (1985)]. Current pulses as short as 35 ps have been obtained. 
   Despite their advantages, laser-driven cathodes are not a panacea for the problems of
high-current sources. They have several drawbacks:

   1) The simplicity of the cathode is offset by the complexity and size of the pulsed laser system. 
   2) Present high-current-density experiments use frontal illumination. An effective method to
backlight a large area cathode has not yet been demonstrated.
   3) Photoemissive coatings are sensitive to poisoning - Cs3Sb requires a clean vacuum in the
range 10-10 torr.
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Laser-driven photocathodes are not practical for continuous or long-pulse electron beams.
Consider for example, a photocathode  with an emission efficiency of 10%. Suppose that
photons  of energy 3 eV are necessary to liberate electrons. In order to generate a current density
of 100 × 104 A/m2, the incident photon energy flux must exceed 30 MW/m2. The high-power
flux deposited in a thin layer may create surface plasmas or damage the cathode. 
   At present, the only way to generate an electron current density exceeding 100 × 104 A/m2 over
large areas is from a dense plasma covering the cathode surface. The effective work function of a
plasma is zero. The available current density from a surface  plasma source can exceed 1000 ×
104 A/m2. Surface plasma sources function only for short pulses — expansion of the unconfined 
plasma degrades the optics of the injector and ultimately leads to a short circuit. The width of the
extraction gap and the average expansion velocity of the plasma determine the useful pulselength
of the injector. Depending on the current density, surface plasma sources are useful for beam
pulses in the range 50 ns to 1 ms. 
   The easiest way to create a large-area surface plasma is to expose a metal cathode surface to a
strong electric field. Figure 7.13a shows the mechanism of plasma formation. Most metal
surfaces are covered with microscopic protrusions. These may occur naturally during fabrication
(whiskers) or they may be added to the surface (machined ridges, embedded points). Because of
electric field enhancement, field emission of a small electron  current occurs near the tips of the
protrusions. Even though the current is small, it passes through a correspondingly small
cross-section, causing local heating and vaporization of material. The process creates dense, cold
plasmas at the emission sites. An array of sites can generate very high-current density. 
   Resistive materials, such as graphite, are very effective for the generation of surface plasmas.
Woven graphite and cut graphite strands give a rapid initiation of electron current. Insulating
materials on a metal substrate can also create plasmas effectively. In this case strong electric
fields cause vacuum insulator breakdown (Fig. 7.13b). A fine array of insulating strands gives a
moderately uniform plasma density over a large area. Ordinary velvet cloth often gives
acceptable results.
   Many high-power pulsed-beam experiments utilize surface plasma sources, mainly because
they involve no technology. The main problem with these sources is plasma closure and gap
shorting. Plasma expansion velocities higher than 10 cm/:s are usually observed at high-current
density. After a pulse, gas and plasma  fills the extractor gap. The time necessary to pump out the 
background material limits the repetition rate. Late-time short  circuits may channel energy
remaining in the pulse modulator, leading to cathode damage. Uncontrolled surface plasma
sources are not suitable for high brightness beams. A typical brightness  level for a high-current
extractor with a velvet surface breakdown cathode is 3 ×107 A/(m-rad)2.
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Figure 7.13. Production of surface plasmas for electron extraction. (a) Concentration of electric field
intensity at a whisker on a cathode surface. (b) Plasma formation by vacuum breakdown along the surface
of an exposed insulator.

7.5. Extraction of ions at a free plasma boundary

   Although some ion species can be generated directly from solid  surfaces, most high-flux ion
sources rely on extraction from a plasma. In this section, we shall discuss the physical principles 
of ion extraction from an unconfined plasma. In particular, we shall concentrate on the boundary
between a field-free plasma and the extraction gap with its high electric field. First, we must
review some properties of plasmas to understand limitations on ion flux and beam optics. A
plasma is a mixture of ions and electrons. The density is high enough so that long range
collective electromagnetic fields make the main contribution to particle motions. Six
macroscopic quantities are usually sufficient to characterize a source plasma: electron density,
ion  density, average electron velocity, average ion velocity, electron temperature and ion
temperature. We shall review some common parameters for source plasma, starting with particle 
density. 
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(7.39)

(7.40)

(7.41)

   Most plasmas are almost electrically neutral. For singly charged ions, the electron and ion
densities are approximately equal: 

Densities of ion source plasmas are in the range 1016 - 1019 m-3.  At these values, the slightest
imbalance between ne and ni would  result in large electric fields. Without an applied magnetic 
field, the electric fields shift mobile electrons to cancel any  local charge imbalance. Sources
with a high electron temperature, such as Penning discharges and metal vapor vacuum arcs, can
produce a mixture of ion charge states. Also, some sources may create mixed ion species. We
must modify Eq. (7.39) when there are several types of ions. For example, in a carbon source
with C+  and C++ ions, the neutrality condition is: 

   The plasmas of ion sources that produce current density in the  range 0.01 to 1 A/cm2 are
usually stationary — the directed velocities  and  are approximately equal to zero. Sources 
have been developed for beam-driven inertial fusion to produce plasmas with a high value of
directed ion velocity. These sources can achieve pulsed current densities in the range >100
A/cm2.  Section 12.5 discusses methods to accelerate plasmas.
   Plasmas are often produced by an electric discharge, resulting  in electron temperatures
exceeding 10,000 °K. The collision rate is usually high enough in a steady-state plasma so that
the electrons are in local thermodynamic equilibrium. The velocity distribution of plasma
electrons is ordinarily close to a Maxwell distribution — the electron temperature is in the range
kTe ~ 1 -  10 eV. Collisions between electrons and ions are ineffective at  transferring momentum
to the ions. In most sources with a moderate ion residence time, the temperature of the ions is 
usually low, kTi < 1 eV.
   The random particle motions associated with non-zero electron and ion temperatures result in
particle transport, even with no applied forces. In stationary plasmas, the thermal fluxes of ions 
and electrons determine the available current density. We shall calculate the ion flux through a
plane in a uniform, collisionless plasma — Fig. 7.14 illustrates the model. We want to find the
total number of ions that cross the plane at z = 0. The ions have a Maxwell velocity distribution.
Following Eq. (2.59),  the normalized distribution of velocities in the z direction is

   We define the quantity )N(vz) as the number of particles with velocity in the interval )vz at vz
that pass through a unit area in the plane in a time )t. Particles with velocity vz that cross the 
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(7.42)

(7.43)

(7.44)

Figure 7.14. Calculation of flux through a plane for ions randomly  distribution in velocity.

plane in the interval 0 < t < )t are located between vz)t < z <  0. The number of ions in a volume
of length vz)t and unit cross- sectional area is nivz)t. Of these ions, the fraction g(vz)dvz is  in the
velocity range of interest. Combining expressions, the differential flux is 

We derive the total flux of particles by integrating Eq. (7.42) over the range -4 # vz # 0. The
thermal flux in the +z direction is:

We can write Eq. (7.43) in terms of the average speed of the ions, :

  In a hydrogen plasma with ni = 1019 m-3 and kTi = 1 eV, the  thermal ion flux is 3.9 × 1022

ions/s-m2. This figure corresponds to an equivalent proton current density of 6.3 × 103 A/m2

(0.63  A/cm2). We can find the thermal electron flux by substituting the electron mass and
temperature in Eq. (7.43). For an electron temperature of 10 eV, the equivalent electron current
density is  8.5 × 105 A/m2 (85 A/cm2). Because of their light mass, electrons  move rapidly
through a plasma.
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   We shall now address processes that occur on the ion emission surface, the boundary between
the field-free plasma and region of  high electric field in an extraction gap. To understand the
nature of the interface, we shall start with a simplified plasma  model. Suppose that the plasma
electrons are cold, kTe = 0. In  this limit, the electrons provide complete cancellation of electric
fields inside the plasma volume. The electron and ion densities are exactly equal, ne = ni = no.
Assume further that the ions are cold but have a directed velocity in the z direction, vo. The
available ion current density is 

Figure 7.15 shows the model geometry. The plasma extends infinitely in the x and y directions. A
source electrode at z = -4 generates plasma electrons and ions at ground potential. A biased
electrode at potential -Vo and position z = d extracts ions. The ion emission surface is at z = 0. 
   Inside the plasma region, the electron and ion densities are equal and there is no electric field.
As a result, the electrostatic potential equals zero throughout the plasma. In the extraction gap,
the electron density is zero. Because the ion current density equals jo at all positions, the
equilibrium ion density is inversely proportional to the ion velocity. The electrostatic potential
varies from 0 to -Vo over the distance d. To solve the Poisson equation to find how N varies
across the gap, we can apply the condition that the electric field is continuous over the emission
surface; therefore, dN(0)/dz = 0.
   The conditions in the gap are the same as those for space-charge-limited ion flow (Section 5.2).
For a consistent steady-state solution, the space-charge-limited ion current density must equal
the available thermal flux from the plasma, jo. In other words, for given values of jo and Vo, we 

Figure 7.15. Geometry for calculating ion extraction from a plasma  with cold electrons.
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must adjust d to give  the correct space-charge-limited flow. In the limit that mivo
2/2  n eVo, Eq.

(5.48) implies that the correct spacing is

Equation (7.46) shows that the position of the ion emission surface relative to the extractor
electrode depends on the voltage applied to the extraction gap and the properties of the plasma 
source. 
   The interdependence between the parameters of the plasma source and the extraction gap is
important for the design of ion  guns. Figure 7.16 shows a high-flux ion injector. A finite-width 
beam accelerates between an anode and cathode separated by spacing d and voltage Vo and exits
through an aperture. The width of the aperture must be comparable to or smaller than d. To avoid 
wasted ion flux and bombardment of the cathode, we admit plasma to the extraction gap through
an anode aperture opposite the cathode aperture. The figure also shows focusing electrodes on 
the anode. Section 7.8 describes the function of the extra electrode at the cathode.

Figure 7.16. Schematic diagram of high-current ion beam extraction from a plasma. Figure shows
representative voltages, a source  plasma meniscus, a converging beam, and a decel gap to suppress 
electron back-streaming.
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Figure 7.16. Effect of available plasma ion flux on beam optics in an extraction gap. (a) Pierce gun —
plasma ion flux and space-charge-limited ion flux balanced to define a flat emission surface. (b)
Excessive plasma ion flux causes a bulge of the emission surface and a diverging ion beam. (c) Reduction
of plasma  ion flux leads to a concave emission surface and a converging beam.
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Figure 7.17. (Continued)

   Neglecting the field perturbations of the cathode aperture, we  know that there is an ideal
solution for space-charge flow in the  extractor of Fig. 7.16. When the plasma flux satisfies Eq.
(7.46),  the flat ion emission surface is flush with the edge of the focusing electrode (Fig. 7.17a).
From the discussion of Section 7.1, the resulting beam is parallel. Figure 7.17b shows how the 
solution changes if we increase the plasma flux while maintaining  a constant extractor voltage.
Because the available ion current density exceeds the space-charge-limited value, the ion
emission surface protrudes beyond the anode aperture. Ion flow across the extraction gap
increases as a result of the combined effects of the decreased gap spacing and increased emission
area. The extracted  ions no longer constitute a parallel beam — some ions may strike the
cathode, resulting in gap shorting or electrode damage. In contrast to electron extractors with a
thermionic source, the optics of an ion gun is coupled to the properties of the plasma source.
Therefore, plasma sources for ion extraction must maintain high stability.
   We can take advantage of the dependence of the shape of the ion  emission surface on the
plasma flux. As with electron guns, we would like to generate a converging beam so that we can
use a small exit aperture. To do this, we need a shaped source surface.  We can create a concave
ion emission surface, known as a plasma  meniscus, by reducing the plasma flux below the level
for a planar emission surface. In this case the plasma surface recedes into the anode aperture
(Fig. 7.17c). The effective gap width is larger at the center of the plasma so that space-charge
flow is  matched to the lower flux. The edge of the plasma cannot recede into the aperture — in a
sense, it is tied to the surface of the anode. If the plasma on the edge were to move back, there
would  be a strong reduction in the electric field normal to the surface because of electrostatic
shielding by the metal electrode. The ion emission surface must remain close to the electrode
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face to maintain a balance between the plasma flux and the extracted flux. 
   We can calculate the shape of the plasma meniscus with ray tracing codes. In the iterative
calculation, the plasma surface evolves to a configuration that has almost constant normal 
electric field over the cross section. To first order, the plasma meniscus approaches a spherical
segment. The radius of curvature depends on the magnitude of the plasma ion flux compared to
the  planar value. Ideally, the gun should generate ion orbits similar  to the electron orbits of Fig.
7.7. Plasma sources are more difficult to operate than thermionic cathodes. We saw in Sect.ion
6.2 that the current from an electron extractor is uniform because of space-charge effects, even if
the flux from the thermionic source varies in space or time. The flux from ion extractors can be
nonuniform because the plasma can move into the acceleration gap. As a result, the plasma
source must be very stable. Also, sources for multi-aperture guns (Section 7.8) must provide
uniform plasma flux over large areas. 
   In the discussion up to this point, we neglected the effects of electron temperature. Energetic
electrons can create electric fields that affect the available ion flux from the plasma. A complete
self-consistent solution for ion extraction from a thermal plasma can be complex. In the
following discussion, we shall estimate the available ion flux using physical insights rather than
detailed mathematics. The results agree with experiments and detailed numerical studies.
   Figure 7.18a shows the one-dimensional geometry of the model. Ions are extracted from a
plasma emission surface at z = 0. Plasma electrons have uniform temperature kTe while the ions 
are cold. We allow the possibility that the plasma properties at  the emission surface differ from
those in the bulk of the plasma  — we denote the potential at the emission surface as !Ns while
the  bulk of the plasma has N = 0. We assume that the electron and ion densities at the surface
are approximately equal. The density at the surface is ns while the density in the bulk of the
plasma is no. The electric field throughout the plasma is small — we shall apply the condition
dN/dz –0 on both sides of the emission surface.  The emission surface maintains a constant
position only if there is a flux of incident ions. We postulate that the flux arises from a directed
ion velocity, vo. In the following calculation,  we want to see if there are limits on vo for valid
solutions of  the Poisson equation in the extraction gap and to find how the ions acquire a
directed velocity. 
   Solution of the Poisson equation in the extraction gap is more difficult when electrons have a
non-zero temperature. Thermal electrons can penetrate into the gap — we must include the
electron contribution to the density. Suppose that both Ns and  kTe/e are small compared with Vo,
the gap voltage. In this case, electrons remain localized near the anode in thermal equilibrium.
We can relate the electron density to the electrostatic potential  through Eq. (2.134). In the region
0 # z # d, the electron density is: 

We can also express the ion density in terms of the electrostatic  potential. If the ions of mass mi
have directed velocity vo at z  = 0, then
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Figure 7.18. Ion extraction from a plasma with hot electrons. (a)  Schematic diagram of spatial variation
of electrostatic potential, plasma electron density and ion density in and near a one-dimensional extraction
gap. (b) Expanded pre-sheath region near a finite-width extractor.
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If we define the dimensionless potential, M = -e(N - Ns)/kTe, the Poisson equation is 

   The normalized potential must be a monotonically increasing function of z. Negative values of
M (corresponding to a positive  values of N) would violate the conditions leading to the electron 
density expression of Eq. (7.47). The bracketed term on the right-hand side of Eq. (7.49) governs
the behavior of the solution near the emission surface. The condition dM(0)/dz – 0 must hold; 
therefore, the second derivative of M is positive near z = 0. When this condition is not true, the
curve describing M has a negative inflection at the emission surface, leading to negative values
of M. Figure 7.19 shows the bracketed term of Eq. (7.49) for  several values of the parameter
(2kTe/mivo

2). We see that 

Figure 7.19. Function for the calculation of ion extraction from a  plasma with hot electrons. Abscissa: M
= -e(N-Ns)/kTe, Ordinate:  (1 + 2kTeM/mivo

2)1/2 - exp(-M).
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(7.51)

(7.52)

(7.53)

(7.54)

for a valid solution. This observation gives the following condition on the directed ion velocity:

Equation (7.51) is known as the Bohm sheath criterion. In plasma physics, a sheath is a narrow
region of electric fields in a plasma where ion and electron densities are unequal.
   In most ion source plasmas, the ion temperature is small compared with the electron
temperature, 

The condition of Eq. (7.52) implies that the ion thermal velocity  is much less than the directed
velocity necessary to meet the Bohm sheath criterion. Therefore, the ion flux that moves toward 
the emission surface must arise from processes other than thermal diffusion. The accepted theory
holds that the electron and ion densities readjust slightly in a region of the plasma adjacent to the
emission surface. This region is sometimes called the presheath. A charge imbalance leads to
electric fields in the plasma — these fields are much smaller than the applied field in the
extraction gap. There is a drop in the electrostatic potential Ns between the bulk of the plasma
and the emission surface associated with the fields of the presheath. We  can find a consistent
solution to the Poisson equation in the extraction gap if the potential drop is sufficient to give the 
ions a directed velocity that satisfies Eq. (7.51). This condition implies the following value of
electrostatic potential at the emission surface: 

Figure 7.18b illustrates variations of potential, electric field,  ion density, and electron density in
the presheath and emission surface sheath.
   The negative value of N at the emission surface means that the electron density is lower than
the value in the bulk of the plasma, ns < no. Also, the condition of small electric fields in the
plasma implies that the ion density almost equals the electron density in the region z < 0.
Equation (7.47) gives the following value for the particle densities at z = 0:
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Combining Eqs. (7.51) and (7.54), we can estimate the available ion current from the boundary
of a free plasma with low ion temperature:

The quantity jB is the Bohm current density — Eq. (7.55) gives a  good estimate of the available
ion current density from most source plasmas. We can balance the Bohm current density against 
the Child law value in an extraction gap to find the shape of the plasma meniscus.
   The model that we have developed contains a paradox if we limit attention to a purely
one-dimensional plasma. The model depends on the condition that the electric field is localized 
near the emission surface — it falls to zero in the bulk of the  plasma. On the other hand, a
one-dimensional model demands that  the ion flux is equal at all axial positions. Because the
current density from thermal ion motion is usually lower than jB, we must conclude that the
presheath electric field that accelerates the ions extends to z = !4. We can resolve the problem in
a one-dimensional theory by allowing electric fields to extend to an ion source plane at negative
z. With this assumption, detailed numerical solutions predict matched current density values
close to the predictions of Eq. 7.55. The geometry of real ion extractors is not one-dimensional.
Usually, the area of the anode occupied by apertures is a fraction of the total area. For this case,
the cross-section area of the presheath can increase with distance from the emission surface.
There is a distance where the area of the expanded presheath region is sufficient so that the
Bohm current can be supplied by thermal diffusion of ions into the presheath. Figure 7.18c
illustrates this process schematically.  

7.6. Plasma ion sources

  It is more difficult to produce ions than electrons. As a result, there is a wide diversity of ion
source types, each with relative merits. A review of the physics and technology of ion sources
would occupy a volume. Here, we will pursue a more modest goal, listing some high-flux plasma
ion sources and describing the basic principles of their operation. 
   We choose a particular plasma source by its relative species content (atomic species and
charge states of a given species), available current density and maximum useful emission area.
Also,  the source plasma should have good temporal stability for ion extraction from a free
surface. For large-area extractors, the plasma flux should be uniform in space so that the beam
optics is  identical in all apertures. To achieve low beam emittance, the temperature of ions in the
plasma should be low. Two other characteristics are important for applications — the conversion
efficiency and the ionization efficiency. Conversion efficiency is ratio of the total current of ions
available at the extractor  to the total electron current in the source. Conversion efficiency varies
widely between sources — it is usually much smaller than unity. In gas-fed sources, the
ionization efficiency is the probability that an atom is ionized as it crosses the source volume.
The quantity determines gas loading by the source. Differential pumping of emitted source gas is
a major technology problem in many high-flux ion beam systems.
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Figure 7.20.Simplified geometry of a plasma source based on ionization of a flowing gas by electrons.

   Most sources for industrial and research applications rely on  ionization of gas by a stream of
energetic electrons. To begin, we shall review some constraints on the ionization process. We 
shall use the simplified source geometry of Fig. 7.20. Neutral gas at density ng flows through an
electron stream created by two parallel plates. The distance across the stream is w — the spacing
between the plates is d. One plate, at voltage -Vo, emits  electrons at current density je. Energetic
electrons in the stream collide with gas atoms, stripping atomic electrons to produce ions. The
region between the plates contains a low-temperature plasma. With no applied magnetic field,
the plasma concentrates the electric field between the plates to a narrow cathode sheath with a
width about equal to a Debye length. As a result, electrons accelerate to a kinetic energy of eVo
before  entering the bulk of the gas. Because of the low electric fields,  secondary electrons
produced in the plasma do not gain enough kinetic energy to create further ionization. 
   The differential ionization coefficient S describes the ability of primary electrons to generate
ions. The product of S  times the gas density equals the total number of ions (in all charge states)
produced per meter of primary electron path length:  

                                   (number of ions per electron)/meter = S ng.                                         (7.56)

Figure 7.21 shows a plot of S as a function of electron kinetic energy for different gasses. In the
range shown, most of the resulting ions are in the +1 charge state.
   We can estimate the conversion efficiency of the source of Fig. 7.20 in terms of S. The total
number of ions generated for each primary electron is
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(7.59)

(7.60)

Figure 7.21. The quantity S, the number of ions produced by an electron of energy We per centimeter path
length at 1 torr pressure. (From Ion Beams with Applications to Ion Implantation  by R.G. Wilson and
G. R. Brewer. Used by permission, John Wiley  and Sons.)

where  is an average over the kinetic energy of electrons in  the gas. The ratio of source ion
current to the discharge electron current is 

 The inequality accounts for the fraction of ions that do not reach the extraction gap. As an
example, suppose we have an argon ion source with a filament voltage of -300 V. From Fig.
7.21, we  estimate that  ~ 1020 m-2. We take an electron transit length of 0.03 m and a gas
pressure of P = 10 mtorr. The conversion from gas pressure to atomic density (at 0 °C) is 

The atomic density is 3.5×1020 m-3. Inserting values into Eq. (7.58) gives Ii/Ie < 0.1. 
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   The gas utilization efficiency ,g equals the probability of ionization of an atom crossing the
electron stream. Ideally, all entering atoms should be ionized —  in practice, ,g is much smaller
than unity. The total number of ions produced per unit time in a volume wd)z is

If vg is the average thermal velocity of ions, the total number  of atoms entering the electron
stream per second is

The gas utilization fraction is the ratio of Eq. (7.61) to Eq. (7.62):

Argon atoms at room temperature have a thermal velocity vg = 244  m/s. For an electron current
density of je = 1000 A/m2 (0.1 A/cm2), Eq. (7.63) predicts a gas utilization fraction of only about
,g ~ 0.01.
   In designing a plasma source, we would like to achieve the highest possible values of Ii/Ie and
,g. Following Eq. (7.58),  there are two approaches to raise Ii/Ie: increase the gas density (ng) or
extend the electron path length (d). We avoid the first option because it results in higher gas
loading. There are several ways to increase d. For example, we can apply a magnetic field in the
ionization region that forces the electron to follow longer paths. To raise ,g we must have higher
primary electron current density (je). For a given source current density, we can use reflex orbits
for higher effective je. Another way to increase the electron current is to use secondary electrons
to create additional ionizations. We can increase the kinetic energy  of secondaries through
plasma instabilities or by an electric field in the plasma volume. 
   In the remainder of this section, we shall look briefly at some high-flux plasma sources. We
shall start with gas sources — the  first example is the large-area source used to create neutral 
beams for fusion research. These sources are conceptually simple  — the ionization process is
similar to that of Fig. 7.20. We shall then move to more complex gas sources and discuss how
they reduce the electron source current and improve gas utilization.  We then review the
properties of a source that does not rely on gas injection, the metal-vapor vacuum arc. We
conclude with a discussion of sources that can provide current densities exceeding 100×104 A/m2

for high-current pulsed beams. 
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Figure 7.22. Large-area ion source. (Courtesy, W. Cooper, Lawrence  Berkeley Laboratory).

A. Large-area plasma sources

   Large-area plasma sources supply ions to multi-aperture electrostatic accelerators for fusion
research. The energy of the  output beams is about 50 to 100 keV. The source of Fig. 7.22
generates current densities of H+ or D+ in the range 0.5 × 104  A/m2 over areas exceeding 0.02
m2. As in Fig. 7.20, free-electron flow through a gas creates ions –  the gas pressure is in the
range 10 to 20 mtorr. The electron sources are multiple thermionic filaments biased to about
-300 V. Some of the ions created in the large volume plasma drift through apertures in the  front
wall to the extraction gap. 
   The large-area source has low conversion efficiency – the electron current to heat the filaments
and to drive the discharge is in the kA range. The sources also emit a substantial amount of gas.
Nonetheless, the source has decided advantages for multi-aperture ion beam generation. The
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plasma is very stable because  the electron density is low and there are no confining magnetic
fields. The ion flux is constant in time and has excellent spatial uniformity. The temperature of
ions from the source is low because of plasma stability and the short ion residence time.  Good
beam aiming and low ion temperature are essential for the application – divergence angles must
be less than 10 mrad. 

B. Magnetic Bucket Source

  Application of magnetic bucket plasma confinement improves the characteristics of large-area
plasma sources. Figure 7.23 shows the  geometry of a bucket source. It is similar to the
large-area 
source, except that an array of permanent magnets covers the wall of the plasma generation
chamber. The wall acts as the anode for  the electron discharge. The magnets produce multipole
magnetic fields of a few kG localized near the wall that reflect a portion of the incident electrons.
In plasma physics, this process is called magnetic cusp confinement. Even though confinement is
imperfect,  the magnetic buckets improve the performance of the ion source. For a given source
current, partial electron reflection leads to  a higher density of energetic electrons in the plasma. 
   The bucket source can operate at lower gas pressure than a simple large-area source.
Therefore, a bucket source has reduced gas loading and lower primary electron current. There is
little sacrifice in the quality of the plasma to gain these improvements – the cusp field geometry
gives stable plasma confinement. In fact, confinement may improve plasma stability because the
primary electrons have a more isotropic velocity distribution. Because ionization takes place
mainly in a field-free region, magnetic fields do not contribute to the emittance of the 
extracted ion beam. 

C. Penning Ionization Gauge source

   The Penning Ionization Gauge (PIG) source uses a self-sustained discharge that requires no
electron source. The geometry of a large-area positive ion source is shown in Fig. 7.24. The
plasma region has an applied axial magnetic field and a radial electric field generated by a
cylindrical anode. The fields trap electrons in the source volume. The magnetic field provides
radial confinement and the longitudinal component of the  electric field provides axial
confinement. 

   Electric fields can exist in the plasma because the magnetic field inhibits radial electron
motion. A free electron generated in the plasma region follows a complex drift orbit in the
crossed  fields. Certain combinations of gas pressure, magnetic field, and anode voltage lead to a
diffuse discharge. The discharge is self- sustained if the electrons in the plasma volume gain
enough energy to cause further ionization and if the lifetime of free electrons is longer than the
mean time to ionize a gas atom. When  the second condition holds, each electron creates at least
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Figure 7.23. Magnetic bucket ion source (From The Physics and Technology of Ion Sources, edited by
I.G. Brown. Used by permission, John Wiley and Sons.)
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Figure 7.24. Penning-type ion source. (From Atom and Ion Sources,  by L. Valyi. Used by permission,
John Wiley and Sons.)

one additional electron before being lost. Ultimately, electrons migrate to the anode through the
combined effects of collisions with atoms and the high-frequency electric fields of instabilities.
Ions are extracted axially by applying a small positive voltage to the upstream source electrode. 
   The PIG source has good energy efficiency. Because it requires no thermionic sources, it is
simple to operate for long periods  of time. The source has disadvantages for the generation of
low-emittance ion beams. The discharge relies on complex collective  processes that may change
abruptly with variations in operating  parameters. PIG discharges are invariably unstable. In
some 
regimes, plasma micro-instabilities lead to enhanced ion temperature. In other regimes,
macro-instabilities cause large spatial and temporal variations of the available plasma flux. The 
main problem is that ion generation occurs in a strong applied axial magnetic field. Section 9.2
shows that this leads to enhanced beam emittance. 
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Figure 7.25. Duoplasmatron ion source. a) Components and driving  circuit. b) Expanded view of orifice
region. (From Ion Beams with  Applications to Ion Implantation by R.G. Wilson and G. R. Brewer. 
Used by permission, John Wiley and Sons.)
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 D. Duoplasmatron

   The duoplasmatron is widely used for moderate current beams in research and industrial
applications. The device, illustrated in Fig. 7.25, makes effective use of the primary electron
current and reduces gas loading by funneling both the gas and the primary  electron stream
through a narrow orifice. The gas pressure in the  interaction region can be high without
excessive gas loading. Plasma generation processes in the duoplasmatron are complex – 
development of the device has been largely empirical. The basic  principles of operation are: 

   1) A negatively-biased cathode filament generates electrons that accelerate toward the anode
electrode through a low-density plasma. 
   2) An intermediate focusing electrode with a narrow aperture (~5 mm diameter) stands
between the cathode and anode. If the potential of the electrode has a value between that of
cathode and anode, a portion of the electron current is forced to flow through the aperture to the
anode. 
   3) An axial magnetic field reduces electron collection by the focusing electrode. The electrode
and portions of the anode are composed of soft iron to direct the magnetic field to the orifice
region. 
   4) In applications with moderate beam current, a voltage in the range ~50 kV extracts ions
directly from the intense plasma bubble at the orifice.

The main advantage of the duoplasmatron is that it has high ionization efficiency – sometimes ,g
may be as high as 90%. The major technology problem for high-current applications  is cooling
the anode insert, which is subject to intense electron  bombardment.

   A variant of the duoplasmatron has been applied as a source for large-area multi-aperture
extractors. The device is distinguished, in part, by having the least poetic name in charged-
particle beam technology, the duopigatron. The duopigatron is a duoplasmatron combined with a
PIG source (Fig.  7.26). The duoplasmatron section injects seed electrons, plasma and gas into an
axial crossed-field discharge. Drifting electrons in the PIG region complete the ionization of the
gas. The plasma drifts through an expansion region to a multi-aperture extractor.  Although the
duopigatron has lower gas loading than the large-area source, the available ion beam current is
about an order of  magnitude lower. The emittance of extracted beams is higher because of
magnetic fields and plasma turbulence in the source.

E. Metal-Vapor Vacuum Arc

   A metal-vapor vacuum arc is an intense discharge between electrodes at high vacuum.
Evaporation of the cathode supplies material to form the conducting plasma between the
electrodes. The importance of vacuum arc phenomena in high-power circuit breakers has lead to
studies for many decades. Only recently have vacuum arcs been applied to high-flux ion
extraction. Vacuum arcs have several useful properties: 
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Figure 7.26. Duopigatron ion source with accel-decel extractor electrodes. (From The Physics and
Technology of Ion Sources, edited by I.G. Brown. Used by permission, John Wiley and Sons.)

   1. The plasma that expands from the arc region has high available ion flux. 
   2. The arcs can generate a wide variety of previously unobtainable metal and semiconductor
ions with a high degree of purity.
   3. The sources produce few neutrals, reducing problems of gas loading.
   4. Vacuum arc sources are well-suited to pulsed extractors – the plasma flux reaches
equilibrium level a few ms after initiation.
   5. For some electrode materials, the sources generate a high fraction of multiply-stripped ions.
   6. They are simple and reliable. 
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Figure 7.27. Principle of the vacuum arc ion source.

   Figure 2.27 illustrates the principle of the metal-vapor vacuum arc. A discharge flows in a
plasma between two electrodes. Electrons are created by thermionic emission from a small
region  (~1 mm) at very high temperature on the negative electrode called  the cathode spot.
Evaporation of metal at the spot supplies material. The intense electron flow converts the
expanding neutrals to a dense, highly ionized plasma. At the cathode spot,  the electron current
density may exceed 1013 A/m2, maintaining surface temperatures over 5000 °C. Plasma from the
spot conducts  the high current-density of electrons away from the cathode. Vacuum arcs carry
current in the range 100-300 A with voltage between electrodes of ~20 V.
   Because of the intensity of the discharge near the cathode spot, vacuum arcs may produce high
fractions of multiply-stripped  ions. For example, beams with 80% of the current carried  by
doubly-charged ions have been extracted from the plasmas generated by magnesium and
titanium cathodes. The main problem of vacuum arc sources is that there are substantial (~20%)
variations of available flux with time. These variations occur because the plasma near the
emission point is unstable – the cathode spot moves and may periodically extinguish. The use of
multiple arc sources or grid-controlled extractors (Section 7.7) can reduce the problem. 
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Figure 7.28. Multiple carbon-arc ion source and multi-aperture extractor. (Courtesy, C. Burkhart, Pulse
Sciences Incorporated).

   Figure 7.28 shows a multiple arc source for ion beam generation. The source generates 0.5 ×
104 A/m2 of C+ ions over an area of 4 × 10-4 m2. The cathode connects through ballast resistors to
a pulse-forming network with about 1 kV standing voltage. A pulsed plasma  injected into the
gap initiates the arc. In Fig. 7.28, a low energy spark on an insulator generates the trigger
plasma. Cathode cooling limits pulselength and repetition rate – a typical extraction pulse is 1
ms. 
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(7.64)

(7.65)

F. Intense pulsed ion beam sources

   Accelerators of intense pulsed light ion beams have potential application as drivers for inertial
fusion reactors. Source requirements are extreme – typical values are 1000 × 104 A/m2 of  pure
Li+ for a pulselength 0.1 - 1 :s.. Figure 7.29 illustrates one approach to achieve intense plasma
pulses. A metal-vapor vacuum arc creates a spatially-extended plasma over a relatively long time
scale ($10 :s). During the short extraction time, a pulsed magnetic field drives the plasma into
the extraction gap. With axial and  radial plasma compression, high current densities are
possible.
   We shall use a result from Section 12.5, which describes the theory of the magnetic
acceleration of plasmas. A pulsed magnetic field of magnitude Bo drives a highly conducting
plasma at a velocity of 

In Eq. (7.64), no is the plasma density before acceleration and mi  is the ion mass. The ion current
density of a magnetically-accelerated plasma with singly charged ions is roughly

Moderate values of magnetic field and plasma density give high values of current density. As an
example, suppose we  have Li+ ions stored at a density of 1020 m-3 and accelerated by a pulsed
field with Bo = 0.2 tesla. The velocity of the plasma front is about 3 × 105 m/s, corresponding to a
directed energy of 3.3 keV. If the initial length of the lithium plasma is 0.3 m, the risetime of the
magnetic field should be # 1 :s. The current density predicted by Eq. (7.65) is over 400 A/cm2. 

7.7 Charged-particle extraction from grid-controlled plasmas

   Section 7.5 described ion extraction from a free plasma surface.  The term free implies that
there are no confining forces at the plasma surface. A drawback of this method is that the optics
of  the output beam depends sensitively on the plasma properties. Many potentially-useful ion
sources, such as metal-vapor vacuum arcs, do not generate a constant ion flux. Free-surface
extraction presents another problem – it is not compatible with rapidly pulsed ion beams (100 ns
- 10 :s). Most plasma sources take a longer time to reach equilibrium operation. Unless the
extraction voltage is present during source initiation, a precursor plasma fills the extraction gap.
The presence of a plasma prefill often causes breakdowns at high voltage.
   To solve these problems, we can use biased electrostatic grids to confine an extraction plasma.
For ion generation, plasma control grids uncouple the beam optics from variations of the plasma 
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Figure 7.29. Pulsed ion sources using magnetic field acceleration  of a plasma. a) Source for a multi-kA
proton gun. A: vacuum chamber, B: feedthroughs for pulsed magnet coils, C and D: coils  to generate
radial magnetic field, F: High voltage feedthroughs,  E: Hydrocarbon spark source for protons, G:
Magnetically-insulated extraction gap. b) Source for high-current nitrogen and  argon beams. A:
insulating flange, B: vacuum chamber, C:  magnetically-insulated extraction gap, D: fast pulsed gas valve, 
E: radial gas nozzle, F: pre-ionizer electrode, G: pulsed pancake  magnet coil, H: ceramic faceplate. c)
Magnetic field lines from a  pulsed pancake coil adjacent to an accelerated plasma. (Field calculation
courtesy of J. Freeman, Sandia National Laboratories).
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Figure 7.29. (Continued)

source and prevent plasma prefill. In this section, we shall discuss electrostatic confinement of
plasmas. The process also has application to plasma cathodes and well as ion sources. 
   To understand electrostatic plasma confinement, consider the  geometry illustrated in Fig.
7.30a. A cylindrical rod of radius ri is immersed in a uniform plasma of infinite extent. Contact 
with surrounding electrodes fixes the plasma potential near N =  0. We bias the rod to a negative
potential, N = -Vo. The electron  temperature of the plasma is small, kTe n eVo. We can find a 
value for the Bohm current density, jB (Sect. 7.6) from the electron temperature and ion density. 
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Figure 7.30. Grounded plasma near a rod with a negative bias voltage. a) Geometry. b) Numerical
solutions for the space-charge-limited flow function for converging cylindrical flow.

   The biased rod collects ions. Following Section 7.6, we can divide the volume outside the rod
into two regions: the uniform plasma with zero electric fields, and a sheath with strong electric
fields. We denote the sheath radius as ro. We can estimate ro by the following procedure. First,
for a given ion species we solve the problem of self-consistent space-charge flow for inwardly
directed ions in a cylindrical geometry. We apply the conditions that the ions have small energy
at ro (the plasma boundary), that the radial derivative of electrostatic potential is almost zero at
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(7.66)

(7.67)

this position, and that the total potential drop across the sheath is -Vo. We next adjust the radius
of the plasma boundary until the space-charge-limited current density at ro equals jB. From
Section 7.5 we know that the width of the sheath increases with bias voltage for given plasma 
properties.
    Because we have already studied many examples of one-dimensional space-charge flow, we
shall briefly summarize results for non-relativistic flow in a cylindrical geometry. The Poisson
equation has the form

where M = N/Vo, R = r/ri and

The quantity jB is the available plasma flux, mi is the mass of the singly-charged ion, ri is the
radius of the enclosed ion collector at N = -Vo, and ro is the radius of the ion source at N  = 0. The
solution of Eq. (7.66) constrains the value of A. The boundary conditions for the solution are: 

Figure 7.30b summarizes numerical solutions of Eq. (7.66). The figure  plots A(ro/ri – 1)2 versus
(ro/ri – 1). We shall use the results after discussing electrostatic plasma confinement by a biased 
wire array.
   Figure 7.31 shows a cross-section view of a negatively-biased metal mesh immersed in a
flowing plasma. We can approximate the mesh as an array of circular wires separated by
distance *. Figure 7.31a shows a case where the voltage applied to the wires is low.  A single
wire extracts ions from the plasma over a sheath width ro, where ro < */2. Here, the sheaths are
separated and each wire acts independently. In the limit of narrow sheaths, there are regions of
field-free plasma between the wires. Although the wires collect some of the plasma ions, the
remainder drifts to the opposite side of the wire array. The result is that the biased mesh of Fig.
7.31a does not confine the plasma.
   If we increase the magnitude of the mesh voltage, the sheaths  broaden and may ultimately
coalesce (Fig. 7.31b). In this case,  plasma cannot penetrate through the mesh. The potential at
all 
points between the wires is negative; therefore, low-energy plasma electrons cannot cross the
mesh plane. The plasma ions are either collected directly by the wires or accelerated through the 
mesh. The bare ion space-charge on the other side creates a positive space-charge potential, 
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Figure 7.31. Inhibition of plasma flow by a wire mesh with a negative bias voltage. a) At low bias
voltage, separate ion extraction sheaths form at each wire. Plasma flows between the wires. b) Moderate
bias voltage gives coalesced sheaths and inhibition of plasma electron flow. c) High bias voltages gives 
an approximately planar sheath surface for ion extraction.

resulting in ion reflection (Fig. 7.31b). Ions reflected at the virtual anode either strike a wire or
return to the plasma. By stopping the plasma electrons,  the biased wire array prevents any
plasma particles from penetrating through the mesh – the wire array provides electrostatic
confinement. 
   A rough criterion for plasma confinement by the mesh is that
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An example will show how we can apply the cylindrical flow solutions to derive the confinement
condition. We take a 100×100  (to the inch) mesh woven of 1 mil wires. For this geometry, ri = 
1.25 × 10-5 m and ro = 1.25 × 10-4 m. We want to confine a singly- ionized carbon plasma with
kTe = 10 eV and ni = 5 × 1017 m-3.  From Eq. (7.55), the available ion current density from the
plasma  is 0.043 × 104 A/m2. Inspection of Fig. 7.30b for ro/ri = 10  implies that A  – 0.12/81 =
1.5 × 10-3. Inserting the given parameters into Eq. (7.68) gives the condition Vo > 30 V for
plasma  confinement. If the wire voltage is much higher, the sheaths are large and the emission
surface approaches a plane (Fig. 7.31c).  
   In the preceding analysis, we neglected the effects of plasma electron temperature. We can
make a simple estimate of temperature effects in the limit of an ideal mesh – the wire array is
infinitely fine with 100% transparency. Here, the sheath edge is planar. If the electrons have a
Maxwell distribution with temperature kTe, the electron current density incident on the sheath
edge is (Eq. 2.61):

Because of their low mass, the flux of electrons from the plasma is much larger than the ion flux.
Confinement of the plasma depends on reflection of the ions from a virtual anode.  The virtual
anode cannot form if electrons penetrate the mesh. Because  the electrons have a Maxwell
distribution, we know that a mesh with bias voltage -Vo ~ kTe/e does not reflect all incident 
electrons. The marginal voltage for plasma confinement allows one high-energy electron to cross
the potential barrier for every incident ion. For a mesh voltage lower than this value, all incident
ions can propagate past the mesh. 
   If the mesh has voltage -Vo, the fraction of plasma electrons that cross the potential barrier is fe
= exp(-eVo/kTe). In order to achieve plasma containment, we must reduce the electron flux by a 
factor greater than (0.6/0.4)(me/mi)1/2, or

For a carbon plasma with electron temperature kTe = 10 eV, Eq. (7.70) implies a mesh voltage Vo
> 48 V. To find the required stopping voltage for a given plasma and mesh geometry, we take
the higher value of Eqs. (7.68) and (7.70).
   Figure 7.32 shows a geometry for the application of electrostatic confinement to ion extraction.
The system consists of a plasma source, a plasma grounding grid, and a biased control grid. The 
control grid defines the surface of ion emission and acts as the  anode of the extraction gap. 
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Figure 7.32. Extraction of ions using electrostatic control of a  plasma by a negatively-biased anode
mesh. a) Geometry of a planar  injector. b) Particle flows and the spatial variation of  electrostatic
potential without an extraction voltage. Figure illustrates the formation of a virtual anode. c) Particle
flows  and the spatial variation of electrostatic potential with an applied extraction voltage. 

Figure 7.32a illustrates particle flow and electrostatic potentials when there is no voltage applied
to the extraction gap. The source electrodes and grounding grid clamp the potential of the
expanding plasma to N = 0. The control grid has a negative voltage high enough to stop almost
all plasma  electrons; therefore, there is no plasma prefill. Because of the positive space-charge
in the extraction gap near the control grid, plasma ions are reflected. The control voltage is
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typically  -100 V while the extraction voltage is many kilovolts – the distance ions travel from
the control mesh is small compared with the extraction gap spacing d. Figure 7.32b shows
particle flow and  electrostatic potential variations with a voltage applied to the extraction
cathode. The voltage reduces the positive space-charge potential in the gap – a portion of the ion
flux accelerated through the control mesh continues across the gap. Following Section 6.2, the
transported current density is close to the Child  law prediction [Eq. (5.48)].
   The ion current density from a grid-controlled extractor is limited by space-charge forces
rather than the source properties. Operation of the device is analogous to thermionic cathodes
(Section 6.2). Ions with a directed energy continually emerge from the control grid surface.
Without an extraction voltage, the ions return to the grid. This behavior contrasts with emission
from a  free plasma surface where both electrons and ions can enter the gap. In summary,
electrostatic confinement by a control grid prevents plasma prefill and uncouples the current
density of an  extracted ion beam from variations of the plasma source.
   Controlled plasmas also have application to high-current pulsed electron beams. At low duty
cycle, plasma sources are easier to construct and are more energy efficient than thermionic
sources. Unfortunately, there is a fundamental problem with electron extraction from a free
plasma boundary. The electron thermal flux is much higher than the ion flux. If the extracted 
current density is less than the thermal flux, the plasma expands into the gap. Extraction of a
current density equal to the thermal electron flux causes a velocity-space anisotropy in the 
plasma. The nonuniform electron velocity distribution results in  a two-stream instability
(Section 14.1). The instability introduces strong variations in the electron flux and enhanced
emittance in  the extracted beam. The two-stream instability is not important  for ion extraction –
the rapid response of the plasma electrons cancels space-charge bunching of the ion flow.
   Although electrostatic confinement is effective for ion extraction, it cannot be applied to
electrons. Confinement would  require a positively-biased control grid to stop ions. The grid 
would draw a large electron current, resulting in a plasma instability. Figure 7.33 illustrates an
alternate approach to the  generation of high-current pulsed electron beams. Here, a negatively-
biased control grid acts as a plasma switch. The grid restrains the plasma until electrons are
required in the extraction gap. To initiate electron flow, we drop the control grid voltage to zero,
allowing free expansion of the plasma into a low-voltage primary extraction gap. The choice of
gap voltage and width assures that the space-charge-limited flux is small compared with the
electron thermal flux. As time passes, the plasma expands into the primary gap at the velocity of
the ion directed motion; therefore, the space-charge-limited current in the primary gap grows.
The extracted electrons travel into a high-voltage extraction gap. If the output current density of
the  primary gap exceeds the space-charge limit in the extraction gap,  then the output beam
current is constant. This method applies only to pulsed beams because the primary gap
ultimately fills with  plasma. For plasmas from metal-vapor vacuum arcs, practical extraction
pulselengths are in the range <100 ns. 
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Figure 7.33. Multi-gap electron extractor for electron beam formation from a plasma. Figure shows
representative voltages for a relativistic electron beam.

7.8. Ion extractors

   In this section, we shall amplify the discussion of Section 7.5  by looking at some additional
features of of ion extractors. In  particular, we shall discuss the use of multiple extraction
apertures, electron traps, and multiple acceleration gaps for the generation of high-current
low-energy ion beams.
   Electrostatic ion accelerators that create beams in the energy  range 20 to 200 keV have
applications in fusion research and space thrusters. A 50 A, 50 kV fusion accelerator accelerator
has  a perveance of over 4 :perv, far beyond the capability of a single extraction gap – we must
use multiple extraction structures to create an array of beams that combine after leaving the gun.
Figure 7.34 illustrates a common extractor geometry. Ion flux from a single plasma source
passes through an anode with multiple slots. Medium-perveance sheet beams emerge from each
aperture. The individual beams must be spaced far enough apart so  that they are electrically
isolated by induced charges in the electrodes. 
   The high-perveance output beams from multi-aperture extractors cannot propagate in vacuum
because of longitudinal space-charge  limits (Section 5.2). Fortunately, the transport problem is
solved  automatically in high-perveance ion accelerators with plasma sources based on gas
injection. Neutral gas escaping from the source fills the region downstream from the extractor.
Beam ions  collide with gas atoms, creating a weakly ionized, quiescent plasma. Neutralization
by the plasma almost cancels the space-charge fields of the beam – the emerging ions follow
ballistic orbits for long distances in the transport region.
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Figure 7.34. Multiple aperture ion extractor with decel electrode. 

   The main problem of plasma transport is that the extraction gap can pull electrons from the
plasma and accelerate them back to the ion source. Depending on the downstream plasma
density, electron acceleration may load the accelerator and damage the ion source. To use plasma
transport, we must isolate the plasma from  the acceleration gap. Usually, an accel-decel
geometry provides  isolation. The extractor of Fig. 7.34 has an additional electrode  at a negative
potential interposed between the anode and grounded  output electrodes. The decel electrode
creates an electrostatic potential barrier that prevents plasma electrons from entering  the
acceleration gap. The region of negative axial electric field  is called the electron trap. 
   The voltage applied to the decel electrode must be high enough to ensure that the electrostatic
potential is negative over the aperture cross-section. Furthermore, the voltage must prevent 
plasma penetration. We derived a criterion for electrostatic plasma confinement in Section 7.7 –
the electrostatic sheath width should be larger than the half-width of the aperture or slot. As  an
example, suppose a slot of a multi-aperture extractor produces  a 30 keV proton beam at a
current density of 0.5 × 104 A/m2 – the  beam density is 1.3 × 1016 m-3. We take a neutralizing
hydrogen  plasma with density of 5 × 1016 m-3 and electron temperature of 2  eV. The plasma
Bohm current density is about 20 A/m2. We apply the cylindrical results of Section 6.3 to
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estimate the sheath width. For an aperture half-width of 3.5 mm, we take ri = 3.5 mm  and ro =
7.0 mm. Solution of Eq. (6.26) gives a value of A – 0.1.  Inserting parameters into Eq. (6.27), we
find a minimum trap voltage of -1 kV. 
   Figure 7.35 shows results from the ray tracing program WOLF for  a single gap extractor with
an electron trap to generate a 20 keV deuteron beam at 0.65 × 104 A/m2. The program differs
from the electron gun program EGUN discussed in Section 7.3 – it carries out an iterative
calculation to find the shapes of emission surfaces on the source and neutralizing plasmas. If ni
and Te are uniform over the plasma volume, then the plasma boundary is defined by the
condition that the emission current density normal to the surface is uniform. The program moves
elements of the plasma surfaces to seek such a solution. The concave source plasma of Fig. 7.35
gives a converging extracted beam. The choice of electrode shapes ensures that the beam
envelope is parallel to the axis at the point where the beam enters the neutralizing plasma. The
program predicts a root-mean-square angular divergence for the output beam of 1.93°. The
theoretical minimum divergence for the assumed ion temperature is about 0.5° – non- linear
transverse electric fields make a significant contribution  to beam emittance. 
   Additional electrodes are often incorporated in high-voltage ion guns to increase the allowed
current. If we divide the accelerating voltage between two or more gaps, we can achieve higher
current density for a given value of peak electric field.  We saw in Section 5.2 that we can write
the space-charge-limited ion current density for a planar gap with voltage Vo and width d  in the
form: 

The quantity Emax is electric field in volts/m on the negative electrode. For a given electric field,
the current decreases at  high voltage. 
   The fields applied to electrodes of an ion extractor are limited by breakdown. Depending on
electrode conditioning, the maximum safe field stress on the negative electrodes is about 5  to 10
MV/m. A dual-gap electrostatic accelerator extracts ions in the low-voltage gap then accelerates
them to full voltage in a second gap. The current density in the first gap follows Eq. (7.71), while
the second gap limits are set by Eq. (6.6). The longitudinal space-charge limit is higher in the
second gap because the ions enter at high velocity. Figure (7.36) shows a dual-gap gun for a 120
keV sheet beam of protons. The area-averaged current density is 0.3 × 104 A/m2 from a structure
with 60% transparency. The electron trap voltage is -2.3 kV – note the self-consistent plasma
emission surfaces for both the source and neutralizing plasmas. Because of the high output
energy, the exit beam divergence angle is only 0.53°. 
   For electrostatic acceleration of ion beams to MeV energies, the limits on current are set
mainly by transverse beam confinement. The focusing force of transverse electric fields in 
cylindrical or planar structures drops rapidly with ion energy. The transverse field magnitude
must increase as the beam accelerates to maintain a matched equilibrium – the axial field 
magnitude also rises. From the discussion of the Pierce column in  Section 7.1, we know that the 
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Figure 7.35. Design of a 10 A, 20 kV deuteron gun with accel and decel electrodes using the WOLF
code. One half of one extraction  slot illustrated. Self-consistent determination of plasma 
emission surface at the left hand side. (Courtesy, W. Cooper, Lawrence Berkeley Laboratory.)
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Figure 7.36. Numerical calculation of dual-gap, accel-decel ion extractor using the WOLF code. Figure
shows electrodes, computational rays, and lines of constant electrostatic potential. (Courtesy, W. Cooper,
Lawrence Berkeley Laboratory).

Figure 7.37. Electrostatic acceleration column with supplemental  quadrupole focusing.
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axial electric field must scale roughly as z4/3. The voltage limit on an electrostatic extraction
column is set by electrical breakdown. For example, if we limit the electric field to Emax = 5
MV/m, Eq. (7.71) implies that the maximum current density for a 1 MeV C+ beam is 0.022 × 104

A/m2.  We can achieve higher current if we relax the condition of cylindrical or planar symmetry
for the applied fields. Figure 7.37  shows an acceleration column with shaped electrodes to
generate quadrupole field components. The electrostatic quadrupole fields supplement the
standard electrostatic  focusing. The quadrupole fields increase with distance down the column –
they provide the bulk of the focusing force at the exit. The gradual transition to quadrupole
focusing reduces the problem of beam matching to downstream quadrupole arrays. 
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8

High-power Pulsed Electron and Ion Diodes
_____________________________________

   Progress in any field of technology results largely from efforts to extend limits of performance.
The book Principles of Charged Particle Acceleration showed how the goal of achieving the
highest possible values of charged-particle kinetic energy was largely responsible for the
evolution of accelerators from the earliest cyclotrons to the present generation of synchrotrons 
and beam colliders. The challenge in collective beam physics is to attain increasingly higher
beam current and power. While high-energy physics was the catalyst for the development of 
conventional accelerations, inertial fusion is a main motivation  for research on high-power
beams. The requirements for beams to drive inertial fusion targets are daunting. Beam power of
over 100 million MW must be strike a target a few millimeters in diameter in about a 10 ns
pulse. Present approaches to ion-beam- driven fusion aim for currents from 10 kA to 50 MA,
depending on  the kinetic energy of the ions.
   Although a successful fusion driver has not yet been developed, the field has generated unique
approaches to collective beam physics. In this chapter, we shall study diodes  that generate
intense electron and ion beams. Here, the term diode implies a two-electrode acceleration gap.
These devices have generated beam power density exceeding 1016 W/m2.
   Sections. 8.1, 8.4 and 8.5 review background topics relevant to high-current injectors. Section
8.1 describes the motion of electrons in perpendicular electric and magnetic fields. A strong
magnetic field can inhibit electron flow across a high voltage gap. Section 8.4 discusses
magnetic insulation of the high-power transmission lines that conduct pulsed-power to diodes.
Here, the  magnetic field generated by the flow of current to the load is strong enough to prevent
electron motion across the vacuum gap between the inner and outer conductors. The lines
operate at high electric fields and carry a large electromagnetic energy flux. Section 8.5 covers
plasma erosion, the depletion of plasma ions and  electrons from a gap after the application of a
voltage. Plasma  pre-fills can supply ions in high-current diodes. Plasma filled  gaps also have
application to pulsed-power switching.
   Section 8.2 describes pinched-electron-beam diodes. These devices create electron beams with
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current exceeding 100 kA and  kinetic energy of in the range $1 MeV. The magnetic field 
generated by the electron flow is so high that the electrons pinch to a small spot. The resulting
local current density may exceed 106 × 104 A/m2. Despite the complex geometry of the beam, 
we shall find that it is possible to develop a self-consistent model to describe the electron flow.
Section 8.3 reviews the operation of electron diodes with a strong applied axial magnetic field to
prevent beam pinching. These diode have application to pulsed-power electron accelerators and
generators for intense microwave radiation.
   Sections 8.6 through 8.9 outline methods to generate high current ion beams. Fusion
applications demand ion current density  above 1000 × 104 A/m2. There are two problems that
must be solved  to generate such high ion fluxes. First, we must prevent electron  breakdown of
the ion diode at high values of applied electric fields. Second, we must circumvent space-charge
limits on ion current density from an extractor. We shall review the principles  of two ion beam
sources, the reflex triode and the magnetically- insulated diode. Both devices achieve ion current
density more than one-hundred times higher than the Child law prediction.

8.1. Motion of electrons in crossed electric and magnetic fields 

   Several microwave sources, such as magnetrons and gyrotrons, depend upon the motion of
electrons in crossed electric and magnetic fields. The term crossed field means that the electric
and magnetic fields are perpendicular. In this section, we shall discuss electron motion in crossed
fields and emphasize the idea of magnetic insulation, an important process for high-power
electron and ion diodes. Magnetic insulation prevents the motion of electrons across a gap with a
high applied voltage.
  Initially we limit attention to single electron motion, neglecting the contribution of free
electrons to the fields. Figure 8.1 illustrates a one-dimensional magnetically-insulated gap.
Electrons emerge from a plane cathode at z = 0. An anode at z = d has a bias voltage Vo. The
electric field is: 

                                                             E = - Eo z = -(Vo/d) z.                                                   (8.1)

A uniform magnetic field is applied in the y direction:

                                                                     B = Bo y.                                                               (8.2)

Figure 8.2a shows the trajectory of an electron created on the cathode with zero kinetic energy.
The electric field pulls the particle toward the anode. As the electron gains velocity in the z
direction, the magnetic field bends its orbit in the x direction. Ultimately, the electron returns to
the cathode with zero kinetic energy. If the electron is not absorbed,  it follows a scalloped orbit.
Note in Figure 8.2a that motion in the z direction is periodic, while the electron has cumulative 
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Figure 8.1. Geometry of a planar magnetically-insulated gap.

Figure 8.2. Drift orbits of electrons with zero total energy in a planar magnetically-insulated gap. a)
Scalloped drift orbit viewed in the stationary frame. b) Drift orbit viewed in a frame of reference moving
at the electron drift velocity. c) Orbit of an electron in a gap with an applied magnetic field equal to Bcrit
viewed in the stationary frame.
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(8.5)

displacement along the x direction. This type of motion is called a particle drift (Section 10.7).
We denote the average velocity along x as vd, and the maximum distance the electron moves
away from the cathode as ). If ) < d, electrons cannot cross to the anode and the gap is
magnetically insulated. 
   We can find vd and ) in terms of Bo and Eo by making a relativistic transformation to a frame
of reference that moves at velocity vd in the positive x direction. We want to find electric and
magnetic fields as they appear in the moving frame for given quantities in the stationary frame.
Following Section 5.5, the field relationships are:

                                                              Ez' = (d (Ez + vdBy),                                                     (8.3)

                                                            By' = (d (By + vdEz/c2).                                                   (8.4)

The prime symbol marks quantities measured in the moving frame. The quantity (d is a function
of the drift velocity,

   We can see in Eq. (8.3) that the electric field vanishes in the moving frame if the
transformation velocity equals

                                                                 vd = Eo/Bo.                                                                 (8.6)

In this case the electron motion is a simple gyration in the transformed magnetic field (Figure
8.2b). Because motion in the moving frame is purely oscillatory, the velocity of Eq. (8.6) equals
the average drift velocity of the centroid of the electron orbit. This velocity is called the E × B (E
cross B) drift velocity – its direction is parallel to the cross product of field vectors. Note that if 

                                                                   Eo $ cBo,                                                                 (8.7)

then the velocity exceeds the speed of light and the transformation is invalid. When the condition
of Eq. (8.7) holds, there is no frame in which electron motion is oscillatory – the electron moves
without limit in the negative y direction and never returns to the cathode. 
   When Eo < cBo, we can calculate the quantity ) by applying the following facts: 

     1. Equation (8.4) implies that the magnitude of the magnetic field in the moving frame is
lower by a factor of (, By' = Bo/(. 

     2. The electron follows a circular gyration orbit in the uniform magnetic field. 
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(8.8)

(8.10)

(8.11)

     3. At the point of contact with the cathode, the electron has zero total velocity in the
stationary frame; therefore, it has velocity v = -vd x in the moving frame. 

The radius of the circular electron orbit in the moving frame is,

The maximum excursion distance from the cathode is twice the gyroradius, 

                                                                     ) = 2rg.                                                                 (8.9)

The maximum electron displacement from the cathode is the same in the stationary frame
because Lorentz transformations do not change transverse dimensions. 
   The criterion for magnetic insulation is that ) # d. The critical  magnetic field, Bcrit, is the field
magnitude that gives d = ). For a given electric field, a magnetic field greater than Bcrit prevents
electrons from crossing to the anode. We can combine Eqs. (8.1), (8.5), (8.6), (8.8) and (8.9) to
give an expression for Bcrit: 

where

We have written Eq. (8.10) in terms of a non-relativistic factor B* and a relativistic correction
term. The relativistic term is significant when Vo $ moc2/e = 0.511 MV. Figure 8.3 shows the
quantities B*d and Bcrit/B* as functions of Vo. We see that moderate magnetic fields can insulate
high-voltage gaps. For example, the critical field for a gap of width 0.02 m with applied voltage
1 MV is Bcrit = 0.24 tesla. 
   We can derive Eq. (8.10) by a different method that uses conservation of energy and canonical
momentum. In an equilibrium gap, the total energy of electrons is a conserved quantity. The
canonical angular momentum in the x direction Px is also a constant of the motion because all
forces are uniform along x. For a vector potential Ax(z), we can write the canonical momentum as 

                                                    Px = ((z) movx(z) - eAx(z).                                                   (8.12)
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(8.14)

Figure 8.3. Plot of Bcritd for a planar magnetically-insulated gap as a function of the applied voltage Vo.

In Eq. (8.12) ((z) refers to the relativistic energy factor of an electron observed in the stationary
frame. The vector potential is related to the magnetic field by

                                                              By = MAx/Mz.                                                               (8.13)

Taking Ax equal to zero at the cathode, integration of Eq. (8.13) gives:

If the field is uniform in z, Eq. (8.14) becomes

                                                              Ax(d) = Bod.                                                              (8.15)

   We can find the critical magnetic field by comparing the properties of fields and electron orbits
at the cathode and anode. At the cathode the vector potential is zero (Ax(0) = 0) and electrons
have no kinetic energy (vz = 0, vx = 0). Therefore, electrons leaving the cathode have zero
canonical momentum, Px = 0. An applied magnetic field equal to Bcrit gives electron orbits that
just reach the anode (Figure 8.2c). Conservation of total energy implies the electrons have a
relativistic ( factor of

                                                        ((d) = 1 + eVo/moc2,                                                        (8.16)
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Figure 8.4. Numerical calculations of electron orbits in a magnetically insulated gap with a constant
magnetic field and a slowly rising voltage. The voltage rises linearly by a factor of 99. The initial voltage
corresponds to B = 0.1Bcrit, while the final voltage gives B = Bcrit. a) Voltage risetime: 15/Tge. b) Voltage
risetime: 50/Tge. c) Voltage risetime: 200/Tge.         

at the anode. Figure 8.2c shows that vz(d) = 0 and vx(d) has a maximum value at the anode.
Setting Px = 0, Eq. (8.12) becomes:

                                               ((d)vx(d)/c = eAx(d)/mo = eBod/mo.                                          (8.17)

Noting that 

                                                      ((d)vx(d)/c = (((d)2 - 1)1/2,                                                (8.18)

we can combine Eqs. (8.17) and (8.18) to yield the same relation as Eq. (8.10).
   Equations (8.16) and (8.17) are valid even when trapped electrons modify the electric and
magnetic fields. Electron space-charge reduces Ez near the cathode, concentrating the field near
the anode. Although the electric field varies in the y direction, the total voltage across the gap
must equal Vo. Therefore, the equation of conservation of energy applied to electrons that reach
the anode does not change. The drifting electrons carry a current in the x direction. We shall see
that the electron density is high in relativistic gaps (eVo $ moc2). The corresponding high current
can significantly change the distribution of magnetic field in the gap. The trapped electrons are 
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Figure 8.4. (Continued)
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diamagnetic – they reduce the magnetic field near the cathode. If the cathode and anode are
perfect conductors and the electron density enters rapidly, the total magnetic flux across the gap
is constant. As a result, the integral of Eq. (8.14) equals Bod, even though By may vary across the
gap.
   Electrons follow the cycloid orbits of Figure 8.2a when: 1) they enter the gap at the cathode
with zero kinetic energy and 2) the gap voltage has the constant value Vo. Other types of orbits
are possible if we relax these conditions. For example, we could describe the motion of electrons
emitted from the cathode during a slow rise of the gap voltage to a final value Vo. This type of
motion occurs during the rise time of a pulsed voltage waveform applied to the gap. Here, the
term slow means that the rise time is much longer that the period for electron gyration in the
magnetic field, 2B/Tge. In this limit, we find that the electrons follow laminar orbits in the E × B
direction rather than cycloid drift orbits.
   Drift orbit theory predicts the nature of cross-field electron motion with slow changes of
electric field. In a rising field, the polarization drift carries electrons away from the cathode
while they move sideways at the E × B drift velocity. Figure 8.4 shows numerical calculations of
a nonrelativistic electron orbit – the electron leaves the cathode at t = 0. The magnetic field Bo is
uniform and constant – the gap voltage rises linearly to a voltage that gives Bo = Bcrit. The
sequence of figures shows increasing voltage rise times, 15/Tge in Figure 8.4a, 50/Tge in Figure
8.4b and 200/Tge in Figure 8.4c. With a long rise time, the electron orbit approaches a straight
line with a small component of velocity in the y direction. Note that the electron travels only
halfway across the gap – with the same values of magnetic field and voltage cycloid orbits would
reach the anode. The laminar orbits have the same average position in z and velocity in x, but
they do not have an oscillatory component of motion.
   We can find the distance that a laminar electron orbit moves from the cathode during the
voltage rise by applying conservation of canonical angular momentum. In the non-relativistic
limit, the final orbit satisfies the following three equations:

                                                    mevx(z) - (eBod)(z/d) = 0.                                                     (8.19)

                                                            vx(z) = Vo/Bod.                                                             (8.20)

                                                               vz(z) – 0.                                                                   (8.21)

Combining Eqs. (8.19) and (8.20) and taking Bo = B* of Eq. (8.11), we find that the final position
is z = d/2. The kinetic energy of the electron at peak voltage is 

                                                         mevx
2/2 – eVod/4.                                                            (8.22)

The energy in Eq. (8.22) equals half the change in energy for an electron that moves from the
cathode to the middle of the gap at full voltage. The discrepancy results from the fact the average
electric field during the time an electron moves across the gap equals half the peak field.
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Figure 8.5. Pinched electron beam diode. a) Geometry of a cylindrical diode. b) Idealized conical diode
geometry used for the parapotential flow model.        

8.2. Pinched electron beam diodes

   Experiments have shown that two-electrode vacuum gaps driven by a pulsed power generator
can create tightly pinched electron beams. Figure 8.5a illustrates an electron beam diode that
consists of a planar cathode of radius Rc separated from an anode by a vacuum gap of width d.
The cathode emits a high current-density of electrons by the surface plasma mechanism
discussed in Section 7.4. With beam current in the range ~100 kA and voltage ~1 MV, almost all
electrons emitted from the cathode compress to a tight focus on the axis at the anode. Current
densities exceeding 1 MA/cm2 have been observed. The electron flow is called a super-pinched
electron beam. The beams have application to the simulation of high-power density processes. In
contrast to the conventional electron guns of Chapter 7, super-pinched beams have perveance
values that range from 100 to 1000 :perv. 
   Pinching results from the strong azimuthal magnetic field generated by the high-current
electron beam. A pinch occurs when the magnetic field at the edge of the cathode is strong
enough to bend electron orbits so that they cannot cross directly to the anode – the magnetic field
insulates the edge of the cathode. We can estimate the conditions for the existence of a pinch.
When a beam carries low current, the magnetic field is low and electrons move directly across
the gap. At low current, the one-dimensional Child law gives a good estimate of je. We can write
the space-charge-limited current in terms of the relativistic energy factor for electron arriving at
the anode,    

                                                               (o = 1 + eVo/mec2.                                                    (8.22)
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(8.23)

(8.24)

(8.25)

We find that

The quantity 1((o) is a correction factor equal to the ratio of the relativistic space-charge-limited
current density to the non-relativistic Child law current – we can determine 1((o) from Figure 
6.9 – in the energy range of interest it is comparable to or less than unity.
   Electrons move radially inward when the field at the cathode edge satisfies the magnetic
insulation condition.  We can substitute Eq. (8.22) in Eq. (8.10) to derive a condition for
magnetic cutoff at the outer radius of the cathode:

The electrons pinch when the space-charge-limited current of Eq. (8.23) approaches the cutoff
current of Eq. (8.24). Setting the currents equal gives the following criterion for a pinched beam:

Equation (8.25) shows that we need a high value of the diode aspect ratio (Rc/d) and voltage ((o)
to achieve a pinch. For a voltage Vo = 1 MV, Eq. (8.25) implies that Rc/d must be greater than
3.2. 
   A primary theoretical challenge of pinched beam diodes is to explain how electrons move to
the axis. Although the diodes are geometrically simple, the electromagnetic field distributions
and the motion of electrons is complex. Particle simulations are essential for detailed results.
Nonetheless an analytic theory, the parapotential model, describes many of the features of
pinched electron beam diodes and other crossed-field devices. Although the model simplifies the
device physics, it gives valuable insights into the nature of pinched flow and generates good
estimates of the net diode current. 
   The parapotential model seeks a self-consistent equilibrium solution for electron flow with the
simplest possible particle orbits. We saw in Section 8.1 that electron orbits in a crossed field
have an oscillation superimposed on an E × B drift. It is difficult to calculate the space-charge
density when electrons follow scalloped orbits. Section 8.1 also showed that under some
conditions electrons followed straight-line orbits. The flow of electrons is laminar if their
velocity in the direction normal to the fields satisfies the condition  

                                                                     E = -v × B.                                                         (8.26)
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We shall seek conditions that lead to a laminar flow equilibrium. In the pinched-beam diode,
electrons move radially inward through regions of varying E and B. For laminar flow Eq. (8.26)
must hold at all radii. The equation also implies that the electrons move perpendicular to electric
field lines; therefore, the orbits lie on lines of constant electrostatic potential. This fact motivates
the term parapotential - the prefix para means in the same direction. Self-consistent crossed-
field equilibria with laminar electron orbits are called Brillouin flow solutions. Section 10.3
describes another Brillouin flow equilibrium for electrons confined in a cylindrical beam. 
   The parapotential model uses the geometry of Figure 8.5b. Electrons follow laminar orbits
between a biased anode plate at V = +Vo and a grounded conical cathode. The electric field
points mainly in the axial direction while the magnetic field is azimuthal. The electrons move
along predominantly radial equipotential lines that converge at the apex of the cone. The apex is
a singular point – the applied electric field and electron density diverge to infinity. The model
does not give a realistic representation close to the axis. Another problem not addressed by the
parapotential model is how electrons reach the appropriate equipotential lines at large radius.
The purpose of the model is to investigate how electrons move from the edge of the diode toward
the center. We must use other methods, such as computer simulations, to study processes at the
diode periphery 
   As in the Child law derivation of Section 5.2, we assume that the distribution of electrons is
singular. The total energy of all electrons referenced to the potential of the cathode is zero.
Equation (8.26) determines the total electron velocity. Beall electrons at the same position have
the same velocity, the fluid equations of particle and momentum conservation are sufficient to
describe the equilibrium. Electric fields arise from the voltage applied between electrodes and
the space-charge of the electrons. The azimuthal magnetic field results mainly from the flow of
electrons towards the apex. We also include the possibility that current flows along the cathode
surface to create a component of applied magnetic field. We will use the spherical coordinate
system of Figure 8.5b for the analysis. Symmetry implies that all quantities are independent of
the azimuthal coordinate N. The coordinate r is the total distance from the apex, while 2 is the
angle relative to the z axis. The equation 2 = 2c defines the cathode surface, while the anode
surface corresponds to 2 = 0. Finally, the variable R denotes the radial distance from the axis:

                                                                       R = r sin2.                                                       (8.27)

   We assume that the electron streamlines and equipotential lines lie on conical surfaces that
radiate from the apex. An equivalent statement is that the electrostatic potential depends only on
the coordinate 2:

                                                                  V(r,2,N) = V(2).                                                    (8.28)

We can justify Eq. (8.28) by showing that it is consistent with Eq. (8.26). Equation (8.28)
implies that the electric field has a component only in the 2 direction, given by:

                                                            E2  = -LV = -(1/r) dV/d2.                                            (8.29)
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(8.34)

(8.35)

The condition that equipotential lines lie on conical surfaces implies that (dV/d2) is constant
along a line of constant 2. Therefore, the electric field varies as

                                                                   E2 ~ 1/r ~ sin2/R                                                  (8.30)

   The toroidal magnetic field on an equipotential line with angle 2 equals:

                                                                  BN  = :o I(2)/2BR,                                                 (8.31)

where I(2) is the net enclosed axial current. The current includes contributions from electrons
that flow on equipotential lines between the given surface and the axis and the bias current that
may flow along the cathode. In steady-state, the electron current flows inward along radial
streamlines, crosses to the anode at the apex, flows outward, and returns to appropriate
equipotential lines at large radius. By the law of continuity of current, the total axial current
inside an equipotential line equals the sum of the total currents that flow along enclosed
equipotential lines; the quantity depends only on 2. The implication is that

                                                                        BN ~ 1/R.                                                         (8.32)

Comparison of the field variations of Eqs. (8.30) and (8.32) with Eq. (8.26) shows that the
electron velocity in the -r direction depends only on 2. As the electrons flow toward the apex at
constant velocity, the volume they occupy decreases as 1/r2. Therefore, the space-charge density
of electrons has the form

                                                                  D(r,2) = g(2)/r2.                                                    (8.33)

   We now have sufficient information to construct equations that describe the ideal diode. With
no variations in r and N, the Poisson equation for electrostatic potential V is

We can write Eq. (8.34) as:

We shall express all results in terms of the relativistic energy factor:

                                                      ((2) = 1 + eV(2)/mec2.                                                      (8.36)
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(8.39)

(8.40)

(8.41)

(8.42)

The electron velocity along an equipotential line vr(2) is related to ( by

                                               vr(2) = -$(2)c = c(1 - 1/((2)2)1/2.                                             (8.37)

   The radial current density jr(2) is the product of the radial velocity and the charge density,

                                                        jr(2) = -g(2)$(2)c/r2.                                                       (8.38)

We can express the total current enclosed within an equipotential line at 2 in terms of the radial
current density:

The quantity Ib is the cathode bias current. To complete the set of equilibrium equations, we
combine Eqs. (8.26), (8.27), (8.29) and (8.31) to give:

We can rewrite Eq. (8.40) in terms of (:

   As in the Child law derivation, our strategy is to combine all relationships into a single
equation for the electrostatic potential. Solution of the equation with the proper boundary
conditions leads to the self-consistent potential. The first step is to take the derivative of Eq.
(8.39) and substitute for g(2) in Eq. (8.35). Next, we eliminate dI/d2 from the resulting equation
by taking the derivation of Eq. (8.40). This gives an equation that involves only the dependent
variable. The final step is to rewrite the equation in terms of ((2) using Eq. (8.36): 
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(8.45)

The boundary conditions for Eq. (8.42) are:

                                                       ((2c) = 1  (cathode),                                                        (8.43)

                                            ((B/2) = (o = 1 + eVo/mec2. (anode)                                           (8.44)

Given the function ((2), we can find the current carried on equipotential lines and the total
current flow in the diode from Eq. (8.41).
   We can simplify Eq. (8.42) with the substitution P = ln[tan(2/2)]:

The solution of Eq. (8.45) that satisfies Eqs. (8.43) and (8.44) is:

                                                  P = C1 ln[( + ((2-1)1/2] + C2,                                                (8.46)

where   
                                              C1 = -ln[tan(2c/2)]/ln[(o + ((o

2-1)1/2],                                       (8.47)
and
                                                              C2 = ln[tan(2c/2)].                                                     (8.48)

We write the current contained within angle 2 in terms of the solution for ((P) using the chain
rule of derivatives, d(/d2 = (d(/dP)(dP/d2):

                                                        I(2) = [2Bmec/e:o] (/C1.                                                 (8.49)

In the limit Rc/d o 1, a series expansion of the transcendental functions in the constant C1 leads to
the result:

                                                            -ln[tan(2c/2)] – d/Rc.                                                   (8.50)

Combining Eqs. (8.47), (8.49) and (8.50), the net current flowing along equipotential lines inside
the line with energy factor ( is approximately:
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(8.51)

(8.52)

Figure 8.6. Variation of electrostatic potential between the cathode and anode for saturated parapotential
flow. ( = 1 + eN/mec2 versus 2.

   Saturated parapotential flow results when electrons occupy all equipotential lines between the
cathode and anode. For this condition, we take ( = (o in Eq. (8.51). The expression for the total
saturated parapotential current in a pinched electron beam diode is:

The first quantity in brackets on the right-hand side of Eq. (8.52) equals 8.5 kA. Figure 8.6
shows a plot of the variation of potential between the cathode and anode for saturated flow. The
charge density of the electrons cancels the electric field near the cathode while enhancing the
field at the anode. 
   Equation 8.51 implies that the current inside the equipotential line with ( = 1 does not equal
zero. A valid Brillouin flow solution requires that current flows along the cathode surface. We
associate the cathode current with the boundary current of Eq. (8.39):

                                                            Ib = [2Bmec/e:o]/(o.                                                    (8.53)

The magnetic field generated by the boundary current is analogous to the external magnetic field
required for the nonrelativistic Brillouin flow solution of Section 10.4. At high values of (o,
electron flow generates most of the confining magnetic field.
   We can remove the problem of the singularity at the axis by recognizing that in an actual diode
electrons have axial oscillations superimposed on the radial drift. Depending on the oscillation
amplitude, electrons strike the anode at varying distances from the axis. In a sense, the beam
emittance limits the focus – electrons in perfect parapotential flow could be focused to point. We
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must also explain how electrons each the appropriate equipotential lines at large radius. To
answer this question, we note that electron diodes are usually located at the end of a
magnetically-insulated transmission line with high electric field (Section 8.4). The electrons
moving down the line are exposed to a rising electric field as they approach the edge of the
diode. The polarization drift spreads the electrons over a good fraction of the diode gap width.
The injected electrons have orbits that are intermediate between laminar and scalloped. The
power density in the pinch is high if the electric field rises smoothly along the length of the
vacuum electrodes, leading to laminar orbits in the diode.
   Most diodes are cylindrical rather than conical with a uniform gap width d. Despite this fact,
conical equipotential surfaces still provide a good description if electrons entering at the edge of
the diode dominate the flow. The electric field generated by these electrons suppresses emission
from inner regions of the cathode. The compression of electron space-charge near the axis and
the increased magnetic field require that the axial electric field increases near the axis in an
equilibrium. The result is compression of the electrons toward the anode as they approach the
axis. The parapotential model prediction for the net current from a cylindrical diode is in good
agreement with experiments if the effective cathode angle is taken as

                                                                       2c – Rc/d.                                                         (8.54)

   A point of discussion for the validity of the parapotential model is the nature of the bias current
Ib. The most likely source is ion flow from the anode to the cathode. Experimental studies of
pinched-beam diodes have shown that ions generated on the anode by electron bombardment
play an important role. They add to the net diode current and partially neutralize electron space-
charge to give tight pinches. 
   Sometimes, ion flow may account for a large fraction of the net diode current. As a result, the
pinched beam diode has been used for the generation of intense ion beams. In an ion diode the
strong beam-generated magnetic fields prevent direct electron flow; the fraction of the current
carried by ions can be much higher than the prediction of the one-dimensional bipolar flow
model [Eq. (6.39)]. In turn, the trapped electrons in the acceleration gap counter the ion space-
charge, giving ion current densities that exceed the Child law value [Eq. (5.48)]. 
   Figure 8.7 illustrates the motion of electrons and ions in a pinched beam diode. The figure
shows particle orbits from a two-dimensional simulation of a 600 kV diode. Because of their
high mass, ions travel almost directly across the gap, while the electrons follow complex drift
orbits. The simulation confirms the general features of the parapotential model. The
equipotential surfaces are conical and the electron space-charge compresses electric fields
toward the anode. The electron orbit shown consists of a drift along an equipotential line with a
superimposed axial oscillation. 
   We can estimate the fraction of diode current carried by ions from the constraint of global
charge balance. The emission of electric fields at the cathode and anode surfaces equal zero. By
Gauss's law, the total number of ions in the diode at any time (Ni) must equal the total number of
electrons, Ne. We define the quantity ti as the average residence time for an ion in the gap. We
can estimate ti from the average electric field Vo/d: 
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(8.55)

Figure 8.7. Particle-in-cell computer simulation of a pinched beam diode. Figure shows a representative
electron orbit, ion orbits and a line of constant electrostatic potential; 500 kV applied voltage, I e = 285
kA and Ii = 300 kA. (Courtesy, J. Poukey, Sandia National Laboratories).

The electron residence time te depends on the drift orbit. We can estimate the minimum electron
residence time by taking a straight line orbit (as in parapotential theory) and recognizing that
there is an upper limit on the radial drift velocity:

                                                     vr #$oc = c((o
2-1)1/2/(o.                                                      (8.56)

   If the electrons enter at the edge of the diode, the electron residence time is

                                                         te $ Rc(o/c ((o
2-1)1/2.                                                       (8.57)

The ion current ions equals the total number of ions in gap at any time divided by the average
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(8.59)

residence time:

                                                                   Ii = Ni/ti.                                                               (8.58)

Because Ne = Ni, the ratio of ion to electron current is inversely proportional to the residence
time ratio:

   An inspection of the right-hand side of Eq. (8.59) shows parameters that affect the ion current
fraction. Scaling with the mass ratio is the same as that for one-dimensional bipolar flow. For the
same charge density and diode voltage, the ion current density is lower because the ions move
slower. The second term represents relativistic effects on the flow. The ion velocity increases as
the square root of the diode voltage while the electron velocity asymptotically approaches the
speed of light for (o > 1. The third term represents the difference in electron and ion orbits; the
electrons travel a longer distance. 

   The following example illustrates the utility of a pinched beam diode for ion generation.
Suppose we want to create a proton beam using a pulsed power generator that can drive 300 kA
at 1 MV ((o = 2.96). The first step is to find the geometry of a diode matched to the generator. If
the gap spacing is d = 0.015 m, then Eq. (8.52) shows that the cathode radius should be Rc = 0.19
m for Ic = 300 kA. Substitution into Eq. (8.25) shows that the diode parameters satisfy the pinch
criterion. Equation (8.59) implies that Ii/Ie – 0.31. This figure is much higher than the ratio of
0.023 predicted for one-dimensional bipolar flow. The ion flow constitutes 24% of the total
diode current, or Ii = 72 kA. The prediction of the one-dimensional, single-species Child law
[Eq. (5.48)] for a diode area BRc

2 = 0.113 m2 is Ii = 27 kA. The ion flow enhancement factor
resulting from electron space-charge in the pinched beam diode is 2.7, exceeding the factor of
1.86 for bipolar flow. Although pinched beam diodes generate high net ion current, the resulting
beams usually have poor emittance because of the strong magnetic fields in the diode and
instabilities of the anode plasma. 

8.3. Electron diodes with strong applied magnetic fields

   Although pinched electron beams have some specialized applications, most of the time we
need beams with better directionality. Applications for extended high current beams include
high-power microwave devices and large-area gas lasers. We can circumvent electron beam
pinching by applying a magnetic field in the direction of electron flow. The net magnetic field
forces electrons to follow spiral orbits directly across the acceleration gap.
   A rough criterion for pinch suppression is that the axial field Bo should be comparable to or 
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Figure 8.8. Motion of electrons near the edge of a high-current electron diode with a beam-generated
toroidal field Bs and an applied solenoidal field Bo.

greater than the beam-generated field on the envelope Bs. In a cylindrical gun, the condition is

                                                           Bo $ Bs = :oI/2BR.                                                       (8.59)

The quantity Io is the total beam current and R is the envelope radius. For the sheet beam
geometry typical of beam-controlled gas lasers, the maximum beam-generated field is 

                                                                  Bs = :oJ/2,                                                            (8.60)

where J is the beam current per meter. As an example, consider a laser with 500 kA of current
spread over a 1 m length. The axial field applied over the large gun area must exceed 0.3 tesla.
   An axial magnetic field of infinite magnitude is necessary to achieve laminar electron flow in a
high current diode. For a finite field amplitude, the inclination of net field lines results in angular
deflections of electron orbits. The net field lines at the edge of the cathode incline at an angle
tan-1(Bs/Bo) relative to the axis, while the electric field line is axial. Accelerated electrons follow
spiral orbits around a magnetic field line. They emerge at angles that depend on the number of
rotations they make around the field line. We could apply the numerical methods of Section 2.3
for accurate predictions of single-particle electron orbits in an inclined magnetic field. Here, we
shall limit the development to a rough estimate of orbit characteristics. 
   We assume that the magnetic field is strong - electrons follow a field line and complete more
than one rotation during acceleration across the gap. The electrons leave the cathode parallel to z
and enter a region of magnetic field inclined at an angle 2f. For a cylindrical diode, the maximum 



High-power pulsed electron and ion diodes Charged Particle Beams

348

Figure 8.9. Schematic diagram of a foilless diode with definitions of geometric quantities.

value of 2f occurs at the edge::

                                                               2f # tan-1(:oI/2BRBo).                                              (8.61)

The electrons follow a spiral orbit around the field line. The inclination angles of orbits about the
axis vary between 0 and 22f. We expect that electrons emerging at the anode have a spread in
angle between the limits ±22f. Equation (8.61) shows that the applied field must be strong, Bo o
Bs, to generate low divergence beams at high beam current. Technology limits the magnitude of
the magnetic field in electron diodes. For example, in an electron-beam-driven laser, the magnet
coils are subject to substantial forces and conventional magnets require high power input to
produce fields over the large volume.
   Many pulsed microwave devices require high current-density beams that would melt anode
foils or meshes. With an applied axial magnetic field, it is possible to generate high-current
beams that do not pass through the anode. Devices based on this principle are called foilless
electron diodes. Figure 8.9 shows a typical geometry. An annular cathode immersed in an axial
field emits electrons. The axial component of electric field between the cathode and a ring anode
accelerates the electrons while the axial magnetic field confines them so that they miss the anode
and continue into a transport region. The diode of Figure 8.9 is useful only for the generation of
annular beams because the axial electric field magnitude is small on axis. For uniform emission,
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(8.65)

the thickness of the annulus cannot exceed the gap width between the cathode and anode. 
   Transverse electric forces act on electrons passing through a foilless diode. The applied
magnetic field must be strong enough to keep electrons from striking the anode ring. We can use
results derived in Section 8.1 to estimate the required magnetic field. To simplify the model, we
shall neglect the beam-generated magnetic field. Let Er represent the average radial electric field
near the anode where electrons have kinetic energy eVo = ((-1)mec2. In this region, electrons
follow scalloped transverse orbits. Although the drift motion near the anode is non-relativistic (vd
n c), the electrons have an effective mass of (me. Adapting Eq. (8.8), we find a maximum radial
excursion of 

                                                                 )  =  2(meEr/eBo
2.                                                  (8.62)

To estimate the minimum value of Bo, we take ) = dr and Er ~ Vo/dr:

                                              Bo $ (2(meVo/edr
2)1/2 = mec/edr [2(((-1)]1/2.                            (8.63)

As an example, suppose a diode has Vo = 500 kV and dr = 0.01. The insulating magnetic field
must exceed 0.34 tesla.
   Transverse electric field components in a foilless diode contribute to the beam angular
divergence at the anode. The transverse kinetic energy varies from zero to a maximum value of
roughly eEr). Substituting from Eq. (8.62), we find that the maximum transverse energy is
roughly (Er/cBo)2 (mec2. In practical diodes Er n cBo. Therefore the transverse energy is
approximately equal to (mevr

2. For highly relativistic electrons, the divergence angle at the anode
is about 

                                                               )2 – vr/c – Eo/Bo.                                                    (8.64)

Equation (8.64) shows that a strong applied magnetic field is necessary for a low emittance
beam. 
   Several analytic models have been developed to predict the net current from a foilless diode.
Solutions are complex, even with an infinite magnetic field. Few results can be expressed in a
simple form. In designing a foilless diode, it is generally more efficient to estimate the total
current from scaling laws, and then to make accurate calculations with ray tracing programs or
particle-in-cell simulations. Applying Eq. (5.48), the space-charge-limited current from the
foilless diode of Figure 8.9 is about

In Eq. (8.65) we assume that the radial width for active emission from the cathode is comparable
to dz.
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Figure 8.10 Particle-in-cell computer simulation of a foilless diode. Figure shows electrode geometry and
superimposed electron orbits. Vo = 4 MV, Bo = 1.7 tesla, I = 66 kA. (Courtesy, J. Poukey, Sandia National
Laboratories).

   Figure 8.10 shows a computer simulation of electron flow across a foilless diode for injection
into a high current pulsed accelerator. Note that the radial scale is highly expanded. The diode
has a small cathode radius with R = 0.01 m and an extended gap length, dz = 0.02 m. The diode
voltage is Vo = 2 MV and the applied field is Bo = 2 tesla. The code predicts a net current of 38
kA. The diode parameters were chosen to give a low-divergence beam. Figure 8.10 shows the r-z
projections of the beam envelope on the inside and outside of the annulus. The envelope
oscillations result from transverse electric fields and the beam-generated magnetic field (Bs ~
0.76 tesla). As we shall see in Section 10.2, high-current beams are not in a radial force balance
when they leave an immersed cathode. As the beam propagates downstream, non-linear forces
cause phase mixing and damping of envelope oscillations. Force mismatches in the diode
ultimately contribute to increased beam emittance.
   Figure 8.11 shows a second foilless high current electron gun design accomplished with a ray
tracing program. The magnetron gun uses a combination of axial and radial electric fields with a
converging magnetic field to create a rotating annular electron beam in the downstream
solenoidal field. The injector geometry has been used in high-power gyrotron microwave
sources.
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Figure 8.11. Numerical calculation of emission from a magnetron gun using the EGUN code. A
converging magnetic field increases from 0.087 tesla to 0.1 tesla over the 0.03 m distance from the
cathode emission point to the transport tube – the field is uniform in the transport tube. Vo = 100 kV, I =
340 A.

8.4. Magnetic insulation of high-power transmission lines

   In this section, we shall review the subject of magnetically-insulated power flow in a vacuum
transmission line. The process is essential for the efficient transfer of energy from pulsed power
modulators to high-current electron or ion diodes. The transmission lines that connect the power
source to the diode must operate at electric field levels well beyond the breakdown limit.
Sometimes, the magnetic fields from the flow of current to the load can inhibit a line short circuit
from electron leakage. A strong magnetic field can insulate the line – breakdown electrons
follow drift orbits toward the load instead of crossing the vacuum gap. 
   The importance of magnetic insulation is apparent if we consider power flow in high-current
electron and ion diodes. Existing pulsed power generators can supply power at levels exceeding
1012 W (1 TW) for pulse lengths in the range 50-100 ns. To achieve intense focused beams from
diodes, it is necessary to deliver electromagnetic energy at high power density. The energy flux
of a pulse with electric field amplitude Eo in a vacuum transmission line is: 
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(8.67)

Figure 8.12. Schematic view of a magnetically-insulated vacuum transmission line. Dashed line shows
the orbit of an electron created in the rising electric field region. The electron drifts downstream in the
combined electric and magnetic fields.

                                                        S (W/m2) = Eo
2/(:o/,o)1/2.                                               (8.66)

The quantity (:o/,o)1/2 is the free space impedance, equal to 377 S. Breakdowns limit the peak
energy flux – at a field of 20 MV/m, we find that S = 1012 W/m2. The figure implies that the
transmission line area for a 1 TW diode must exceed 1 m2. The inductance of such a large-area
line is too high to achieve fast power flow rise times at the diode (# 10ns).
   Magnetically-insulated lines transport high-power density partly because they operate with
electric fields well above the breakdown level. Figure 8.12 shows power flow with magnetic
insulation in a coaxial cylindrical transmission line with negative voltage on the center
conductor. Electrons generated along the length of the line move away from the power generator
toward the load under the combined action of electric and magnetic fields. The magnetic field
results from the sum of current carried by drifting electrons and current flow along the center
conductor. If a pinched beam diode terminates the line, the drifting electrons can contribute to
the pinched flow in the diode. 
   We can use the parapotential model to gain insight into the nature of magnetically-insulated
electron flow. With minor modifications, the theory of Section 8.2 applies to geometries besides
concentric cones. Suppose we have a parallel plate transmission line where the plates are
separated by a gap xo – the electron distribution has uniform properties in y and z. Electrons drift
in the z direction along equipotential surfaces; the electrostatic potential varies only with x. It is
straightforward to show that Eq. (8.45) still determines the potential with the substitution P =
x/xo. The saturated parapotential current for a parallel plate transmission line of width yo is: 
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(8.68)

(8.70)

(8.71)

Equation (8.67) holds if electron flow extends to the anode plate. The quantity Io is the sum of
the current of drifting electrons and the current in the cathode plate. Note that Eq. (8.67) is
identical to Eq. (8.52) except for the first term, a geometry factor. 

   Most pulsed-power generators have coaxial cylindrical output lines. The saturated axial
parapotential current between the coaxial cylinders of Figure 8.12 is:

The quantities ri and ro are the inner and outer radii of the cylinders. We can use Eq. (8.68) to
estimate the impedance of a magnetically-insulated line that carries a step function voltage pulse.
The impedance of a transmission line equals the magnitude of the voltage between the inner and
outer conductors divided by the total current flowing through the line, or: 

                                                    Zm  =  (Vo/Io) = (mec2/e)((o-1)/Io.                                        (8.69)

Inserting the saturated parapotential prediction for Io gives an expression for the line impedance
with free electron flow:

The quantity Zo is the impedance for a conventional coaxial line:

   Equation (8.70) provides a guideline to match a power transfer section to a diode with known
properties. The bracketed quantity in the equation is a correction factor to account for free
drifting electrons. Figure 8.13 shows a plot of the correction factor as a function of voltage –
note that it is always less than unity. For the same voltage, a magnetically-insulated line carries
higher energy density than a conventional line. In summary, there are two properties of a
magnetically insulated transmission line that allow high power density: high electric field
magnitude and low impedance.
   The details of the inception and termination of magnetically insulated flow at the ends of a line
are complex. Again, computer simulations are the best approach for detailed predictions. We can
gain some useful qualitative insights. For example, consider the initiation of parapotential flow
in a line. Figure 8.14 illustrates an extended line attached to a pulsed power generator. The line 
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Figure 8.13. Ratio of the impedance of a cylindrical magnetically-insulated transmission line (Zm) to the
vacuum impedance (Zo) for saturated parapotential flow as a function of (o = 1 + eVo/mec2.

Figure 8.14. Vacuum interface region of a pulsed power generator showing creation of drifting electrons
in the region of spatially-varying electric field.

has a high-vacuum environment while the generator is insulated with oil or purified water. A
vacuum interface separates the two regions. The interface is a significant impediment to power
flow in the systems. The breakdown field on the vacuum side [CPA, Section 9.3] is only about 10
MV/m. The interface provides an impedance mismatch between the dielectric and vacuum
transmission lines. The common strategy to limit its effect is to make the transition region as short
as possible. Then we can treat the interface region as a series inductor that limits the rise time for
downstream power flow. The electric field is low near the interface and increases along the
transition to the magnetically-insulated line. At some point, electron emission begins (Figure
8.14). The electrons experience a rising electric field as they drift downstream. The combination
of the rising electric field and emission of more electrons pushes the drifting electrons towards the



High-power pulsed electron and ion diodes Charged Particle Beams

355

anode. As in the pinched-electron-beam diode, it is unlikely that pure parapotential flow results.
Electron orbits in a real line probably resemble those of the simulation of Figure 8.7. If the line
voltage for a given net current rises above the level for magnetic cutoff, electron losses occur at
the line entrance. Therefore, we expect that the voltage is regulated in the downstream line so that
electron flow is close to the saturated parapotential value.
   The connection to a load at the end of the magnetically insulated line usually involves a
geometric discontinuity. For example, in the transition to a pinched electron beam diode the gap
width decreases at the edge of the diode. For a smaller gap width, Eq. (8.70) shows that the
impedance at constant voltage decreases; therefore, a steady-state solution requires higher current.
This transition presents little problem. For example, extra electrons can enter at the edge of a
pinched-beam diode to satisfy conditions for parapotential flow in the compressed geometry.
Sometimes the gap width increases at the end of a magnetically-insulated line – the matched
impedance is higher. Drifting electrons must be removed to maintain continuity of current at
constant voltage. In steady-state fields, it is energetically impossible for electrons to return to the
cathode. For such a discontinuity, the drifting electrons drive time-varying electric fields. The
instability carries electrons to the anode side, resulting in losses. The mechanism of electron
bunching in a magnetically insulated line and the coupling of longitudinal energy to a microwave
instability is the basis for the operation of the magnetron (Section 15.6). 
   Magnetically-insulated transmission lines cannot transport power over an indefinite length. The
electrical transit time of the line must be shorter than the voltage pulse length. If we apply an
input voltage pulse with a rise time shorter than the electrical transit time of the line, the
downstream section of the line must act as the load for the magnetically-insulated power flow. By
Eq. (8.70), the vacuum line impedance is always greater than the impedance for magnetically
insulated flow, Zo > Zm. The implication is that a steady-state solution with no particle loss is
impossible with a short voltage rise time. For effective magnetic insulation, the power must rise
over many electromagnetic transits of the line. In this case the current that flows through the line
to the low-impedance load can rise to levels above Vo/Zo. If the voltage rises in time )t, we expect
to observe electron losses if the length of the magnetically-insulated line is

                                                                     L > c)t/2.                                                           (8.72)

As an example, for )t = 10 ns, the line length must be less than 1.5 m for complete insulation.

8.5. Plasma erosion

   The term plasma erosion signifies the removal of a plasma from a gap by a pulsed electric field.
In response to the field, electrons and ions flow to opposite electrodes. With no replenishment of
particles, the field ultimately clears the gap. Although plasma erosion may occur in a
conventional ion extractor with a pulsed acceleration field, the main application of the process is 
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Figure 8.15. Planar plasma-filled gap driven by a simple pulsed power circuit.

to pulsed-power switching and intense ion-beam diodes. Ion diodes may operate at very high
current densities exceeding 1 kA/cm2. One approach to supply ions is to fill the diode gap with a
high density plasma before the voltage pulse. The stored ions can support high flux for a short
pulse. A further advantage of plasma prefill is that the ion diode exhibits a rising impedance
during the voltage pulse – the consequent ramped voltage waveform may be useful for power
multiplication by longitudinal ion bunching. 
   The rising gap impedance associated with plasma erosion is important for applications to
pulsed-power switching. Initially, large currents flow with small voltage drop when plasma fills
the gap. As plasma leaves, particles must cross a widening vacuum region to reach the
electrodes. In this case the Child law limits the current-density in the vacuum region. At later
times, increased voltage is required to drive particle flow – the impedance rises. Devices based
on plasma erosion have potential applications as high-power opening switches. 
   The theory of plasma erosion can be complex in high-power systems with three-dimensional
geometric variations and strong magnetic fields generated by the current flow. To develop an
analytic model, we shall limit the discussion to moderate power density and adopt several
simplifying assumptions. Figure 8.15 shows the geometry of a planar gap. We neglect magnetic
fields and take the gap width d as small compared with the system width. As a result, we can
treat particle orbits as one-dimensional. A uniform plasma with equal electron and ion densities
no initially fills the gap. The plasma electrons are cold, so that the plasma excludes electric fields.
An external circuit consisting of an ideal voltage source, a series resistor R, and a switch (Figure
8.15) controls plasma erosion. The output voltage from the source and switch has the time
variation
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(8.75)

                                                              V(t) = Vo H(t),                                                          (8.73)

where H(t) = 0 for t < 0 and H(t) = 1 for t > 0.
   To begin, we will develop a model that describes a plasma-filled ion extractor. The only
plasma particles that enter the problem are those in the gap at t = 0 – we assume that the
electrodes do not emit ions or electrons. Figure 8.16 illustrates the sequence of events that
follows application of a voltage at t = 0. The rising electric field immediately pulls mobile
plasma electrons to the anode. Because of electron loss, the electrostatic potential of the plasma
rises until it is near the anode potential. The potential is almost uniform throughout the highly-
conductive plasma – most of the gap voltage drop occurs across a narrow sheath at the negative
electrode (Figure 8.16a). The rising plasma potential impedes further electron loss – the electron
loss rate approaches the ion loss rate to maintain average charge balance. The electric fields in
the narrow sheath at the cathode accelerate ions from the plasma. 

   Just after switching (t = 0+), the source voltage appears across the series resistor because
current flows easily across the gap. The initial circuit current is 

                                                              Io = I(t=O+) = Vo/R.                                                   (8.74)

One electron leaves the gap for each ion accelerated across the sheath. Therefore, ion depletion
accounts for half the circuit current while electron depletion carries the rest. Therefore, the initial
ion current across the cathode sheath is i = Io/2R. As ions leave the region near the cathode, a
vacuum region of increasing width forms (Figure 8.16b). We denote the width of the vacuum
region as 8. The gap voltage, v(t), rises to maintain ion flow across the growing vacuum sheath
(Figure 8.16c). The process continues until all plasma ions leave the gap.
   We can construct a simple model to describe plasma erosion in the limit that the ion transit
time over the sheath width 8 is much shorter than the time for a substantial change in 8. This
condition is valid for low mass ions. In this case we can approximate the ion flux across the
cathode sheath by the equilibrium value predicted by the Child law. Following Section 5.2, the
ion current density is

The total circuit current over an erosion gap of area Ag is

                                                                 i = 2 Ag ji.                                                               (8.76)

The factor of two arises because there is an equal depletion of electrons. The circuit current is
related to gap voltage and sheath width by 
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Figure 8.16. Sequence of events during the erosion of plasma from a planar gap driven by the circuit of
Fig. 8.15. Positive electrode on the right-hand-side. Immediately after voltage is applied (a) electrodes are
swept from the gap leaving a positive plasma potential. Ions exit at the left-hand-side, resulting in an
electrostatic sheath at the cathode. The ion extraction sheath widens later in time (b and c).
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(8.77)

(8.85)

For the series resistor circuit, the gap voltage and circuit current satisfy the equation:

                                                               v(t) = Vo - i(t)R.                                                        (8.78)

To find a solution for v(t), i(t) and 8(t), we must supplement Eqs. (8.77) and (8.78). We
introduce a third equation to represent the conservation of charge. If the width of the vacuum
sheath increases by an amount )8 in a time )t, then the total ion and electron charge removed
from the gap is

                                                            )Q = 2(eno)(Ag )8).                                                   (8.79)

Dividing both sides of Eq. (8.79) by )t, we find

                                                             i(t) = (2enoAg) d8/dt.                                                  (8.80)   

We can rewrite Eqs. (8.77), (8.78) and (8.80) in a dimensionless form to show that the solutions
are governed by a single parameter. We define the dimensionless gap voltage, current and
vacuum sheath width as

                                                                     V = v/Vo,                                                             (8.81)

                                                                       I = i/Io,                                                              (8.82)

                                                                     7 = 8/d.                                                              (8.83)

We take the characteristic time scale equal to the total initial ion charge in the gap divided by the
maximum circuit current Io. The dimensionless time is

                                                               J = t/(enodAg/Io).                                                       (8.84)

The dimensionless equations are
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(8.88)

(8.90)

                                                                  V = 1 - I,                                                               (8.86)

and

                                                                I = 2(d7/dJ).                                                          (8.87)

The quantity If is the current that flows in the gap just before depletion of the plasma. This
current equals twice the Child-limited ion current across a vacuum gap of width d: 

The ratio Io/If  determines the nature of plasma erosion. If the gap has a dense plasma fill and has
a large impedance change during plasma depletion, the final current is much smaller than the
initial current, or

                                                                      (Io/If) o 1.                                                          (8.89)

   We combine Eqs. (8.85), (8.86) and (8.87) to a single equation for the width of the vacuum
region at the cathode:

The initial conditions on current and voltage are I(0) – 1 and V(0) – 0. Equations (8.85) and
(8.87) imply that 

                                                                     7(0) = 0,                                                            (8.91)

                                                                   d7/dJ = 1/2.                                                         (8.92)

The calculation ends when all particles leave the gap, or

                                                                    7(Jmax) = 1.                                                         (8.93)

Although Eq. (8.90) is non-linear, we can easily solve it numerically with a two-step integration
procedure. We must find the quantity d7/dJ by iteration at the full and half time steps. Given
7(J), Eqs. (8.86) and (8.87) give the normalized gap voltage and current.
   Figure 8.17a gives a plot of V(J) for a choice of (Io/If) = 500. Initially, the voltage rises rapidly
as the sheath edge moves away from the cathode. The high voltage is necessary to accelerate 
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Figure 8.17. Solution of the plasma erosion equations for a planar gap. a) Normalized voltage versus time
for Io/If = 500. b) Clearing time for complete removal of plasma as a function of Io/If. c) Opening time at
which voltage reaches 80 per cent of its peak value as a function of Io/If.
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Figure 8.17. (Continued)

ions over the vacuum region. Subsequently there is a long period of slow plasma depletion at
low current. In the example of Figure 8.17a, the plasma does not clear until J = Jmax = 330.
Figure 8.17b shows the normalized plasma clearing time Jmax as a function of (Io/If). The
variation is almost linear – the removal of particles from the gap takes longer at high plasma
density and large gap spacing. Figure 8.17c shows the opening time, the interval for the voltage
to rise to 0.8Vo. The opening time is much shorter than the clearing time. The opening time does
not depend strongly on the gap geometry or the plasma properties – it drops with increased
(Io/If). The electric field at the cathode is a quantity of practical interest. If the field is too high,
the cathode could emit electrons and the gap may not make a transition to high impedance.
Equation (5.52) implies that the cathode electric field is

                                            E = 4v(t)/38(t) = (4Vo/3d)[1 - 2(d7/dJ)]/7.                               (8.94)

   A specific example illustrates some implications of the results. Suppose a plasma gap and
driving circuit have the following properties: Vo = 100 kV, Io = 2 kA, and d = 0.05 m. The gap is
circular with diameter 0.15 m – it carries an initial current density of 11 × 104 A/m2. The
parameters imply that cathode electric field for the example. From Figure 8.17c we find an
opening time of only 20 ns, while the clearing time is over 1 :s. The example shows that plasma
erosion can give fast switching times for isolated pulses, but it is not useful for high frequency
applications. Analysis of the time dependent voltage and current shows that the energy deposited
in the negative electrode over the clearing time is small, less than 50 mJ/cm2. The electric field 
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Figure 8.18. Solution of the plasma erosion equations for a planar gap. Dimensional quantities for Io/If =
83. Voltage, normalized electric field, and current as functions of time.

on the negative electrode reaches a peak value of 13 MV/m about 4 ns after application of the
voltage.
   We can apply a similar approach to study the properties of another device, the plasma-erosion-
opening switch. These switches are sometimes connected in parallel with high current ion diodes
to sharpen the voltage rise time at the end of a magnetically-insulated transmission line. The
main difference from the previous calculation is that we take the cathode as an unlimited source
of electrons. We shall again neglect the effects of magnetic fields. This assumption is
questionable since plasma-erosion-opening switches operate at very high current density.
Although the magnetic field pressure on a plasma probably plays a major in the behavior of the
switch, it is nonetheless useful to carry out a one-dimensional analysis as a baseline. Initially
electrons emitted from the cathode flow through a dense plasma so that the gap impedance is
almost zero. Again the mobility of the electrons maintains the plasma near the potential of the
positive electrode; therefore, voltage across the switch appears in a sheath adjacent to the
cathode. Acceleration across the sheath results in depletion of ions in the gap. Equation (8.86)
still holds if the gap connects to a stepped voltage source of magnitude Vo through a series
resistor R. Furthermore, we retain Eq. (8.87) which states that ion charge is conserved. The main
difference is that the current that results from plasma depletion is much smaller than the current
carried by electrons emitted from the cathode. For a carbon plasma, the space-charge-limited ion
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(8.95)

(8.96)

(8.97)

current across the vacuum sheath is only 0.7 per cent of the emitted electron flow. Neglecting the
plasma contribution, the total circuit current carried by electrons in the nonrelativistic limit is 

The quantities in Eq. (8.95) have the same definitions as those in Eq. (8.77). The two differences
between the equations are: 1) there is a multiplying factor of 1.86 to account for bipolar flow in
the vacuum region, and 2) the ion mass has been replaced by the mass of the electron. We can
apply the same set of dimensionless equations [Eqs. (8.85), (8.86), and (8.87)] to the plasma-
erosion-opening switch if we define If as the space-charge limited current of emitted electrons
across the full vacuum gap under bipolar flow conditions:

As an example, suppose we have (Io/If) = 10. For gap parameters and circuit parameters of d =
0.05 m, Ag = 10-2 m2, Vo = 250 kV, we find that If = 1.8 x 105 A and Io = 1.8 MA. For a plasma
particle density of no = 1020 m-3 the scale time is about (enoAgd/Io) = 4 ns. The predicted opening
time is about three times this scale value, or 12 ns. This time is in the range observed in
experiments.

8.6. Reflex triode

   The fundamental problem for the generation of high-current ion beams is energy loss to
electron flow. In a one-dimensional diode, the Child law [Eq. (5.48)] implies that the electric
field to generate an ion beam is much higher than the field to generate an equal current density of
electrons. We need strong electric fields to produce intense ion beams – for a current density of
100 × 104 A/m2 in a 1 MV proton extractor, we must apply an electric field of 140 MV/m. At
such a high field, all exposed negative surfaces in the diode act as electron sources because of
surface plasma formation (Section 7.4). 
   With unlimited sources of both ions and electrons, the flow in a one-dimensional gap at
moderate voltage is bipolar and follows the expressions of Section 6.4. The ion flow is smaller
than the counter-streaming electron flow by a factor:
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Figure 8.19. Geometry of the symmetric reflex triode. The figure shows flows of electrons and ions for
an ideal one-dimensional system.

For protons the fluxes are ji/je – 0.0233. The energy efficiency of a simple bipolar diode is only:

                                                         ji/(ji+je) = "/(1+"),                                                         (8.98)

High extraction voltages where electron flow is relativistic improve the efficiency. Nonetheless,
at all voltages electron leakage current is too high for practical devices.
   The reflex triode solves some of the problems of space-charge flow at high electric field.
Experiments with this device have demonstrated the generation of neutralized ion beams at high
current-density with energy efficiency significantly better than the prediction of Eq. (8.98). In
this section, we will study the basic reflex triode. We assume a one-dimensional system with
monoenergetic circulating electrons. In the next section, we shall construct a theory with more
realistic electron energy spectra. We shall see that some electron distributions lead to ion flow
that is greatly enhanced beyond the Child limit.
   Figure 8.19 shows the geometry of the reflex triode. Two cathodes are placed symmetrically a
distance d from a central anode. The cathode surfaces are grids to allow extraction of ions. The
anode is also a grid with a high geometric transparency factor T. After application of a strong
pulsed voltage, the anode can supply space-charge-limited ion flux in both directions. In many
experiments, the anode is composed of insulating wires or a plastic foil. The applied electric
field in the triode induces breakdowns along the insulators, generating a dense plasma. The
electric fields also create surface plasmas on the cathodes. We shall use the following
assumptions to analyze equilibrium particle flow in the device:
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     1. The anode and cathodes supply unlimited fluxes of ions and electrons. As a result, the
electric field equals zero on all electrode surfaces.

     2. Particles move only in the z direction. In most experiments, an applied axial magnetic field
limits transverse motion of the electrons.

     3. An electron that strikes the anode grid is absorbed. Section 8.7 discusses the consequences
of electron scattering and partial energy loss in the anode.

     4. Particle motion is nonrelativistic. We shall discuss relativistic corrections after developing
the basic model.  

     5. The system is in equilibrium – the electron and ion fluxes are uniform in the triode gaps.

   Expressions for electrostatic potential and particle densities in the triode of Figure 8.19 are
symmetric on both sides of the anode. The figure illustrates the flow of particles. Suppose a
space-charge-limited ion current ji leaves both sides of the anode. We define the quantity Je as
the current density of electrons directed toward the anode from either cathode. The fraction of
incident electron current-density that passes through the anode is TJe. By conservation of energy,
the transmitted electrons travel to the opposing cathode where they are absorbed. It is easy to
find the self-consistent space-charge solution in the triode if we recognize the following facts:

     1. The solution of the one-dimensional Poisson equation depends on the magnitude of the
total electron density, not the direction of electron motion. The incoming and outgoing     
electrons contribute to a net negative space-charge density.

     2. If N(z) is the electrostatic potential, the magnitude of the electron velocity for both
incoming and outgoing electrons is proportional to 1/N(z)1/2.

     3. The condition of zero electric field at the cathode constrains the net electron density.

   Disregarding the direction of electron motion, we recognize that the space-charge solution in a
gap of the reflex triode is identical that for bipolar flow. Applying the results of Section 6.4, we
conclude that the ion current density equals

The condition Ez = 0 on all electrodes implies that the total number of electrons in the gap equals
the total number of ions. An equivalent statement is that the total electron flux (ignoring
direction) equals the total ion flux multiplied by (mi/me)1/2, or:
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                                                                     Je(1+T) = ji/".                                                  (8.100)

   The reflex triode has improved efficiency for ion generation because only a small fraction of
the electrons that leave the cathode strike the anode. The current density of electrons absorbed at
the anode is 

                                                                       je = (1-T)Je.                                                     (8.101)

An accelerated ion that passes into the field-free region outside the triode can easily capture an
electron from the cathode. The net result is that neutralized ion beams leave both sides of the
device. Section 11.1 discusses the mechanisms of electron capture for ion beam neutralization.
    A good figure of merit for a triode is the ratio of the net ion current exiting the device to the
electron current lost on the anode. We can combine Eqs. (8.100) and Eq. (8.101) to give the ratio

In the limit of a solid anode (T = 0) Eq. (8.102) reduces to the standard ratio for bipolar flow [Eq.
(6.39)]. In contrast, at high transparency (T – 1) the electron loss current is much lower. For
example, the ratio for proton generation with T = 0.95 is ji/je = 0.91. The efficiency for ion
production is almost 50 per cent compared with 2.3 per cent for a solid anode. 
   When a reflex triode has an applied voltage in the MV range, the net electron and ion fluxes
are no longer related by Eq. (8.100). To describe the triode, we must derive relativistic
expressions for bipolar flow following the methods of Sections 6.4 and 6.5. The calculation is
easy in the limit of ultra-relativistic electrons (eVo o mec2). We assume that the electron density is
almost constant over the width of the gap, independent of N. The resulting ion current density is

Relativistic electrons enhance the ion current density by a factor of 5.55 compared with 1.86 for
non-relativistic voltages. The net electron flux is related to the ion flux by 

                                                    Je(1+T) = (2mic2/eVo)1/2 ji.                                                 (8.104)

The figure of merit for an ultra-relativistic reflex triode is
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Figure 8.20. One-dimensional reflex triode with extraction through a virtual cathode on the right-hand
side. 

As an example, if Vo = 2 MeV and T = 0.95, Eq. (8.105) predicts a current density ratio of ji/je $
1.27.
   Figure (8.20) shows an interesting variant of the reflex triode that provides a good
demonstration of collective space-charge effects. The device generates bi-directional ion beams
with only one real cathode. This cathode, at ground potential, is separated by a gap of width d1
from an anode pulsed to voltage +Vo. Again, the cathode and anode can supply unlimited fluxes
of electrons and ions. The downstream propagation region is surrounded by walls at ground
potential. Figure 8.20 shows a metal transport tube and a distant target at ground potential.
Although the system resembles an electron gun, experiments have shown that it generates
neutralized ion beams of energy eVo in both the upstream and downstream directions.
   A space-charge-limited electron current density Je leaves the real cathode. We take
monoenergetic electrons with only axial velocity. A current density TJe passes through the anode
into the drift region. We know that without ions the negative space-charge reduces the potential
in the drift region. At a distance d2 from the anode, the potential reaches N = 0. The virtual
cathode reflects the electrons. If T = 1, the space-charge downstream from the anode is a mirror
image of the solution on the upstream side; therefore, d2 = d1. If T < 1, the electron flux on the
virtual cathode side is lower so that d2 > d1. 
  Accounting for particles is more difficult when we add ions – Figure 8.20 clarifies particle
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flows in the asymmetric reflex triode. We shall postulate that a virtual cathode surface exists and
then show that we can derive consistent current densities in the two regions of the triode. Again,
the net electron density is proportional to N-1/2 – the condition Ez equals zero on the physical
electrodes and at the virtual cathode determines the magnitude of the electron density. The ion
current densities on both sides equal the bipolar flow expression [Eq. (8.99)] with the appropriate
gap spacing, d1 or d2. The ratio of ion current density on the virtual cathode side to that on the
real cathode side is:

                                                                 ji2/ji1 = (d1/d2)2.                                                     (8.106)

A current density of electrons denoted by Je leaves the real cathode – a fraction TJe continues
through the anode. Because the virtual cathode has no connection to an external power source,
the total current arriving at the surface must equal zero for a steady-state solution. A small
fraction of the electron flux arriving at the virtual cathode continues in the forward direction to
neutralize the extracted ions. The current density of lost electrons equals ji2. The bulk of
electrons arriving at the virtual cathode is reflected. The return electron current density on the
right hand side equals TJe-ji2. A current density T(TJe-ji2) passes back through the anode mesh
and returns to the real cathode.
  We can find the geometric parameters and particle fluxes by the same method that we used for
the symmetric reflex triode. On the real cathode side, the condition of equal numbers of electrons
and ions gives the following relationship:
 
                                                       Je + JeT2 - ji2T = (mi/me)1/2 ji1.                                         (8.107)

On the virtual cathode side, Eq. (8.107) becomes:

                                                           2JeT - ji2 = (mi/me)1/2 ji2.                                              (8.108)

We can combine Eqs. (8.97), (8.107) and (8.108) to give the ratio of ion current densities on
each side:

Equation (8.109) leads to an expression for the ratio of the gap widths:

   Finally, we can calculate a figure-of-merit for the device. We define the quality factor as the
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ratio of the ion current through the virtual cathode ji2 to the total electron current from the real
cathode to the anode, je. The quantity je equals 

                                    je = Je(1-T) + (JeT-ji2)(1-T) = Je(1-T2) - ji2(1-T).                               (8.111)

Combining Eqs. (8.108) and (8.111), the figure of merit is

As an example, suppose we have a proton extractor where " = 1/(1843)1/2 = 0.0233. The anode
transparency factor is T = 0.95. Equation (8.112) predicts that the ion current passing through the
virtual cathode equals 45 per cent of the total electron current lost to the anode. The ion fluxes
on each side of the anode have equal magnitudes to within 0.3 per cent.

8.7.  Low-impedance reflex triode

   The predicted behavior of the reflex triode changes dramatically if we relax the condition of
purely one-dimensional motion. If we permit transverse velocity components, the total electron
energy projected in the longitudinal direction is no longer a conserved quantity. If transverse
fields or collisions deflect the reflexing electrons, the triode an generates ion current density far
beyond the Child limit. 
   Ion motion in a reflex triode is always simple. Ions follow almost straight line orbits and leave
the device immediately after crossing the extraction gap. The key to enhanced current density in
the reflex triode is the electron motion, which can be complex. Several processes can modify the
orbits of the reflexing electrons:

     1. It we use a thin foil anode instead of wires, electrons suffer small angle scattering (Section
10.4) each time they pass through. Although a scattered electron retains almost the same net
kinetic energy, the collision reduces the energy projected in the axial direction.

     2. Transverse electric field components at the edge of the triode may increase the transverse
energy of electrons.

     3. The toroidal magnetic field resulting from ion and electron currents deflects electrons.

   Figure 8.21 illustrates the effect of foil scattering on electron orbits in a symmetric reflex
triode. Scattered electrons have reduced kinetic energy projected in the z direction. Conservation
of energy prohibits them from returning to the cathode – they pass back through the anode foil.
With no transverse forces, electrons re-enter the anode at the same angle as they left. Electrons 
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Figure 8.21. Schematic view of the loss of axial electron energy in a reflex triode by scattering in a foil
anode. (Courtesy, J. Creedon, Physics International Company).

may make several additional transits through the anode. Each time, random scattering processes
modify their angles. After many passes, the electrons scatter to a grazing incidence angle and are
absorbed. 
   To model the reflex triode with scattering, we must recognize some differences from the model
of Section 8.6:

     1. Individual electrons follow a complex decay history.

     2. The anode collects all electrons that leave the cathode.

     3. At any time, the extraction gaps contain electrons with a broad distribution of energies.

Again, we seek a solution with steady-state electron and ion flow. For simplicity, we assume that
transverse components of electron velocity result only from scattering in the foil. We take
electrodes of infinite width so that there are only z-directed electric fields. We neglect the effects
of beam-generated  magnetic fields. Finally, we limit the treatment to non-relativistic electron
dynamics.
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Figure 8.22. Calculation of electron scattering in a one-dimensional reflex triode. Top: Schematic view of
electron orbits in a reflex triode. Bottom: Equivalent system.

   Finding a self-consistent equilibrium is not difficult if we recognize that the computation can
be divided into two independent parts: 1) calculation of the spectrum of electron energy and, 2)
use of the spectrum to find the electron density as a function of electrostatic potential. An
expression for the electron density leads to a self-consistent solution of the Poisson equation. To
begin, consider how we can find the electron spectrum. Inside the foil, electrons move
independently. The high density of conduction electrons in the metal cancels long-range electric
fields generated by the reflexing electrons. Furthermore, electrons return to the anode at the same
angle as they exited, independent of the nature of the space-charge solution in the vacuum gap.
In other words, the transverse and axial kinetic energy components do not change in the gap.
Figure 8.22 shows a physically equivalent geometry to calculate scattering – anode foils are
stacked in sequence with no space between. We can use probability theory or Monte Carlo
calculations to find the electron distribution at each foil boundary. The output from the
calculation is an electron spectrum for each pass through the anode foil. We can sum over the set
of spectra to find the net electron axial energy distribution at the anode foil surface. 
   We can use the net spectrum to find the relative density function. Then, we can normalize the
density by applying the condition that Ez = 0 on all electrodes. Section 15.1 discusses the
numerical calculation of density for an arbitrary longitudinal energy spectrum. Here, we shall
follow a simplified model [J. Creedon, I.D.Smith and D.S. Prono, Phys. Rev. Lett. 35, 91 (1075)]
that illustrates the essential physical processes. Figure 8.21 shows an idealized electron history.
The quantity 0 equals the number of times an electron passes through the anode foil, including
the final pass where it is absorbed. Figure 8.21 shows an orbit where 0 = 5. The quantity Wz is
the total energy of an electron in the axial direction:
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Without scattering the total axial energy is a constant, Wz = eVo. Foil scattering reduces Wz – the
quantity drops to zero when the anode absorbs the electron.
   To complete the definition of quantities, we take the flux function f as the total flux of
scattered electrons leaving the anode surface in either direction. Referring to Figure 8.21, f
equals the sum of the partial fluxes from the orbits marked 1,2,3 and 4. We take fe as the flux of
incoming electrons (orbit 0) from either side. Because electrons are not absorbed until the final
pass, conservation of charge implies that the incoming and outgoing electron flows at the foil are
equal. As a result, the total flux of scattered electrons in the gap is related to the incoming flux
by:

                                                                      f = (0-1) fe.                                                      (8.114)

We express the total flux in terms of the axial energy distribution by defining the differential flux
spectrum df/dWz. The differential flux equals the number of electrons in the energy interval dWz
leaving one anode surface per second per m2. In limit that 0 o 1, we can approximate df/dWz as a
continuous function with the property:

   We can find the electron density in the gap as a function of the differential flux spectrum if the
electrostatic potential N(z) decreases monotonically from the anode to the cathode. The condition
of equilibrium flow implies that the incremental flux associated with each energy group df is
independent of position. The differential density associated with a particular energy group of
electrons that travel toward the anode simply is:

                                                           dne(z) = df/ve(z),                                                         (8.116)

where

   The total electron density at a position z is the sum over all energy groups. We must remember
two facts to perform the sum:
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     1. Contributions to the density at position z are included only for those electrons that have
high enough kinetic energy to reach the position, Wz $ e[Vo-N(z)].

     2. At any point, the scattered particles have components traveling in both directions, while the
unscattered  electrons only travel inward.

Given the flux spectrum, the total electron density is 

The first term in Eq. (8.118) represents the contribution from unscattered electrons – it varies as
1/ve(z). The second term represents scattered electrons – note the factor of two to account for
both velocity components. The density is a function of the electrostatic potential. We can
substitute the expression into the Poisson equation to find a self-consistent space-charge solution
following the method of Section 5.2. 
   The nature of electron scattering influences the calculation through the spectral function,
df/dWz. As an example, suppose that electrons lose equal decrements of axial energy on each
pass through the foil. The continuous approximation to the spectral function is a constant given
by

Substituting Eq. (8.119) in Eq. (8.118) and performing the integral gives

Ions in the reflex triode are created at the anode and immediately leave through the cathode.
Following Section 5.2, the ion density is given by

where mi is the ion rest mass and fi is the ion flux through the cathode. 
   The ion current density leaving one side of the reflex triode is ji = eni(2eVo/mi)1/2. The current
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density of unscattered electrons leaving one cathode (je) equals efe. Because the anode ultimately
captures all electrons, je is also the electron-loss current density. Combining Eqs. (8.120) and
(8.121) gives the following form for the Poisson equation on one side of the reflex triode:

Multiplying both sides of Eq. (8.122) by 2(dN/dz), we can find the first integral. Combining the
result with the condition that dN/dz = 0 on all electrodes implies the following relationship: 

The ratio of ion current density to electron loss current density in Eq. (8.123) is a figure of merit
for the triode. We must perform the second integral numerically. Following the method of
Section 6.4, we can write the solution in terms of a definite integral. The normalized electron
loss current density is

                                                                je/je(CL) = 9G2/16,                                                (8.124)

where the normalizing factor je(CL) is the Child law value of electron current density in a gap of
width d with applied voltage Vo [Eq. (5.48)]. The factor G equals

   Equations (8.123) and (8.124) have some interesting physical implications. For a given spectral
function, the free parameter in the equations is the number of passes through the foil, 0. The
anode foil thickness, the foil material, and the applied voltage combine to determine 0. A thin
foil or a high applied voltage gives a value of 0 much larger than unity. Figure 8.23 shows a plot
of je/je(CL), (ji/je)(mi/me)1/2  and (ji/je) for protons. Note that when 0 = 1, the value of je/je(CL)
equals 1.86 and ji/je equals 0.0233. These results are identical to those derived for simple bipolar
flow (Section 6.4) because the condition 0 = 1 corresponds to a solid anode that absorbs
electrons on their first transit. 
   As the number of electron transits increases, the electron-loss current drops and the fraction of
triode current carried by the ions increases proportional to 0. The most interesting result is that
both the electron and ion current density approach values far beyond the Child limit when 0
approaches 11. The model predicts that particle fluxes are unlimited when 0 $ 11. In an actual
system, the result implies that properties of the driving circuit limit the current rather than space-
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Figure 8.23. Predictions for space-charge-limited flow in a one-dimensional reflex triode with a uniform
electron axial energy spectrum. a) Electron current density normalized to the Child law prediction for
single-species flow in a simple gap. Dashed line shows the prediction for a monoenergetic electron
distribution. b) Ion current density normalized to Child law prediction. Dashed line shows the prediction
for a monoenergetic electron distribution. (Courtesy, J. Creedon, Physics International Company).

charge effects. We can find the cause of the current density divergence by inspecting the
expression for the electron density, Eq. (8.120). The first term represents unscattered electrons.
Because the density peaks at the cathode, the negative charge has little effect on ion flow. In
contrast, the density of scattered electrons represented by the second term has a maximum at the
anode. The parameter 0 determines the proportion of scattered electrons compared with entering
electrons. At a critical value, 0crit, the electron density at the anode is high enough to neutralize
the space-charge of extracted ions. The resulting enhanced ion flow allows more electrons to
enter so that the current density grows without limit. The value of 0crit depends on df/dWz – it is
typically in the range 5-15 for scattered electron spectra.
   Suppose we apply a high pulsed voltage to a reflex triode from a generator with a non-zero
output impedance. Initially, the value of 0 is higher than 0crit because of the high voltage. The
triode current rises rapidly, loading the generator. Ultimately, the voltage drops to a level slightly
below 0crit and the system approaches an equilibrium. Because 0crit depends on voltage, a reflex
triode with anode foil acts like a high power Zener diode. It operates at constant voltage, almost
independent of the current. 
   Experiments have shown ion current densities exceeding 1 kA/cm2 from reflex triodes with
anode foils, more than two orders of magnitude higher than the Child law prediction. The price 
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Figure 8.24. Planar magnetically-insulated ion diode.

of the enhanced ion flux is lower energy efficiency. The maximum ratio of ion to electron loss
current density is

For the energy spectrum of Eq. (8.119), Eq. (8.126) implies that ji/je = 0.365. The corresponding
energy efficiency of device is only 27%.

8.8. Magnetically-insulated ion diode

   The generation of high-intensity ion beams depends on the suppression of electron flow in
regions of strong electric fields. The magnetically-insulated diode uses a magnetic field
perpendicular to the accelerating electric field to stop electrons while allowing ions to pass with
a small deflection. The magnetically-insulated diode has two main advantages compared with the
reflex triode. First, electron losses in the device can be small, leading to high energy conversion
efficiency. Second, the diode does not use thin foils for beam generation or extraction. 
   Figure 8.24 shows an idealized planar magnetically-insulated diode. Ions flow between infinite
parallel plates with separation d and voltage difference Vo. The applied electric field is in the
axial direction, Ez = -Vo/d; the magnetic field is normal to the ion flow, By = Bo. Ions enter the
acceleration gap from an anode plasma. We assume that the negative electrode can supply an
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unlimited number of electrons. Without a magnetic field, electrons stream across the gap and the
ratio of ion to electron current equals (me/mi)1/2. Applied magnetic fields stronger than the critical
value, Bcrit, insulate the gap by confining electrons to the cathode region. From the discussion of
Section 8.1, the electron distribution in an insulated diode extends over a layer of thickness 

Equation 8.11 defines the quantity B*. 
   In principle, we can suppress electron flow completely in a magnetically-insulated diode. In
practice, there are always electron losses. The fraction of current carried by electrons is small in
diodes operating at moderate currents (< 10 kA), usually less than 10 per cent. Even though the
loss current is small, the space-charge of electrons trapped in the gap can significantly enhance
the magnitude of the ion flux. We shall see in Section 8.9 that the ion current density in
magnetically-insulated diodes may exceed the Child limit by more than an order of magnitude. 
   To begin, we shall discuss magnetic bending of ion orbits in an insulated gap. Although ion
deflections are much less than those of electrons, small angular errors may increase the
emittance of the extracted beam. We shall use non-relativistic equations to find the deflection
angle, )". The equation for transverse ion motion is: 

                                                         mi(dvx/dt) = -evzBy(z).                                                  (8.128)

For small )", we can rewrite Eq. (8.128) in terms of an axial derivative, 

                                                            dvx/dz – -eBy(z)/mi.                                                   (8.129) 

Equation (8.129) has the solution

Following the discussion of Section 8.1, if Bo is the applied magnetic field, then the integral in
Equation (8.130) equals Bod for short voltage pulses. Equation (8.130) gives an expression for
the exit angle of ions emitted normal to the anode: 

   An alternative form of Eq. (8.131) shows scaling with applied magnetic field:
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The first term on the right-hand side of Eq. (8.132) equals the ratio of the applied magnetic field
to the nonrelativistic insulating field. This term must exceed unity, while the second term in Eq.
(8.132) is much smaller than one. As an example, consider protons in a diode operating at about
twice the critical insulating field. Equation (8.132) gives an angular deflection of 0.047 radians
(2.7°). 
   To find the space-charge-limited flux of ions across the magnetic diode of Figure 8.24, we
must include the effects of the space-charge of electrons with curved orbits. The solution is more
difficult than the bipolar flow computation (Section 6.4). Although we shall not follow all details
of the model, it is useful to review the origin and meaning of the governing equations. We
simplify the physics with some limiting conditions. The diode is one-dimensional with infinite
extent in the x and y directions. We neglect magnetic fields arising from axial ion current but
include the transverse magnetic field created by electron drift. We take ion orbits as straight lines
across the diode ignoring the small magnetic deflection. The electrons leave the cathode with
zero kinetic energy; therefore, all electrons have total energy and canonical angular momentum
equal to zero. Although the model holds for moderate ion current, it does not include several
important processes that occur in high-current (>0.1 MA) ion diodes. In these devices, the
magnetic field associated with ion flow can distort electron drifts, resulting in electron losses and
enhancement of the ion current density. 
   In equilibrium, the ion flux is independent of axial position. A similar constraint applies to the
axial electron flux in accessible regions. Ions move only in the axial direction, while electrons
have velocity components vx and vz. The expression of conservation of total ion energy takes the
form: 

                                                     miviz(z)2/2 + eN(z) = eVo,                                                 (8.133) 

where N(z) is the electrostatic potential. For electrons, the relativistic equation of energy
conservation is: 

                                                        [((z)-1)mec2 = eN(z),                                                    (8.134) 
where

The electrostatic potential is related to the density of ions and electrons through the Poisson
equation: 
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   The canonical momentum Px is a constant of electron motion because forces are uniform in the
x direction. The angular momentum of all electrons equals zero if we take the vector potential Ax
equal to zero at the cathode and assume that the electrons exit normal to the surface [vx(0) = 0].
The condition Px = 0 means that: 

                                                         ((z)mevex(z) = eAx(z).                                                   (8.137) 

The vector potential is related to the diode magnetic field by 

                                                           By(z) = MAx(z)/Mz.                                                       (8.138) 

We can relate the magnetic field to the electron current density through the Maxwell equation: 

                                          MBy(z)/Mz = -:ojex(z) = -:oene(z)vex(z).                                         (8.139) 

The combination of Eqs. (8.138) and (8.139) gives a differential equation for the vector
potential: 

   To close the set of equations, we need to connect the ion and electron densities to the field
quantities. The constant flux condition implies the following condition for the ion density: 

                                                            ni(z) = ji/eviz(z).                                                         (8.141) 

The quantity viz(z) depends on the electrostatic potential through Eq. (8.133). The corresponding
equation for the electron density has the form: 

                                                            ne(z) = je/evez(z).                                                        (8.142) 

The relation between the electron density and the potential functions is more complex. The
electron density depends on both N and Ax through Eqs. (8.134), (8.135), (8.137), (8.140), and
(8.142) . In addition, we must include the fact that the magnetic field limits electron excursions
to a fraction of the gap width. 
   The boundary conditions for electrostatic potential at the cathode and anode are 
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Figure 8.25. Predictions of steady-state ion flow in a planar, magnetically-insulated gap based on
numerical solutions of fluid equations. a) eVo = 0.1(mec2). b) eVo = 10.0(mec2). (Adapted from K.
Bergeron, Appl. Phys. Lett. 28 (1976), 306.)

                                                         N(0) = 0, N(d) = Vo.                                                     (8.143) 

The condition that electron and ion flows are space-charge-limited implies that the derivatives of
the potential must be zero on both surfaces:  

                                                   dN(0)/dz = 0, dN(d)/dz = 0.                                               (8.144) 

We set the vector potential equal to zero on the cathode: 

                                                               Ax(0) = 0.                                                               (8.145) 

Also, we take the integral of magnetic flux integral as: 

Comparison of Eqs. (8.138) and (8.146) gives a second boundary condition for the vector
potential: 

                                                               Ax(d) = Bod.                                                            (8.147) 

The final condition is that the electrostatic and vector potentials are continuous across the
transition at the electron turning point. 
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   Given values of Vo, Bo and d we could solve the equations to find self-consistent values of ji
and je. Here, we shall quote the numerical results of Bergeron [K. Bergeron, Appl. Phys. Lett. 28,
306 (1976)]. Figure 8.25 shows normalized ion current in a magnetically-insulated diode as a
function of the ratio of the applied magnetic field to the critical insulating field. The calculation
extends over both insulated and non-insulated regimes for the diode. The quantity jiC is the
single-species Child limit in a gap with voltage Vo and spacing d [Eq. (5.48)]. Figure 8.25 also
shows normalized electron current density, (je/jeC), where jeC is the non-relativistic electron Child
limit, (me/mi)1/2 jiC. At low magnetic field (Bo < Bcrit) je represents the electron current density
crossing the gap. In the insulating regime (Bo > Bcrit) je is taken as twice the current density
leaving the cathode. The third quantity plotted in Figure 8.25 is the normalized distance that
electrons penetrate into the acceleration gap ()/d). 
   Figure 8.25a shows results for a low applied voltage, eVo = (0.1)mec2, where electron motion is
non-relativistic. With no applied magnetic field (Bo/Bcrit = 0), electrons and ions flow freely
across the gap. The normalized current densities approach the bipolar flow limit, (je/jeC) = (ji/jiC)
– 1.86. High values of applied magnetic field (Bo/Bcrit o 1) confine the electrons close to the
cathode. In this case the electron space-charge has little effect on ion flow so that (ji/jiC – 1). The
most interesting features appear just above the critical insulating field (Bo/Bcrit $ 1). The ion
current density exceeds the bipolar flow limit. The enhancement factor results from the curvature
of electron orbits in the magnetic field – the electrons spend more time near the anode. The
resulting negative space-charge partially neutralizes the ion space-charge. 
   The ion flux is higher when electron motion is relativistic. At high voltage the electrons move
at a speed close to that of light. Because of the relativistic saturation of velocity electrons spend
a longer fraction of time near the anode. Figure 8.25b shows results for a relativistic diode (eVo =
(10.0)mec2). The ion flux exceeds the single-species Child-law prediction by a factor of 6.3. Ion
flow enhancement in magnetically-insulated diodes is a critical issue for proposed light-ion
inertial fusion drivers. High focused power density ($ 1014 W/cm2) requires high-current density
ion diodes. The enhancement factors for magnetically-insulated diodes predicted by equilibrium
models have not been observed in experiments. Real diodes are subject to plasma closure,
geometric asymmetries and electron flow instabilities. To achieve efficient conversion of power
to ion flux, the diodes must operate with applied field in the range Bo > (1.5)Bcrit. In this regime,
the enhancement predicted by equilibrium models is small. In order to account for the high ion
fluxes observed in experiments, we must include non-equilibrium processes that introduce a
spread in the electron canonical momentum (Section 8.9). 
   To the present we have discussed magnetic diodes with infinite transverse extent. A real diode
has a finite length along the direction of electron drift – end effects can lead to electron loss.
Figure 8.26 illustrates the mechanism. Suppose a parallel plate diode extends from x = 0 to x = L
along the drift direction. Conditions for the equilibrium model are not valid at the downstream
edge of the diode at x = L. Here, the electric field amplitude decreases along the direction of
electric drift. Therefore, the magnitude of the E×B velocity drops for x > L. The electron flux
that approaches the edge exceeds the flux that can leave. The continuity equation [Eq. (2.108)]
implies that there must be a time variation of electron space-charge near the edge. Bunching of
the drifting electrons creates electric field components in the x direction. The field Ex causes a 
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Figure 8.26. Mechanism for electron loss in a magnetically-insulated gap with finite length along the drift
direction. The axial electric field of bunched electrons results in drift motion across the gap.

component of drift velocity across the gap. A group of electrons crosses to the anode, followed
by growth of another electron clump at the edge. Experiments with magnetically-insulated
diodes with finite parallel-plate geometry show large electron losses at the downstream edge and
emission of strong microwave radiation. The accumulated electron space-charge at the edge also
results in enhancement of the ion current density by factors of 10 to 100. 
   To design an efficient ion diode, we must reduce electron losses by ensuring that there is
geometric continuity along the drift direction. Figure 8.27 illustrates three diodes with uniform
geometry in the drift direction. The device of Figure 8.27a consists of two coaxial cylinders. The
electric field is radial and the applied magnetic field is axial. If the applied field is much stronger
than the toroidal field created by power flow to the diode, the electrons drift in the azimuthal
direction. Experiments on cylindrical diodes at moderate current show low electron loss and an
ion current density close to the single-species Child-law prediction. At high current, the
summation of the axial magnetic field and the toroidal field from diode power flow produce
helical magnetic field lines. The electron drift velocity has an axial component away from the
power feed. The result is that electrons move to the end of the coaxial diode. The charge
accumulation leads to electron losses and enhanced local ion flow. 
   The coaxial diode produces a diverging or converging ion flow. For most applications we want
a directed ion beam traveling in the axial direction. Figure 8.27b shows a diode that can generate
such a beam. The diode gap has an axial electric field insulated by a radial magnetic field.
Trapped electrons drift in the azimuthal direction. The diode produces an annular ion beam – the
axis cannot be used for acceleration because the radial magnetic field equals zero at r = 0 for any
arrangement of coils with cylindrical symmetry. 
   The radial-field diode can produce low-emittance ion beams if the anode surface lies on a
magnetic field boundary (Figure 8.27b). From such a configuration there is no axial magnetic
flux included within any position on the anode. All ions that leave normal to the anode surface
have canonical angular momentum equal to zero. Although the downstream magnetic field 
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Figure 8.27. Magnetically-insulated diodes with uniformity along the electron drift direction. a) Coaxial
cylinders with an axial magnetic field. b) Radial magnetic field ion gun. c) Barrel diode for focusing
experiments. d) Particle-in-cell computer simulation of ion trajectories and electron neutralization in a
barrel diode. (Simulation courtesy of J. Quintenz, Sandia National Laboratories.)

displaces ions in the azimuthal direction, they emerge into the field free propagation region with
no azimuthal velocity. 
   Figure 8.27c shows another diode with symmetry along the electron drift direction that creates
ions with zero canonical angular momentum. The barrel diode produces a beam that focuses in
two-dimensions. In light-ion fusion experiments the diode has produced focused proton beams
with power density exceeding 5 TW/cm2. The barrel diode has pulsed magnet coils inside the
anode to generate the field pattern of Figure 8.27c. The anode is a metal cylinder that excludes
the pulsed magnetic field. Therefore, the net magnetic flux inside the anode is close to zero.
Focusing in the z direction is achieved by shaping the anode. The net magnetic fields in a multi-
MA barrel diode are much different from the applied fields. With field components from diode
current flow included electrons drift in both the azimuthal and axial directions, converging to the
diode axial midplane. The ion flow is enhanced strongly near the midplane. 
   Magnetic diodes have a unique and useful property – high-perveance ion beams can be
extracted through a large diameter cathode aperture with no foil or mesh. The ions exit through a
surface defined by space-charge. The surface, called an extraction virtual cathode, has no
counterpart in conventional ion optics. The virtual cathode in a magnetically-insulated ion diode
is different from the phenomenon that we discussed in Section 5.2. Figure 8.28 illustrates how
electron space-charge defines an extraction surface. Electrons from the cathode electrode move
freely along magnetic field lines. Electron flow acts to cancel electric fields along the magnetic
field lines that arise from the applied voltage and ion space-charge. Section 11.2 describes the 
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Figure 8.27. (Continued).
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Figure 8.27. (Continued).
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Figure 8.28. Formation of a virtual extraction cathode in a magnetically-insulated ion diode by electron
flow along magnetic field lines.

process of electron neutralization along field lines in detail. The result is that magnetic field lines
define electrostatic equipotential surfaces. In Figure 8.28 a cloud of electrons from the cathode
potential covers the cathode aperture. The resulting electric fields are close to those that would
result with an aperture covered with a conducting foil. There is no perveance limit for ion beams
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from magnetic diodes with extraction apertures. Experiments have shown that ion beams can be
extracted through apertures with diameter more than an order of magnetic larger than the
acceleration gap width.

8.9. Ion flow enhancement in magnetically insulated diodes

   The magnetic field in a high-current ion diode may serve two functions. Besides insulating the
diode, the field can also trap electrons. The accumulated negative space-charge leads to ion flux
beyond the single-species Child limit. We have already seen that electron clumping causes local
ion-flow enhancement in a magnetic diode – an example is the boundary of a finite length
parallel plate diode. In this device electron loss accompanies the increased ion current.
Experiments have shown that the ion current density in diodes with uniformity along the electron
drift direction rises over long voltage pulses (~1 :s). Enhancement factors exceeding 100 have
been achieved in coaxial and radial field diodes (Section 8.8), yielding ion current density
comparable to that obtained from low impedance reflex triodes. In magnetic diodes high ion
current is not necessarily accompanied by high electron-loss current. In this section, we shall
review computer simulation results to understand the origin of ion flow enhancement in
magnetic diodes.
   We know that equilibrium theories do not predict strong ion flow enhancement; therefore, we
must add time variations to explain the results. Nonetheless, we recognize that time-dependent
processes have little effect on the motion of individual ions. At magnetic fields of interest, ions
move freely across the gap with a density proportional to (Vo-N)-1/2 – the ion distribution is
always a delta function in total axial energy. The key to ion flow enhancement is variation of the
electron distribution with time. The ion flux is higher if the electron density increases near the
anode. Such a density shift occurs if we relax the condition that all electrons have identical total
energy and canonical momentum in the drift direction.
   To begin, we shall introduce methods to categorize electron distributions in magnetically-
insulated diodes. The familiar phase space plot at an instant of time is not informative because
electrons in the gap have large orbit excursions – the velocity and position of an electron
changes much more rapidly than the time scale for the growth of ion current density. It is more
useful to plot the electron distribution in terms of the constants of motion: W (the total energy)
and Px (the canonical momentum in the drift direction). The plot displays allowed parameters for
electron containment and the effect of electron diffusion in response to time-varying forces. The
W-Px coordinate of an electron subject to field perturbations moves slowly through the allowed
region.
   We can easily calculate the region of allowed orbits for magnetically-confined electrons in W-
Px space if we apply two limiting conditions: 

     1. Electron motion in the diode is non-relativistic (eVo n mec2).

     2. Particle contributions to the electric and magnetic fields are small.
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(8.149)

(8.150)

The second condition means that the electric and magnetic fields are uniform: By = Bo and Ez=
Vo/d (Figure 8.24). Electron orbits in crossed fields can be laminar, scalloped, or a mixture of the
two. To begin consider laminar electron flow (Section 8.1). The orbits have only a component of
velocity in the x direction – the magnetic force exactly balances the electric force. All electrons
have the same velocity:

                                                               vx = Vo/Bod.                                                             (8.148)

The total electron energy is the sum of kinetic plus potential contributions:

The first term on the right-hand side of Eq. (8.149) equals mevx
2/2 - Equation (8.11) defines the

quantity B*. The second term is the potential energy in the electrostatic field. Similarly, we can
write the canonical momentum along x as:

   Equations (8.149) and (8.150) are the parametric equations of a straight line in W-Px space.
Figure 8.29a plots the solution for a choice Bo/B* = 2. Electrons adjacent to the cathode (x = 0)
have a positive total energy because they move at the E×B velocity. If we include particle-
generated fields, the axial electric field approaches zero at the cathode. Therefore, laminar-flow
electrons at x = 0 have zero energy and canonical momentum. With particle field corrections, the
laminar distribution line intersects the origin in W-Px space (dashed line in Fig. 8.29a). Similarly,
the condition Ez = 0 holds at the anode for space-charge-limited emission of ions. Therefore, the
the laminar electron distribution line passes through the point W = -eVo, Px = -eBod. 
   We can visualize the generalization to non-laminar orbits readily in a frame of reference that
moves at vx = Vo/Bod. In the non-relativistic limit, the fields in the transformed frame are Ez' = 0
and By' – Bo. In the drift frame, a laminar electron orbit is a point at a position z' = z. We can
define a class of orbits with increasing kinetic energy about each point in the drift frame. The
particles gyrate about z' with a gyroradius, rg'. The gyroradius depends on the excess kinetic
energy an electron has compared with an electron with a laminar orbit. The difference in kinetic
energy is related to the gyroradius by:

                                                      )W = eVo (Bo/B*)2 (rg'/d)2.                                               (8.151)

Geometric constraints on the gyroradius limit the allowed kinetic energy difference. Trapped
electrons cannot strike the cathode; therefore, 
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Figure 8.29. Magnetically-insulated ion diode with electron diffusion - allowed regions for electron orbit-
vectors in W-Px space. a) Laminar electrons formed during a slowly rising voltage. Dashed line shows
corrections for effects of space-charge electric fields. b) Extended allowed region with non-laminar orbits.
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                                                                   rg' < z'.                                                                (8.152)

Similarly, the electrons cannot strike the anode:

                                                                rg' < (d-z').                                                             (8.153)

The maximum value of rg' depends on whether Eq. (8.152) or (8.153) provides the most stringent
limit. Electrons with extra kinetic energy follow cycloid orbits in the accelerator frame. All
electrons that share the same center of gyration in the drift frame (z') have the same value of
canonical momentum in the laboratory frame. We can prove this fact by noting that all the
particle orbits centered on z' have velocity vx = Vo/Bod in the accelerator frame when they cross
the position z = z'. 
   The allowed space for trapped electrons extends along the W axis at each position of Px. The
shape resembles that of Figure 8.29b. The conditions of Eqs (8.152) and (8.153) define the
boundaries. Particle contributions to the electric and magnetic fields deform the shape so that it
passes through the points (0,0) and (-eVo, -eBod). The change in the shape of the allowed region
with relativistic corrections is small. 
   In W-Px space, the equilibrium distribution of the model of Section 8.8 is a point at the origin – 
all electrons created on the cathode have W = 0 and Px = 0. When diffusion processes act on the
electrons, the total energy and canonical momentum can change over time scales much longer
than the orbit oscillation period. We expect that electrons migrate toward the anode, resulting in
enhanced ion flow. A self-consistent description of the process is complex. Here we shall review
the results of a computer simulation, using the W-Px diagram as a guide. The one-dimensional
program treats self-consistent electron and ion orbits in the presence of applied and particle-
generated electric and magnetic fields. The field calculation uses the quasi-static approximation,
excluding displacement currents and inductive electric fields. The requirement of vanishing
electron fields on the boundaries determines the emission of ions and electron. 

   Several processes, such as geometric imperfections in the electrodes, can cause electron
diffusion. The inclusion of these processes, which involve field variations along the x direction,
is beyond the capability of a one-dimensional program. Therefore, we limit the investigation to a
specific question: how is the self-consistent ion flow in a magnetically insulated diode affected
by electron diffusion? We introduce diffusion by adding a phenomenological transverse electric
field variation of the form:

                                                 Ex = Exo [1 - cos(Tot)][x(x-d)/d2].                                        (8.154)

The spatial factor assures that the transverse electric field equals zero at the electrodes. The
results are insensitive to the exact choice of perturbation frequency To. The field amplitude Exo is
a free parameter. For practical diodes, we know that Exo is much smaller than the applied field,
Exo n Vo/d. We adjust the perturbation so that the time variation of ion flux matches the variation
observed in experiments. The simulation then gives an idea of the amplitude of field 
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Figure 8.30 Particle-in-cell computer simulation of a magnetically-insulated ion diode with electron
diffusion. Electrons migrate across an initially empty gap in approximately 5 ns. Vo = 1 MV, Bo = 2 tesla,
Bcrit = 0.96 tesla, perturbation electric field amplitude -100 kV. a) Ion current density normalized to the
Child law prediction. b) Spatial variation of normalized potential at 30 ns. c) Spatial variation of particle
densities at 30 ns. d) Spatial variation of magnetic field at 30 ns (Courtesy, J. Poukey, Sandia National
Laboratories.)
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Figure 8.31 Electron distributions in W-Px space and test electron orbits for the simulation of Fig. 8.30. a)
Distribution at t = 5 ns and an orbit trace of an electron that reaches the anode at 5 ns. b) Distribution at t
= 20 ns and an orbit trace of an electron that reaches the anode at 20 ns. (Courtesy, J. Poukey, Sandia
National Laboratories).
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perturbations in the experiment. 
   Figure 8.30 illustrates some simulation results. To start the run, electrons and ions are injected
into a diode with Bo/Bcrit o 1, the full applied voltage and no perturbation field. After several time
steps, the self-consistent ion flow approaches the space-charge-limited value predicted by the
theory of Section 8.8. At a time taken as t = 0, the perturbation field is turned on. Figure 8.30a
shows the subsequent variation of ion current density (normalized to the space-charge limit). The
normalized current density increases a factor of 80 over an interval close to the electron diffusion
time across the gap. Figure 8.30b shows the spatial variation of electrostatic potential in the final
state. The axial electric field is concentrated close to the anode, accounting for the enhanced ion
flow. A plot of particle densities in the final state (Figure 8.30c) shows that both the electron and
ion density are high near the anode. The augmented electron density results, in part, from
electron diamagnetism which compresses the magnetic flux against the anode (Figure 8.30d). In
the final state, electron loss accounts for only 25 per cent of the total current flow in the diode. 
   Figure 8.31a plots a folded orbit for a test electron crossing the gap during the early phase of
current density growth (t = 5 ns). The figure also shows a W-Px diagram of the electron
distribution at the same time. During the time initial electrons move across the gap, the electron
distribution is almost laminar. The ion current density increases when the electrons reach the
vicinity of the anode. In turn, the enhanced ion flow allows more electrons to enter the gap. In
the advanced stage of enhanced ion flow with strong diamagnetic effects, the electrons make a
transition to scalloped orbits. Figure 8.31b shows a folded test electron orbit and W-Px plot at t =
20 ns. The distribution is highly nonlaminar. The bounded region of Figure 8.31b has many
features in common with the boundary of allowed orbits shown in Figure 8.29. 
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9
Paraxial Beam Transport with Space Charge
______________________________________

In this chapter we begin the study of beam transport. We shall develop equations to describe
beam focusing in long accelerators or beam-transport lines. The term focusing means the
application of transverse forces to maintain a small beam radius about a main axis. We shall
concentrate on paraxial beams. Here, particle orbits have small angles with respect to the main
axis – the components of transverse velocity are much smaller than the axial velocity.
Furthermore, the space-charge potential energy in the beam volume is much less than the
average particle kinetic energy. The paraxial model gives a good description of beams in
high-energy accelerators and in low-current devices such as electron microscopes. The
approximation is not valid for the initial stages of high-current accelerators and for
high-perveance devices like microwave tubes. We shall discuss transport of beams with strong
space-charge effects in following chapters:
   Section 9.1 derives the envelope equation for sheet beams, while Section 9.2 covers cylindrical
beams. Envelope equations are useful for first-order designs of transport systems. The idea is to
seek conditions for global force balance rather than to pursue detailed solutions of self-consistent
distributions. Envelope equations specify transverse force balance at the root-mean-squared
beam dimension. They predict the variation of beam width along z in response to external forces
and those generated by the beam. Section 9.3 presents another example of envelope equations for
application to a periodic arrays of quadrupole lenses. We use the KV distribution to derive
self-consistent equations. The resulting KV equations describe beam propagation in a system
where the applied forces are independent in the x and y directions but the space-charge forces
couple particle motion in x and y.
   Section 9.4 reviews a practical application of envelope equations, calculation of the maximum
allowed current in a transport system. We shall concentrate on periodic lens arrays and seek a
condition of transverse force balance averaged over the length of a focusing cell. In periodic
systems, there is a well-defined current limit. The average applied focusing force must be low
enough so that the vacuum phase advance of individual orbits is in the range it :o < 180°. This
defines an upper limit on the sum of emittance and space-charge forces and hence a limit on
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beam current. Section 9.5 describes a method to circumvent constraints on ion beam flux by
dividing the current between several small beams. This method is technologically feasible in an
array of parallel electrostatic quadrupole channels.
   Section 9.6 discusses limits on beam current that result from axial space-charge electric fields.
These constraints are important for accelerators where the beam must remain synchronized to an
accelerating wave. Even if the electrostatic potential energy in the beam volume is small, the
electric felds may be strong enough to push particles out of the bucket of an R F accelerator.
Similar processes occur for high-current ion beams in induction linear accelerators.

9.1. Envelope equation for sheet beams

   Often in the design of accelerators and beam transport systems, we do not need to describe
transverse beam distributions in detail. It is usually sufficient to know properties of the beam
averaged over the cross-section. We seek an estimate of the beam radius and envelope angle to
make sure that the beam fits through the bore of acceleration gaps and lenses. We use envelope
equations to make such estimates. The equations apply conditions of force balance on the beam
periphery to predict the envelope trace, the width of the beam as a function of axial position. 
   In this section, we shall derive the envelope equation for a sheet beam (Section 5.1). Section
9.2 extends the model to cylindrical beams. Envelope equations apply to paraxial beams. The
term paraxial means that the inclination angles of particle orbits are small, x' n 1. As a result,
changes in the beam width take place over distances much longer than the transverse beam
dimension. This condition leads to major simplification of the theory – we can use special
expressions for applied transverse forces and we can approximate beam-generated forces with
expressions for an infinite-length beam. We treat fields in the static limit. The paraxial condition
also means that the axial kinetic energy component is much larger than the transverse kinetic
energy. The implication is that all beam particles have about the same axial kinetic energy at
position z, independent of their transverse motions. Envelope equations are most useful for
steady-state beams. They also describe pulsed beams if the beam length is much longer than the
width. The equations are suited to short beam pulses, such as the bunches in an RF accelerator.
In this device, axial and transverse particle motions are coupled and fields must be described by
the full set of Maxwell equations. 
   We consider a sheet beam that travels in the z direction and has infinite extent in the y direction
(Fig. 9.1). The beam is symmetric about the line x = 0. The quantity X(z) is the envelope half-
width at position z. To begin, we shall make an inventory of forces on the periphery of the beam.
Figure 9.1 illustrates the types of electric fields and magnetic fields that can be used to focus
extended sheet beams – the fields are uniform in the y direction. Applied electric fields can both
accelerate and focus particles. In the paraxial limit for a sheet beam, Ey = 0 and Ex n Ez. The
transverse component of the static electric field is related to the axial field by [CPA, Chap.
Section 6.2]:

                                                    Ex(x,z) – -x [MEz(0,z)/Mz].                                                     (9.1)
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Figure 9.1. Basis of the envelope equation for a sheet beam. a) Focusing by electrostatic and magnetic

lenses that extend in the y-direction. b) Propagation of a high-current laminar sheet beam in a field-free
drift region.

We can show that the field expression of Eq. (9.1) is consistent with L@E = 0 if Ez is almost
uniform over the beam width. The axial electric field changes the kinetic energy of beam
particles: 

                                                     M((moc2)/Mz – qEz(0,z).                                                        (9.2)

Combining Eqs. (9.1) and (9.2), we can write the transverse applied electric force on the
envelope as:

                                    Fx – - X (moc2) ("  [applied electric field],                                          (9.3)

where (" = M2(/Mz2.
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   Currents that flow in the y direction generate magnetic forces that focus the sheet beam. For
such currents, the only non-zero component of the vector potential is Ay. Because there are no y-
directed forces, the canonical momentum of particles in y is a conserved quantity:

                                                       Py = Po = (movy + qAy.                                                      (9.4)

The vector potential is related to the axial magnetic field by

                                                                MAy/Mx = Bz.                                                             (9.5)

In the paraxial limit, Bz is almost constant over the beam cross section, so that Ay – Bz x. We can
write the canonical momentum as

                                                         Py = Po – (movy + qBz x.                                                  (9.6)

   The magnetic field is usually localized to discrete lens regions. If there is no magnetic field at
the source and particles leave perpendicular to the surface (vy = 0), then all particles have zero
canonical momentum, 

                                                                       Po = 0.                                                                (9.7)

In the following discussion, we will apply the condition of Eq. (9.7) –  the particle source is not
immersed in the magnetic field. Using Eq. (9.5), the velocity in the y direction is related to the
on-axis axial magnetic field by

                                                         vy(z) – -[qBz(0,z)/(mo] X.                                                (9.8)

The magnetic force in the x direction equals qvyBz. At the envelope, the applied transverse
magnetic force is 

                                      Fx – -[q2Bz
2(0,z)/(mo] X    [applied magnetic field].                         (9.9)

   Electric and magnetic forces also arise from beam-generated fields. The electric force acting on
the envelope of a sheet beam carrying a current per unit length (along y) of J A/m is (Eq. 5.16): 

                                             Fx = (qJ/2,o$c)    [beam electric field].                                    (9.10)

For a paraxial beam, the beam-generated magnetic force equals the electric force multiplied by
the factor -$2. The total beam-generated force is:

                                               Fx = ((mo($c)2) Kx  [beam force] .                                          (9.11)



Paraxial beam transport with space charge Charged Particle Beams

399

The quantity Kx is the generalized perveance for a sheet beam,

(9.12)

Note that Kx has dimensions of m-1. To complete the list, we can also include the transverse force
associated with emittance derived in Section 3.5. 
  The beam envelope follows an equation of motion of the form:

                                                         d[(mo(dX/dt)]/dt = E Fx.                                               (9.13)

The right-hand side of the equation is the summation of all transverse forces. We shall convert
Eq. (9.13) to a trace equation that gives the beam width as a function of axial position, X(z).
Since all particles at a location z have the same axial velocity, we can change time derivatives to
axial derivatives using the chain rule,

                                                   dX/dt = (dX/dz)(dz/dt) = ($c) X'.                                        (9.14)

Noting that ( varies with z in the presence of an accelerating electric force, the left hand side of
Eq. (9.13) becomes:

                      d[(mo(dX/dt])/dt = d[(mo$cX']/dt = mo$c[($X" + ($'X' + ('$X'].            (9.15)

By manipulating Eqs. (1.13) and (1.14), we can show that

                                                               ($' + $(' = ('/$.                                                      (9.16)

Addition of the individual force terms to the right hand side of Eq. (9.13) gives the following
second order differential equation for X(z):

                          X" = - (('X'/($2) - (("/($2) X - (qBz/(mo$c)2 X + Kx + ,x
2/X3.                     (9.17)

The first term on the right-hand-side of Eq. (9.17) contributes to a decrease in the envelope angle
when the beam accelerates ((' > 0). The second term represents electrostatic focusing from
einzel lenses (CPA, Chap. 6). The third term corresponds to focusing by the magnetic lens of
Fig. 9.1. The fifth term gives defocusing by beam-generated forces, while the last term
represents the effect of emittance. 
   As an example of the application of Eq. (9.17), consider propagation of a laminar sheet beam
in a vacuum drift space with no applied forces. We want to find the maximum allowed beam
current for a given drift length L, entrance half-width Xi and exit half-width Xf. From the
discussion of Section 5.4, we seek a solution where the beam converges as it enters and passes
through a waist between the entrance and exit. The solution for a sheet beam is easier than a
cylindrical beam – the beam-generated force is independent of the envelope width. As a result,
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(9.20)

the width of a zero-emittance beam can approach zero at the waist. The reduced envelope
equation is: 

                                                                    X" = Kx.                                                              (9.18)

If we set the envelope width equal to zero at the waist, the solution of Eq. (9.18) is

                                                               X(z) = Kxz2/2.                                                           (9.19)

The quantity z is the distance from the waist. If Zi is the distance from the entrance to the waist,
we can show that

When Eq. 9.20 holds, the matched value of generalized perveance is

                                                                  Kx = 2Xi/Z2.                                                           (9.21)

   Suppose we have an electron beam for an intense pulsed microwave source with kinetic energy
equal to 1 MeV. Take L = 0.3m, Xi = 0.01 m, and Xf = 0.01 m. The total length of the beam along
the y direction is 0.2 m – the one-dimensional approximation is well satisfied. Substitution into
Eqs. (9.20) and (9.21) implies that Kx = 0.89. Solving Eq. (9.12) with ( = 2.96 and $ = 0.941
gives J = 52.3 kA/m. The maximum beam current consistent with the constraints is 10.5 kA.

9.2. Paraxial ray equation

   It is easy to carry out the derivation of Sect. 9.1 in polar coordinates for application to
cylindrical beams. The result, the paraxial ray equation, is one of the most widely used
relationships in charged-particle beam optics. Although the equation is limited to cylindrical
beams and optical elements with azimuthal symmetry, it describes a broad class of practical
devices. The paraxial ray equation is useful for the study of low-current beams in ray tubes and
electron microscopes. It also is valuable for the design of high-current microwave tubes and
induction linacs. 
   In a cylindrical system, symmetry permits only certain components of electric and magnetic
field: 
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(9.25)

     1. axial and radial components of the applied electric field,

     2. radial electric field resulting from space-charge,

     3. axial and radial magnetic field components generated by axicentered circular coils, and

     4. beam-generated toroidal magnetic field.

In the paraxial limit, we can relate the radial components of applied fields to the axial field by:

                                                  Er(r,z) – -(r/2) MEz(0,z)/Mz,                                                    (9.22)

                                                  Br(r,z) – -(r/2) MBz(0,z)/Mz.                                                    (9.23)

The particles of cylindrical paraxial beams have small transverse velocity, vr, v2 n vz.
Furthermore, particles have almost the same kinetic energy, ((-1)moc2, and axial velocity, vz/c =
$. At all positions in an unneutralized beam, the beam-generated magnetic force equals the beam
electric force multiplied by -$2. Particles gain azimuthal velocity when they move through the
radial magnetic fields of a solenoidal lens. For forces with cylindrical symmetry, the canonical
angular momentum is a constant of particle motion: 

                                               (morv2 + qrA2 = P2 = constant.                                                (9.24)

The quantity A2 is the vector potential generated by azimuthal currents. 
   Following the methods of Section 9.1,  we derive the following equation for axial variation of
the envelope of a cylindrical beam:

The quantity R is the envelope radius of the beam – the prime symbol denotes a derivative taken
with respect to z. 
   The first three terms on the right hand side of Eq. (9.25) represent focusing processes. Term 1
arises from acceleration, or a change of ( with position along the axis. The term reduces the
envelope angle, R', when particles accelerate. Term 2 represents electrostatic focusing from
radial components of applied electric fields. The effect is important in low-energy electron
optical systems or in acceleration columns. Usually, we can neglect the term when beams have
high kinetic energy. Term 3 describes magnetic focusing from applied solenoidal fields.
Solenoidal lenses are common in electron beam transport systems at low or moderate energy
(<50 MeV). Solenoidal fields are seldom used for ion transport since they are ineffective for
focusing heavy particles.
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(9.26)

(9.28)

   Terms 4, 5 and 6 describe defocusing processes. Term 4 is the emittance force of Section 3.5.
Term 5 is important when the particle source is immersed in an axial magnetic field – extracted
particles have non-zero canonical angular momentum. The quantity Ro is the total magnetic flux
enclosed within the beam envelope at the source:

In Eq. 99.260, Rs is the radius of the beam at a source at position z = Zs. This term has the same
1/R3 variation as emittance. We know from the theory of motion in a central force that particles
with non-zero P2 cannot pass through the axis. Finally, Term 6 gives the combined action of
beam-generated electric and magnetic fields (Section 5.1). The quantity K is the generalized
perveance of Eq. (5.88).
   We often apply an alternative form of the paraxial ray equation for low-energy electron or ion
beams. For low energies it is convenient to use the on-axis absolute potential, N(0,z), instead of
the relativistic (. The absolute potential equals zero at the particle source – it is related to ( by: 

                                                           qN(0,z) = ((-1)moc2.                                                    (9.27)

Substituting Eq. (9.27) in Eq. (9.25), we find:

   To illustrate the application of Eq. (9.25), we shall review the basis of a computer program to
predict beam dynamics in a linear induction accelerator. These machines generate pulsed beams
with current in the range 1-10 kA and energy of 5-50 MeV. Despite the high current, the
energetic electrons have paraxial orbits. Through careful design, the axial magnetic field equals
zero on the cathodes of most induction accelerator injectors; accordingly, we take Ro = 0. 

   Solenoidal lenses or extended axial magnetic fields provide focusing in all existing induction
accelerators. To describe magnetic focusing, we only need to know the axial variation of Bz(0,z).
We can approximate any solenoidal magnetic focusing system as a set of windings with different
axial position and radius. The net magnetic field along the axis is the sum of contributions from
individual coils. The following formula gives Bz(0,z) from a solenoid with a uniform density of
windings. The coil has radius ri, midpoint position zi, length Li, and a net current of Ii amp-turns:
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(19.29)

To specify the focusing system, we need only supply a list of solenoid parameters (ri, zi, Li, Ii).
The computer program performs a sum to calculate the net field at all positions.
   Equation (9.25) is not valid within the beam injector – here, axial fields vary over a scale
length comparable to the beam radius. Instead, we must use a ray tracing code (Section 7.3) to
supply initial conditions for downstream transport calculations with the paraxial ray equation.
The required injection parameters are (o, ,o, Ko, Ro and Ro'. Particle acceleration in induction
linacs takes place in narrow gaps located at spatial positions zj. Usually, the gaps have the same
value of applied voltage Vo. Electrostatic focusing in the gaps is negligible compared with gaps,
it is more convenient to apply the following step conditions based on conservation of energy and
momentum: 

                                          (j = (j-1 + eVo/moc2 = (o + jeVo/moc2,                                          (9.30)

                                                                $j = (1-1/(j
2)1/2,                                                     (9.31)

                                                                     Rj = Rj-1,                                                                       (9.32)

                                                         Rj' = Rj-1' ($j-1(j-1/$j(j),                                                 (9.33)

                                                          ,j = ,j-1  ($j-1(j-1/$j(j),                                                 (9.34)
                             
                                                          Kj = Kj-1  ($j-1(j-1/$j(j)3.                                               (9.35)

Table 9.1 lists a Runge-Kutta routine to solve Eq. (9.25). Figure 9.2 shows results of a numerical
calculation to find the effect of discontinuities in solenoidal field windings at acceleration gaps. 
   We can add an approximate term to the paraxial ray equation that is useful to represent the
effects of periodic focusing systems. Figure 9.3 shows two such systems, the einzel lens array
(Fig9.3a) and the periodic permanent magnet (PPM) array (Fig9.3b). We shall ignore details of
motion through individual lenses. Instead, we simplify the calculation by invoking properties of
particle orbits in periodic systems with linear applied forces. The displacement of a particle orbit
at the boundary of the nth lens in an array obeys the equation [CPA, Chapter 8]:

                                                            rn = ro cos(n:o + N).                                                   (9.36)
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Figure 9.2. Acceleration of a high-current electron beam in an induction linear accelerator – numerical
results from PARAX5 code. Top graph in figure shows beam radius as a function of position in
accelerator and in a downstream drift region. Bottom graphs shows axial variation of solenoidal magnetic
field. Injected beam parameters: 2 kA current, 1.0 MeV kinetic energy, 0.01 m radius, zero envelope
angle, 8.8 x 10-5 B-m-rad emittance. Accelerator parameters: Ten acceleration gaps, 250 kV each, at 0.25
m, 0.50 m, 0.75 m, .... Ten solenoidal coils, 7.5 cm radius, 0.15 cm length, spaced between acceleration
gaps, plus one bucking coil behind cathode. a) Total current per solenoid: 1.19 × 105 A-turns. b) Total
current per solenoid: 2.38 x 105 A-turns. 

The quantity N is a phase factor, while :o is the vacuum phase advance per lens. 
   To illustrate the meaning of the vacuum phase advance, Fig. 9.4 shows a numerical calculation
of a particle orbit in a PPM array for the choice :o = 60°. The orbit consists of long-term
harmonic motion with superimposed oscillations on the scale length of individual lenses. If the
length of a focusing cell is L, the long-term harmonic motion follows the equation:

                                                         r(z) – ro cos[(:o/L)z + N].                                              (9.37)
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(9.39)

Figure 9.2. (Continued).

The orbit of Eq. (9.37) is the solution of the equation:

                                                                   r" = -(:o/L)2 r.                                                       (9.38)

If we ignore small-scale oscillations and assume that only periodic forces act on the beam, Eq.
(9.38) leads to the following form for the paraxial ray equation:

We shall use Eq. (9.39) in Section 9.4 to estimate beam transport limits in the limit :o n 1.
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Figure 9.3. Periodic focusing systems with cylindrical symmetry. a) Einzel lens array. b) Periodic
permanent-magnet (PPM) array.
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Figure 9.4. Numerical calculation of a particle orbit in a PPM array with :o = 90 °.            

9.3. Envelope equation in a quadrupole lens array.

   Quadrupole lens arrays are the most widely-used focusing systems for high-energy particle
accelerators. In this section, we shall develop equations that describe the propagation of beams
with strong self-fields through quadrupole lenses. The equations are often applied to beam
dynamics in storage rings. The theory of quadrupole transport with beam-generated fields is also
useful to predict limits on beam current in high-current RF linacs and heavy ion induction
accelerators for inertial fusion. To construct a simple theory, we assume that the beam has a KV
distribution (Section 6.7) in the transverse direction. 
   The transverse forces in a quadrupole lens array vary periodically along z. In one transverse
direction, the force alternately focuses and defocuses. When the force in the y direction focuses,
the force in the x direction defocuses. A beam in such a system does not have cylindrical
symmetry. The calculation of electric and magnetic fields for three-dimensional variations of
beam density is complex. We shall reduce the problem to two dimensions by taking the scale
length for axial variations of density to be much longer than the beam width. Again, we use field
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(9.41)

(9.43)

expressions for an infinite length beam. The remaining two-dimensional calculation is simple if
the beam has a KV distribution in transverse position and angle. Section 6.7 showed that such a
distribution corresponds to a beam with elliptical cross-section and uniform charge density. The
resulting electric fields within the beam are linear and seperable in x and y. We must recognize
that theories based on the KV distribution have limitations – for instance, they cannot represent
non-linear space-charge forces that often lead to emittance growth. 
   We shall combine results from Sections 6.7 and 4.2 to construct a self-consistent theory.
Particle motions in the x and y directions are decoupled in an ideal quadrupole array. Matched
distributions fill boundary ellipses in x-x' or y-y' space. As a beam propagates, the areas of the x
and y ellipses remain constant, although transverse forces may modify their shape and
orientation. The derivations of Section 4.2 were carried out for a generic linear transverse force – 
here, we take a force that results from the combination of applied fields and beam-generated
fields. 
   In the x direction, the distribution boundary depends on the transport functions "x(z), $x(z) and
(x(z) through the equation

                                                    (x x2 + 2"x xx' + $x x'2 = ,x.                                                (9.40)

The quantity ,x is the beam emittance in the x direction. The transport functions depend on the
properties of the distribution at injection and the variation of the total x-directed force. We shall
denote the boundary of the distribution in x (the envelope width) as X. The envelope width is
related to the transport parameters by:

Similarly, in the y direction, the distribution boundary lies on the curve:

                                                    (y y2 + 2"y yy' + $y y'2 = ,y.                                                (9.42)

The envelope width in y is

   The treatment of the KV distribution in Section 6.7 was limited to upright elliptical
distributions. We shall extend the model to skewed ellipses because we expect that the beam
envelope converges and diverges in a quadrupole array. The KV distribution is a hollow shell in
trace space with particle orbit coordinates distributed uniformly over a hyperellipsoid. If we
assume that the emittances are equal in the x and y directions (, = ,x = ,y), the KV distribution
function is:
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(9.46)

(9.47)

(9.48)

              fKV(x,x'y,y') = A *[(x x2 + 2"x xx' + $x x'2 + (y y2 + 2"y yy' + $y y'2 - 2,].                 (9.44)

We calculate the configuration space density of the distribution by taking integrals over x' and y'.
The method is discussed in [I.M. Kapchinskij and V.V. Vladimirsky, Proc. Int. Conf. on High
Energy Accelerators (CERN, Geneva, 1959), 274.]; it is similar to the treatment of Section 6.7. 
   The resulting density is similar to that for an upright ellipse. At each axial position, the beam
has an elliptical cross density with envelope half-widths of X(z) and Y(z). The charge density D(z)
is uniform over the cross section. It is related to the total beam current I by

                                                          D(z) = I/BX(z)Y(z)vz.                                                     (9.45)

We can connect the distribution normalization constant A to the charge density by

where $x and $y are related to X and Y through Eqs. 9.41 and 9.43.
   Expressions for the transverse electric fields of a uniform-charge-density beam with elliptical
cross-section are simple. The electrostatic potential inside a long beam is: 

We can find the transverse electric field in the x direction by taking a partial derivative of Eq.
(9.47), Ex = -MN/Mx. The beam-generated electrical force is qEx. From the discussion of Section
5.1, we know that the magnetic force equals the electric force multiplied by -(vz/c)2. Adding the
beam-generated force and the applied force of the quadrupole lenses leads to the following
equation of motion in the x direction:.

The factor 1/(2 in the first term on the right-hand-side of Eq. (9.48) accounts for the combined
electric and magnetic forces generated by the beam. The function gx(vzt) gives the periodic
variation of transverse applied force as the particle moves through the focusing system. It varies
between -1 and +1. The quantity 6 in Eq. (9.48) is the standard strength parameter for
quadrupole lenses [CPA, Section 6.10]. For magnetic lenses, 6 equals 

                                                             6 = qBo/(moa$zc.                                                        (9.49)
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(9.51)

(9.52)

The quantity a is the distance from the axis to the closest point on a pole face and Bo is the
magnetic field at the point. For an electrostatic quadrupole with pole-tip field Eo, the strength
parameter is

                                                              6 = qEo/(moa($zc)2.                                                   (9.50)

   We can apply the methods of Section 9.1 to derive envelope equations using the information in
Eq. (9.48). We evaluate applied and beam-generated forces at the beam boundary, convert time
derivatives to axial derivatives, and include an emittance force term to represent the effect of
particle velocity spread. The result is the set of KV equations:

and

The quantity K is the generalized perveance [Eq. (5.88)]. Equations (9.51) and (9.52) have wide
utility in accelerator theory. Their solution gives self-consistent predictions of the axial variation
of envelope widths. Note that envelope oscillations in the x and y directions are coupled through
the beam-generated forces. 
   We can easily solve Eqs. (9.51) and (9.52) numerically for choices of K, 6x, 6y, gx(z) and gy(z)
combined with initial conditions, X(0), X'(0), Y(0), Y'(0). The KV equations have an important
application to the design of storage rings. In these devices, it is imperative to avoid orbital
resonance instabilities [CPA, Sections 7.3 and 8.7] that cause particle loss. A damaging
instability occurs when particle orbits have an integer number of betatron oscillations in one
revolution around the ring. With no beam-generated forces, we can write the condition for an
integer resonance as 

                                                                    :o = 2BM/N.                                                       (9.53)

Following the discussion of Section 1.3, the quantity :o is the vacuum phase advance for an orbit
in a quadrupole focusing cell. In Eq. (9.53), N is the number of focusing cells around the ring
and M is an integer equal to the number of betatron oscillations. Normally, an accelerator
operator adjusts the strength of focusing quadrupoles to avoid the condition of Eq. (9.53). The
machine setting for a choice of :o is often called the vacuum tune. 
   An inspection of Eq. (9.48) shows that beam-generated forces change the wavelength for
single-particle betatron oscillations. This change may be significant in storage rings because the
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goal is to contain the maximum number of particles. All forces in Eq. (9.48) are linear; we know
that the displacement of a particle at boundaries between the quadrupole cells follows an
equation of the form:

                                                            xn = A cos(n: + N).                                                    (9.54)

The quantity : is the phase advance per cell with combined applied and beam forces. The beam-
generated forces point away from the axis. Because they counteract the applied focusing forces,
the condition : #:o always holds. The quantity (:o-:) is called the space-charge tune shift or the
space-charge tune depression. 
   Suppose we have a storage ring where the vacuum phase advance does not satisfy Eq. (9.53).
Initially, the current is low so that : = :o – particle orbits are stable. As more current enters the
ring, the phase advance changes from the vacuum value. With enough current, the shifted phase
advance may meet the condition for an instability:

                                                                  : = 2BM/N.                                                           (9.55)
To prevent orbital resonances, the machine tune must change as the trapped current in the
storage ring rises.
   We can clarify the application of the KV equations to a storage ring by reviewing possible
steps of a study of beam dynamics at a particular value of current. First, we solve the non-linear
envelope equations numerically for a choice of beam energy ((), current (I), emittances (,x, ,y),
focusing system periodicities (gx(z), gy(z)), and lens strengths (6x,6y). If the quadrupole lenses
around the ring are not uniform, we can treat 6x and 6y as functions of z. The calculation predicts
the beam envelope, X(z) and Y(z), or the beta functions, $x(z) and $y(z). Usually, we want certain
values for the $ functions at locations in the storage ring. For example, the functions should be
small at the interaction region of colliding beams. We adjust the forms of 6x and 6y and repeat
the envelope calculation until the $ functions have the desired variation. We seek a stationary
solution where the beta functions return to their initial values after a transit around the ring. For
known X(z) and Y(z), we can solve Eq. (9.48) and a similar equation in the y direction to find the
single particle orbits and the phase advances :x(z) and :y(z). We sum the phase advances over
the focusing cells of the ring to find the number of betatron wavelengths per revolution. If the
results show a resonance, we must repeat the calculation for a different machine tune.

9.4  Limiting current for paraxial beams

   In this section, we shall derive expressions for the maximum current that can be transported in
accelerators. We shall emphasize paraxial beams in periodic focusing systems. Here, the
requirement for transverse force balance on the beam envelope sets an upper limit on the
magnitude of beam generated forces. In periodic systems, the applied focusing forces cannot be
so large that they cause single-particle orbit instabilities.
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(9.58)

   To illustrate the method, we begin with a simple calculation of transverse equilibrium in a
continuous focusing force. We take a cylindrical, paraxial electron beam in a uniform solenoid
field. The beam has high kinetic energy – longitudinal space-charge effects (Section 5.3) are not
significant. All electrons have about the same energy – the relativistic factors $ and ( represent
average properties. We find a condition for radial force balance on the beam envelope by setting
R" = 0 in Eq. (9.25): 

                                                    K = (qBo/2$(moc)2 R2 + ,2/R2.                                            (9.56)

For given values of the emittance and the focusing field magnitude, Eq. (9.56) gives a value for
the generalized perveance. Knowing K, we can find the matched beam current I. 
   We can write Eq. (9.56) in an alternative form by introducing the focusing system acceptance,
". Following Section 3.7, the acceptance equals the allowed beam emittance for a maximum
envelope radius when there are no beam-generated forces. Setting K = 0 and , = " in Eq. (9.56)
gives

                                                              "2 = (qBo/2$(moc)2 R4.                                             (9.57)

Substituting Eq. (9.57) in Eq. (9.56) and expanding the expression for the generalized perveance
gives an equation for the matched beam current:

The last term in on the right-hand-side of Eq. (9.58) must be less than or equal to unity. If , = ",
beam defocusing arises from emittance only. In this case the current must equal zero if the beam
is in equilibrium. If there is no emittance, the beam-generated forces exactly balance the
focusing force of the axial magnetic field. Here, particle flow is laminar and the allowed current
has a maximum value.
   Equation (9.58) shows why solenoidal focusing is ineffective for ions. Ions have much higher
mass than electrons and the $ factor is smaller for equal kinetic energies. In practical units, Eq.
(9.58) gives the following current limit for electrons:

                                              I # (7.33 x 108) ($() (BoR)2 [1-(,2/"2)].                                    (9.59)

The quantities in Eq. (9.59) have the units: I (amperes), Bo (tesla), R (meters). The limit on
power (in watts) for a beam in a solenoidal field is:

                                        P # (3.75 x 1014) [$(((-1)] (BoR)2 [1-(,2/"2)].                               (9.60)

The allowed beam power rises rapidly with increasing (. As an example, suppose we inject a 2.5 
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Figure 9.5. Array of solenoidal lenses with alternating field polarity.

MeV electron beam into an induction accelerator with solenoidal focusing. We want to find the
minimum magnetic field to contain a 10 kA beam with radius R = 0.02 m. For a laminar beam,
Eq. (9.59) implies that Bo = 7.6 x 10-2 tesla. The field must be higher if the beam has significant
emittance. It is important to note that when the focusing force is continuous, transverse
equilibrium sets no limit on the beam current. Technology determines the maximum value of Bo
rather than beam physics. In contrast, periodic systems have definite limits set by the properties
of particle orbits.
   To initiate the study of periodic focusing systems, we shall consider an array of solenoidal
lenses (Fig. 9.5). The field direction reverses in alternate lenses. If the length of the coils is
comparable to their radius, the on-axis magnetic field has variation:

                                                            Bz(0,z) – Bo sin(Bz/l).                                                 (9.61)

The quantity Bo is the peak axial field magnitude and l is the length of a single coil. The variation
of Eq. (9.61) also represents the fields of periodic-permanent-magnet arrays (Section 10.9). Even
though the field polarity reverses, we identify a focusing cell as a single magnetic lens. This is
because the focusing force of a solenoidal lens is independent of the field direction – the radial
forces of all lenses are identical.
   To estimate the limiting current for the solenoid lens array, we insert Eq. (9.61) into the
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paraxial ray equation and take an axial average of the focusing force. The averaging process is
valid when envelope oscillations are small – in this case we can replace the periodic focusing
force with an equivalent continuous force. The result gives a good approximation if the beam
envelope oscillations are much smaller than R. The limiting current is:

                             I # (7.33 x 108) ($() (BoR)2 <sin2(Bz/l)> [1-(,2/"2)]

                                      =  (3.67 x 108) ($() (BoR)2 [1-(,2/"2)].                                            (9.62)

Eq. (9.62) is a necessary condition for successful beam transport, but it is not sufficient. In the
periodic system, we must be certain that the parameters in the equation do not correspond to
unstable particle orbits – the vacuum phase advance must be in the range :o # B. Comparison to
Eq. (9.38) shows that the vacuum phase advance in a solenoidal lens array is given by:

                                                        (:o/l)2 R – (qBo/2$(moc)2 R,                                           (9.63)

or

                                                          :o – eBol/2$(moc # B.                                                  (9.64)

Depending on the system parameters, either Eq. (9.62) or (9.64) may provide the most stringent
limit. For example, if the field magnitude is the main limiting factor and the phase advance is
always small, Eq. (9.62) implies that electron beam current scales as:

                                                          I ~ ($()(BoR)2.                                                             (9.65)

On the other hand, if phase advance is the main limiting factor, then Eq. (9.64) implies that the
current scales as:

                                                           I ~ ($()2 R2.                                                                 (9.66)

The lesson is that we can find widely different scaling laws for the same process, depending on
which factors we hold constant.
   As an example of current limits in a PPM array, suppose we have a low-emittance, 20 keV
electron beam (( = 1.04, $ = 0.272). The characteristics of the permanent magnets limit the
properties of the focal system. We take Bo = 0.05 tesla, R = 0.005 m and l = 0.02 m. Eq. (9.62)
predicts a maximum current of I # 26 A for a laminar beam; Eq. 9.64 predicts an acceptable
value of vacuum phase advance, :o – 1.04 (59°). 
   We can derive an alternative form of Eq. (9.62) for periodic systems – the modified equation
shows the dependence on the vacuum phase advance explicitly. The expression involves the net
particle orbit phase advance, :. Let Ff be the applied focusing force at the beam envelope
averaged over a cell. The quantity Fd is the defocusing force from beam-generated electric and
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(9.69)

magnetic fields. According to Eq. 9.38, the vacuum phase advance for a single particle orbit is
related to the magnitude of the applied focusing force by: 

                                                                  :o
2 ~ Ff.                                                                (9.67)

Similarly, the single-particle phase advance in the presence of beam-generated forces is
proportional to the total focusing force: 

                                                             :2 ~ (Ff - Fd).                                                             (9.68)

Taking the ratio of Eqs. (9.67) and (9.68) gives

Equation (9.69) shows that if the beam-generated force equals the focusing force, Fd = Ff, then :
= 0. In this case particles follow laminar orbits. When : = 0, the beam must have zero emittance
for radial force balance on the envelope. Conversely, emittance dominates the equilibrium when
the beam-generated forces are zero, or : = :o. 
   The condition for radial force balance on the beam envelope is:

                                                            Ff - Fd - ,2/R3 = 0.                                                      (9.70)

From the discussion at the beginning of this section, the acceptance equals the allowed emittance
when there are no beam-generated forces. The acceptance satisfies the equation:

                                                                Ff - "2/R3 = 0.                                                         (9.71)

Combining Eqs. (9.70) and (9.71) and comparing the result to Eq. (9.69), we find that:

                                                                (:/:o) = (,/").                                                        (9.72)

We apply Eq. (9.72) to write a general expression for radial force balance in a periodic focusing
system:

                                                          K # (R/L)2 (:o
2 - :2).                                                     (9.73)

The quantity L is the length of a focusing cell and R is the maximum allowed envelope radius.
Note that Eq. (9.37) holds when the focusing force acts almost continuously (:o < 1).
   We can derive a similar equation for current limits in a quadrupole array. We can simplify the
KV equations [Eqs. (9.51) and (9.52)] for a matched beam with the following assumptions: 
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(9.75)

(9.76)

(9.78)

     1. Envelope oscillations are small compared with the beam radius. 

     2. The quadrupole lenses have equal focusing properties in the x and y-directions, 6 = 6x = 6y,
gx(z) = -gy(z).

     3. The beam emittances are equal in the x and y directions, , = ,x = ,y.

Taking X – Y, the condition for transverse force balance on the envelope is

                                                   - X(:o/L)2 + K/X + ,2/X3 = 0.                                               (9.74)

We can write Eq. (9.74) in the form: 

   The vacuum phase advance in a quadrupole lens array depends on the geometry of the lenses
and the applied field strength. Usually, the lens length is much larger than the bore width. Then,
we can neglect fringing fields and take gx(z) as a step function. To begin, we shall concentrate on
an FD focusing cell consisting of two identical lenses with an angular offset of 90°. We can
calculate the vacuum phase advance using transfer matrix theory [CPA, Chap. 8]. The result for
the x direction is:

where 6 is the quadrupole strength parameter of Eq. (9.49) or (9.50). The quantity l is the length
of a single lens. For the FD geometry, the lens length equals half the focusing cell length, l = L/2.
When :o < 1 and 61/2 l < 1, we can expand the trigonometric and hyperbolic functions of Eq.
(9.76) in a power series to give:

                          1 - :o
2/2 + ... –  [1 - 6l2 + 62l4/24 - ...][1 + 6l2 + 62l4/24 + ... ].                    (9.77)

Solving Eq. (9.77), we find the vacuum phase advance:

Combining Eqs. (9.75) and (9.78) leads to the following expression for the limiting current for
ions in a quadrupole transport channel with magnetic lenses:
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(9.79)

Figure 9.6. Correction factor for limiting current in quadrupole lens arrays, FODO versus FD
configurations. g(D/l) = IFODO/IFD, lens length is l, drift distance between lenses is D. (Adapted from M.
Reiser, Part. Accel 8, (1978), 167.)

The first term on the right-hand side of Eq. (9.79) equals 1.33 × 105. In the second term, Z is the
ionization state of the ions, A is the ratio of the ion mass to that of the proton, l is lens length, and
Bo is the pole tip magnetic field.
   As an application of Eq. (9.79), consider a beam in a high-current ion induction linac. A 5
MeV C+ beam (Z = 1, A = 12, ( – 1, $ = 0.03) fills half the available bore (X/a = 0.5) of an array
of magnetic quadrupole lenses. The cell length is L = 0.3 m and the magnetic field is Bo = 1 tesla.
Inserting parameters into Eq. (9.79) gives a beam current of 5.6 A and power of 2.8 × 106 W. For
conservative transport, we take :o # 1. Equation (9.78)  implies that 61/2 l# 1.3. Substitution in
Eq. (9.49) shows that the quadrupole bore radius should be in the range a $ 0.02 cm. 
   The limiting current expression for a FODO channel is similar to Eq. (9.79). Suppose that the
channel consists of identical F and D lenses of length l separated by a drift distance D. We can
write the current limit as the product of the FD channel expression and a geometric correction
factor:

                                                                  IFODO = IFD g(D/l).                                                 (9.80)
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(9.81)

(9.82)

For small phase advance, the correction factor is [M. Reiser, Particle Accelerators 8, 167
(1978)].

Figure 9.6 shows a plot of g(D/l).
   To estimate current limits in quadrupole channels, we must have criteria to choose :o and : in
Eq. (9.79). The vacuum phase advance cannot exceed 180°. If we increase the lens strength so
that :o > B, a beam with strong space-charge fields is subject to a destructive envelope instability
(Section 13.1). For paraxial beams with low emittance, beam simulations and experiments have
shown that periodic focusing forces can excite coherent oscillations in the beam when :o $ 90°.
[I. Hoffman, L.J. Laslett, L. Smith and I. Haber, Particle Accelerators 13, 145 (1983), M.G.
Tiefenback, Space Charge Limits on the Transport of Ion Beams in a Long Alternating Gradient
System (Lawrence Berkeley Laboratory, LBL-22465, 1986).] These oscillations result in the
growth of transverse emittance. Most studies show that beams are stable when :o < 90°. When
the vacuum phase advance is low, experiments show that uniform density beams propagate with
no emittance growth, even when the net phase advance approaches zero, : 6 0.
   Space-charge-dominated beams with nonuniform density suffer emittance growth in a linear
focusing system. To see the origin of this effect, imagine that we inject a beam with a
nonuniform density into a focusing channel with linear applied forces. A laminar beam cannot
achieve radial force balance over the entire cross section. For the conditions given, the emittance
force is zero, the focusing force is linear, but the beam-generated force is non-linear. Because of
local force imbalance, parts of the beam accelerate in the transverse direction. The transverse
velocity components of particles mix after several betatron oscillations. The additional transverse
pressure force gives detailed force balance over the beam width at the expense of increased
emittance. Therefore, we expect that a laminar equilibrium is impossible for a nonuniform beam.
   Computer simulations and analytic theory lead to an equation for emittance growth in a
nonuniform, space-charge-dominated beam [T.P. Wangler, K.R. Crandall, R.S. Mills, and M.
Reiser, IEEE Trans. Nucl. Sci. NS-32, 2196 (1985).]. The following form holds for non-
relativistic ion beams: 

In Eq. (9.82), ,i is the RMS emittance at injection, :o is the single particle vacuum phase
advance, : is the approximate phase advance with space-charge effects, and ,f is final emittance.
Two new quantities appear in Eq. (9.82), Uo and U. The quantity U is the electrostatic energy per



Paraxial beam transport with space charge Charged Particle Beams

419

unit length of beam-generated electric fields. The field energy equals the integral of ,oE2/2 over
the beam cross-section. The quantity Uo is the electrostatic field energy of a uniform-density
beam with the same current and envelope radius. We see in Eq. (9.82) that there is no emittance
growth if the injected beam has uniform density because U = Uo. Usually, the beams emerging
from injectors and pre-accelerators are non-uniform. As an example, the field energy factor for a
Gaussian beam is (U - Uo)/Uo = 0.31.

9.5. Multiple-beam ion transport

   One strategy to increase the limiting current in a high-flux ion accelerator is to divide a beam
into many segments, each with its own focusing system. If the segments are isolated from one
another, both the longitudinal and transverse electric fields are smaller. In this case the
accelerator can contain higher net current at the expense of more complex transport hardware. In
the early stages of an ion accelerator where longitudinal limits (Section 5.3) are important,
multiple beam systems have a clear advantage. Equation (5.68) shows that the longitudinal
current limit at a given energy depends on the beam current and the ratio of wall to beam radius.
If the space-charge potential is the main problem, then a system that divides a beam in N smaller
beams can transport N times higher current. 
   Multiple-beam systems are important for neutral particle injectors for magnetic fusion and
electrostatic ion propulsion devices. Figure 9.7 shows a common geometry – ions are extracted
from multiple slots and accelerate through one or more gaps. If individual sheet beams are
spaced far enough apart, image charges in the electrodes prevent the electric field of one beam
from interfering with another. The individual beams have low perveance, allowing the
application of conventional ion extraction techniques. Multiple beam transport is not very useful
for relativistic electrons. Although the geometry reduces the electric fields of such beams, the
magnetic field in acceleration gaps is usually unaffected. Therefore, the net current of multiple
electron beams must be less than the Alfven limie (Section 12.7). 
   Recently, there has been considerable interest in multiple beam transport of high-energy ions
for application to ion implantation and inertial fusion, The idea is to use parallel channels of
electrostatic quadrupole lenses. In comparison with magnetic lenses, electrostatic quadrupole
focusing has two advantages for high-current ion beam transport: 

     1. Electric fields deflect non-relativistic ions more effectively than magnetic fields.

     2. Miniature magnetic quadrupole lenses are difficult to fabricate and to operate because of
cooling problems.

We shall use material from several previous sections to quantify the advantages of multiple ion
beam transport. The derivations also illustrate some techniques and precautions for scaling
studies. 
   We shall calculate the current limited by transverse force balance in both single beam and



Paraxial beam transport with space charge Charged Particle Beams

420

(9.86)

multiple beam electrostatic quadrupole arrays. The single beam carries current I – the multiple
beam system has N channels, each with current i. We want to find the relationship between Ni
and I. We are interested only in transverse beam confinement, so we assume that the kinetic
energy of ions is always well above the electrostatic potential energy. To make a fair
comparison, we must define common properties of the systems:

      1. The beams consist of ions with identical rest mass mi and kinetic energy.

     2. The electrostatic quadrupoles have the same value of pole tip electric field Eo.

     3. Space charge fields are more important than emittance in the transverse force balance – we
shall take : – 0 for the single and multiple beams.

     4. The multiple beams and the focusing electrodes occupy the same transverse area as the
single beam transport system.

   We shall start with the properties of the single beam. The available bore has radius RB and R is
the radius of the single beam. The fill factor, F, is the fraction of the total cross section available
for beam transport. Quadrupole electrodes, insulators and voltage leads occupy the rest of the
area. The radius of the available transport region equals A, the distance from the axis to the tip of
a quadrupole electrode. By the definition of the fill fraction,

                                                               A = RB/F1/2.                                                             (9.83)

We must include a safety factor so that peripheral ions in the beam do not strike the electrodes.
We define another quantity, ., as the ratio of the beam radius to the radius of the available
transport area, 

                                                                  R = .A.                                                                (9.84)

  We assume that F and . are the same for both the large and small beams. Because both systems
have the same cross-section area, the radius of one of the multiple beams r is:

                                                                  r = R/N1/2.                                                             (9.85)

The quantity L is the length of a quadrupole focusing cell for the single beam system, while l is
the cell length for multiple beams. From Section 9.4, we know that the generalized perveance of
the laminar single beam is related to the focusing cell length by:
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Figure 9.7. High current transport of multiple ion beams. a) Side-view of a multi-aperture electrostatic
extractor. The electrode openings have cylindrical symmetry about each small beam. b) End-view of a
transverse array of multiple electrostatic quadrupole lenses. The figure shows electrode polarities and
beam shapes at the center of a lens set.
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(9.87)

(9.90)

(9.91)

The quantity :o is the vacuum phase advance per focusing cell. The generalized perveance for
one of the multiple beams k satisfies the equation

We assume that both focusing systems have the same value of :o.
   From the discussion of Section 9.4, we can write the vacuum phase advance for the single
beam in terms of the properties of the electrostatic quadrupole lens by

                                                           :o = 6eL2/4(3)1/2.                                                          (9.88)

The quantity 6e is the electrostatic lens strength constant (Eq. 9.50): 

                                                   6e = [eEo/(mo($c)2(R/.)].                                                    (9.89) 

Combining Eqs. (9.86), (9.88) and (9.89) gives the following scaling expression for the
generalized perveance: 

Following the same reasoning, we find the generalized perveance for one of the multiple beams:

   Equations (9.90) and (9.91) are relationships between generalized perveance and the lengths of
the focusing cells. The cell lengths are not independent of other beam properties – they must be
short enough so that envelope oscillations are small. To find constraints on L and l, we assume
that the fraction change in the envelope width is the same for both the single beam and the
multiple beams. For a rough estimate of the fractional envelope variation, we represent the
beams as cylinders of radius R and r that expand in free space over lengths L/2 and l/2. In the
expansions, we require that 

                                                      (R+)R)/R = (r+)r)/r.                                                      (9.92)

   Section 5.4 gives the distance for expansion of a cylindrical beam with generalized perveance
K from a radius of R to R+)R:
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                                                      L = RF[(R+)R)/R]/(2K)1/2.                                               (9.93)

Table 5.1 lists the function F[(R+)R)/R]. For one of the multiple beams, the expansion distance
is 

                                                         l = rF[(r+)r)/r]/(2k)1/2.                                                 (9.94)

The function F has the same value in Eqs. (9.93) and (9.94). Combining Eqs. (9.90), (9.91),
(9.93) and (9.94), we find the following relationship for beams in the two focusing systems:

                                                                K/k = I/i = R/r.                                                       (9.95)

Substitution from Eq. (9.85) gives the desired scaling relationship:

                                                                   i = I/(N)1/2.                                                          (9.96)

   The total current in the multiple beam system equals

                                                                  Ni = I(N)1/2                          .                                         (9.97)

Equation (9.87) implies that, in principle, a system of parallel electrostatic quadrupole channels
can carry higher current than a single channel. The total current scales as the square root of N – a
sixteen beam system can carry four times as much current as a single beam. The inherent
assumptions in the derivation are that the beams are laminar and that the quadrupole lenses have
equal electric fields. Also, we should note that Eq. (9.87) depends on the condition that the
electrodes of the multiple quadrupole array occupy the same fraction of the cross-section as
those in the the single quadrupole channel. The advantage of multiple beam transport is reduced
if extra voltage leads and supports consume space.

9.6. Longitudinal space-charge limits in RF accelerators and induction linacs

   Beam-generated axial electric fields can limit the beam current in RF accelerators and
induction linacs. In these devices, the beam must be confined in the longitudinal direction.
Beam-generated axial forces can be important, even if the electrostatic potential energy of a
beam is much smaller than the kinetic energy. We shall focus our attention on non-relativistic
ion beams – the effects of axial fields are small for relativistic particles.
   Ions in RF accelerators must remain in specific phase regions of the accelerating wave [CPA,
Chapter 13]. The electric field of a traveling wave can provide stable axial confinement for ions
that are localized along z and have a small spread in kinetic energy. The wave creates a potential
well for ion confinement called an RF bucket. Ions that escape from the bucket quickly loose 
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Figure 9.8. Longitudinal confinement of ions in an RF linac. Synchronous particle phase Ns =
60°. a) Spatial variation of the electrostatic potential energy of ions viewed in the rest frame of a
traveling wave. b) Spatial variation of the the axial force on an ion, viewed in the rest frame of
an accelerating traveling wave.  c) Spatial variation of the total potential energy of ions viewed
in the rest frame of an accelerating traveling wave.

their synchronization with the wave and are no longer accelerated. Space-charge electric fields
can drive ions out of an RF bucket. This process set limits on the current in the accelerator.
   We can represent the accelerating electric field in any RF accelerator as a traveling wave with
the form:

                                                 Ezw(z,t) = Eo(z) sinT[t - Idz/vs(z)].                                        (9.98)

For simplicity, we will take Eo as constant in the z direction. The quantity T equals 2Bf, where f
is the RF frequency. The frequency is constant over the length of the accelerator. The quantity vs
is the synchronous velocity, the velocity of an ideal particle at the center of a bunch. The
synchronous particle remains at a position of constant phase in the wave. The quantity Ns is the
synchronous phase. The design of the accelerator ensures that the wave phase velocity increases
with distance to match the growing velocity of the synchronous particle. 
   We can easily describe ion motion in a frame of reference that moves at velocity vs(z). In this
frame, the accelerating wave appears to be at rest. We let z' represent distance measured from the
zero crossing (positive to negative) of the electric field in the wave rest frame. In terms of z', the
force exerted on ions by the traveling wave is



Paraxial beam transport with space charge Charged Particle Beams

425

Figure 9.8. (Continued).

                                               Fw(z') = eEzw(z') = - eEo sin(2Bz'/8).                                       (9.99)

The quantity 8 in Eq. (9.99) is wavelength of the traveling wave at position z:

                                                                   8 = 2Bvs/T.                                                       (9.100)
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(9.101)

(9.106)

We shall neglect changes in 8 that occur as the wave accelerates. Integration of Eq. (9.99) gives
the rest frame electrostatic potential energy associated with the wave field:

Figure 9.8a shows the variation of potential .
   To calculate axial force balance for trapped ions, we must remember that the wave rest frame
is not inertial. We can represent wave acceleration by introducing a fictitious retarding force in
the rest frame:

                                                          Fi(z') = -d(mivs)/dt.                                                      (9.102)

To simplify the model, we assume that the wave acceleration is uniform throughout the
accelerator. For the synchronous particle, the retarding force exactly balances acceleration by the
electric field – the particle remains at a constant value of z'. The wave force on the synchronous
particle is

                                                              Fws = eEo sinNs = -Fi.                                              (9.103)

   Combining Eqs. (9.99) and (9.103), the total applied force in the beam rest frame is

                                         F(z') = Fw(z) + Fi = -eEo[sin(2Bz'/8) - sin(Ns)].                           (9.104)

Figure 9.8b shows the variation of total force with z' for Ns = 60°. Integration of Eq. (9.104)
gives an expression for Uc, the potential energy of ions in the applied forces (Figure 9.8c). The
potential defines a well in the region around the synchronous particle. In this region, the applied
forces can counteract the effects of longitudinal velocity spread and space-charge to trap a group
of ions. The trapped ions constitute a microbunch – they remain synchronized to the wave during
acceleration. The output of an RF linac consists of a train of microbunches separated in time by
an interval 2B/T. 
   The depth of the confining potential well, )Uc, is important to estimate space-charge limits.
The depth equals the spatial integral of the force from the synchronous particle position to top of
well. The range of integration is

                                                     8Ns/2B # z' # 8(B-Ns)/2B.                                               (9.105)

The resulting well depth is,
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Figure 9.9. RF bucket depth function, Q(Ns), as a function of the synchronous phase, Ns.

where,

                              Q(Ns) = [cos(Ns) - cos(B-Ns) - sin(Ns)(B/2-Ns)]/2.                                 (9.107)

Figure 9.9 shows the function Q(Ns). It drops rapidly as Ns varies from 0 to B/2. Although a
choice of Ns = 0 gives good particle confinement, there is no average acceleration of the
microbunch [Eq. (9.103)]. Acceleration is strongest at Ns = 90°, but there is no containment – the
number of confined particles in a microbunch approaches zero. 
   Given a value for )Uc, we can estimate the properties of ions in a microbunch. For example,
the spread in rest frame kinetic energy at the synchronous particle position must be less than
)Uc. We can transform the kinetic energy spread to the accelerator frame – the result is the
familiar longitudinal acceptance diagram [CPA, Chap. 13]. In this section, we will concentrate
on space-charge limits, assuming that the beam has small axial emittance. The beam-generated
electric force pushes particles out of the bucket if the peak space-charge electrostatic potential
energy, )Ue, exceeds the well depth. The condition,

                                                                     )Ue = )Uc.                                                     (9.108)
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(9.111)

defines the space-charge limit for ion transport.
   We can apply the discussion of Sect. 6.7 to calculate )Ue for an ellipsoidal microbunch in free
space. The calculation for arbitrary bunch shapes in the presence of surrounding structures can
be complex. We limit limit consideration to a cylindrical microbunch of ions with radius ro and
length l in a conducting pipe of radius rw. The beam density drops to zero at the ends – the bunch
length is much longer than rw. The density of the non-relativistic beam is about the same when
observed in the rest and accelerator frames. 
   To find the difference in electrostatic potential energy over the beam length, we calculate the
rest frame electrostatic potential N at the center and end of the microbunch:

                                                            )Ue = e[N(0)-N(l/2)].                                               (9.109)

In Section 5.3, we found that the electrostatic potential of a long charge cylinder is

                                                 eN(0) = [eIo/4,o$c] [1 + 2ln(rw/rb)].                                    (9.110)

The quantity Io is peak current of the microbunch in the accelerator frame. For an ellipsoidal
beam, the electrostatic potential approaches zero at the ends, N(l/2) - 0. The combination of Eqs.
(9.106), (9.109) and (9.110) gives a limit for the peak current:

Eq. (9.111) applies to a beam with no longitudinal energy spread. The allowed current is lower
for beams with non-zero axial emittance.
   As an example, suppose we have a proton beam near the entrance of a 200 MHz RF linac. We
take the following characteristic parameters: Eo = 2.5 MV/m, rw/rb = 4, Ti = 2 MeV, Ns = 70°, and
$ = 6.5 x 10-2. For synchronous acceleration, the RF cavities create a traveling wave with phase
velocity $c and wavelength 8 = $c/(2 x 108) = 0.0972 m. Figure 9.9 shows that the bucket depth
function is F(70°) = 1.5 x 10-2. Substitution in Eq. (9.111) gives a peak microbunch current of Io
= 0.21 A. High power proton linacs often require larger values of Io. One strategy to raise the
trapped charge is to run the initial stages of the accelerator at reduced Ns, increasing the depth of
the bucket. The relative importance of space-charge forces decreases as the ion accelerate.
Therefore, the synchronous phase can be raised in downstream cavities to raise the average
accelerator gradient.
   The effects of beam-generated axial fields decrease with acceleration because the axial length
of the bucket grows. At constant RF frequency, the wavelength of the traveling wave is
proportional to $c, the beam velocity. If the accelerating gradient Eo remains constant, Eq.
(9.106) shows that the bucket depth grows with $. Relativistic effects also help axial
confinement. To carry out a relativistically correct calculation, we must be careful when
comparing quantities in the accelerator and wave rest frame. For example, the space-charge
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density observed in the rest frame is a factor of ( lower than the density in the accelerator frame
because of Lorentz contraction. Also, the length of the bucket is a factor of ( higher in the rest
frame. The amplitude of the accelerating field Eo is the same in both frames. The result is that the
peak microbunch current Io is higher by a factor of (2 for relativistic beams. Longitudinal space-
charge effects are negligible in RF linacs for electrons.
   We can apply a similar approach to the longitudinal confinement of non-relativistic ions in
induction linacs. In this type of accelerator, a beam passes through a set of acceleration gaps with
pulsed voltage. The pulselength may range from 0.05 to 5 :s. The synchronization condition is
simple – the beam must cross each gap during the applied voltage pulse and the beam
pulselength must be less than or equal to the voltage pulselength. 
   If the voltage waveforms in the acceleration gaps are square pulses, the gaps provide no
longitudinal confinement for ions. The time for a beam to pass through a gap increases because
of the effects of longitudinal velocity spread and space-charge forces. We can contain a beam
bunch with shaped voltage pulses, such as the ramp waveform of Fig. 9.10a. An ion that crosses
the gap late in the pulse experiences an increased accelerating voltage. The ion emerges with
enhanced velocity and overtakes the other ions in the bunch. Conversely, ions that arrive early
are slowed.
   We can describe confinement a non-relativistic beam by shaped voltage pulses if we adopt
some simplifying assumptions. The voltage waveforms in all gaps follow the linear ramp of Fig.
9.10a. We take the gap voltage as a given function of time, neglecting loading of the waveform
by the beam current. Because we are concerned mainly with longitudinal confinement, we shall
neglect average acceleration of the ion bunch. We remove the constant part of the gap voltage,
giving a voltage waveform:

                                                             )V(t) = )V (t/)tp),                                                  (9.112)

for -)tp/2 # t # )tp/2. The length of the beam bunch is 

                                                                   Lb = $c)tp.                                                        (9.113)

The quantity Lg is the distance between acceleration gaps while d is the width of the gaps.
Finally, we define . as the position of a particle in the bunch with reference to the synchronous
particle. Figure 9.10b shows the confining component of the accelerating voltage as a function of
..
   Ions oscillate in . as the beam propagates. Assume that the beam passes through many gaps in
the period of a longitudinal oscillation. With this condition, we can represent the gap time-
averaged axial electric force as

                                                    eEz(.) = (e )V/d)(d/Lg)(./Lb),                                          (9.114)

in the region -Lb/2 # . # Lb/2. Integrating Eq. (9.114) gives the confining potential
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Figure 9.10. Voltage waveforms in induction linear accelerators for ions. a) Definition of parameters of a
ramped accelerating voltage waveform. The dashed line shows the time-varying part used for the drifting
beam analysis. b) Possible waveform to confine ion beams with a non-linear distribution of axial space
charge force

                                                       Uc(.) = (e )V) [.2/(2LbLg)].                                          (9.115)

The depth of the confining potential well is

                                                            )Uc = e )V (Lb/8Lg).                                               (9.116)
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(9.117)

For a beam with no longitudinal velocity spread, we derive the space-charge limit by setting the
energy associated with the space-charge electrostatic potential equal to the depth of the confining
potential. We shall neglect acceleration of the beam.  If we again take a long ellipsoid of charge
in a conducting pipe, Eq. (9.110) gives an estimate for )Ue in terms of the peak current in beam
bunch Io. The current limit for longitudinal space-charge effects is: 

   As application example, consider the following parameters for the high-energy portion of an
inertial fusion induction accelerator. The beam consists of a 100 ns pulse of Xe131 ions with a
kinetic energy of 5 GeV and peak current Io = 1 kA. The distance between acceleration gaps is Lg
= 0.7 m and rw/rb = 4. Lb = 8.3 m. The ion bunch extends over many acceleration gaps. Inserting
quantities in Eq. (9.117) shows that we must superimpose a large voltage ramp with )V = 0.88
MV on the accelerating voltage in each gap to maintain a constant beam length. The voltage
waveform in an actual machine may differ considerably from the simple ramp of Fig. 9.10a. The
axial space-charge forces of a long beam bunch in a conducting pipe vary non-linearly with axial
position. The confining forces must be concentrated near the ends of the bunch for axial force
balance at all positions. Figure 9.10c illustrates a waveform to counteract non-linear space-
charge forces.
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10
High-current Electron-beam Transport in Vacuum
__________________________________________

   In this chapter, we shall study the vacuum transport of electron beams when the effects of
beam-generated fields are strong. Much of the original theory was developed for application to
microwave devices such as high-power traveling wave tubes. These tubes use low-energy, high-
perveance electron beams in the range 1 to 10 A. Recent applications include the transport of
relativistic beams in the range >1kA from pulsed electron diodes and linear induction
accelerators. 
   Focusing by solenoidal magnetic fields is the best method for high-current electron beams at
low-to-moderate energy. While the forces in quadrupole arrays are alternately outward and
inward, the forces from solenoid lenses continually focus a beam. Quadrupole lenses are not
useful at low energy because high-perveance beams expand too much in the defocusing lenses.
   Four sections of this chapter review background material that is useful for a wide range of
electron beam applications. Section 10.1 describes the motion of single electrons entering and
exiting a solenoidal magnetic field. Section 10.7 discusses the transverse drift motion of single
particles and beams in solenoidal fields. In a magnetic field, we shall find that transverse
perturbation forces do not cause an acceleration in direction of the force. Instead, the beam
follows a constant-velocity drift orbit perpendicular to the force. Drift motions electrons with
solid matter. Electrons lose kinetic energy from collisions with atomic electrons. They also
suffer angular deflections by collisions with electrons and nuclei in the medium. We shall review
equations for energy loss and scattering that have several applications in accelerator technology.
We shall apply the results to study the feasibility of electron beam guiding by material
structures. Section 10.6 derives equations for the induced charge and return-current in metal
vacuum-chamber walls surrounding a pulsed beam. Although the wall forces can help to steer a
beam, they can also drive instabilities. We shall study resistive wall instabilities in Sections 13.6
and 14.4. 

   Sectsions 10.2, 10.3 and 10.5 concentrate on methods to focus high-current beams. Section
10.2 covers focusing by a uniform solenoid field when the electron source is located inside the
field region. Section 10.3 describes solenoid focusing with an external cathode. The electrons
enter the field through a transition region. For this type of injection, we can achieve a matched
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laminar beam equilibrium with no envelope oscillations. Section 10.5 reviews the use of metal
foils or meshes to focus high current electron beams. The induced charge on the meshes partially
cancels the beam-generated electric field. As a result, relativistic beams can propagate in a self-
pinched equilibrium. The method is feasible because of the low stopping power of electrons in
matter. A mesh focusing transport system can contain very intense electron beams with current
approaching 1 MA. Sections 10.8 and 10.9 discuss methods to steer electron beams. This topic is
important for high-power circular accelerators such as recirculating induction accelerators and
high-current betatrons. Section 10.8 describes the transverse motion of beams in a toroidal
magnetic field in response to centrifugal force. We shall see that a uniform axial field provides
no centering force for the beam – small transverse force errors result in a drift to the walls.
Section 10.9 reviews focusing and steering of intense electron beams by a periodic magnetic
cusp field. This field pattern results from arrays of permanent magnets or conventional solenoid
lenses with alternating polarity. The field geometry provides a centering force that maintains a
beam on the system axis.

10.1. Motion of electrons through a magnetic cusp

   Solenoid magnets are often applied to high-current electron beam transport. Sometimes, the
beam remains within the magnetic field throughout the acceleration and transport processes.
More commonly, the electron source is outside the magnet. The beam enters the solenoidal field
for transport in the accelerator and leaves the field before traveling to its final destination. For
this arrangement, it is essential to understand the motion of electrons in the transition region
between a solenoidal field and free space. This section summarizes the motion of single
electrons at a field boundary without beam-generated forces. We shall include the effects of
beam fields in Sections 10.2 and 10.3. 
   Figure 10.1a shows an infinite-length solenoid. An azimuthal current sheet creates an axial
magnetic field. The current sheet usually consists of a helical winding of wire with many turns.
The magnetic field inside the winding is uniform in space, Bz(r,z) = Boz. If the coil has N turns
per meter and carries current I, then the field magnitude is: 

                                                               Bo = :oNI.                                                                (10.1)

We shall investigate electron motion at the end of a finite length solenoid. Figure 10.1b shows
numerically-calculated field lines. The lines emerge from the coil and spread radially. The axial
field magnitude drops over a distance comparable to the coil radius. To reduce the width of the
transition region, we can add an iron pole at the end of the coil (Figure 10.1c). Finally, solenoids
with opposite field polarity. This geometry is a magnetic cusp. The opposing currents of the coils
create strong radial fields in a narrow intervening region.
   The radial magnetic field at the end of a solenoid deflects entering electrons in the azimuthal
direction. The deflection results from the vz × Br force. We can apply conservation principles to
find some properties of the electron orbits.  Because forces arise only from a static magnetic
field, the total energy of an electron is constant:
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Figure 10.1. Solenoidal magnetic fields. a) Geometry of an infinite-
length solenoid. b) Field lines at the end of a uniform solenoid winding
using the POISSON code. c) Field lines at the end of a solenoid with an
iron flux return structure. d) Field lines between two uniform solenoid
windings with opposite polarity - a symmetric magnetic cusp.
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Figure 10.1. (Continued)

                                                              ( = (o = constant.                                                     (10.2)

The magnetic force has azimuthal symmetry; therefore, the canonical angular momentum P2 is
constant:

                                                     P2 = (morv2 - erA2 = constant.                                          (10.3)

In Eq. (10.3), A2 is the azimuthal component of the vector potential, related to the axial
component of magnetic field by
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Figure 10.2. Axial injection of electrons near a symmetric magnetic cusp. Planes
marked A, B and C are possible locations for an electron gun.

(10.4)

The integral in Eq. (10.4) equals the axial magnetic flux included within a radius r divided by
2B.
   We shall consider motion of electrons into the magnetic field region z > 0 from one of the
planes marked A, B or C in Figure 10.2. The electrons enter with kinetic energy ((-1)moc2 and
initial velocity v = $cz. Analysis of the motion is simplified if we assume that the length of the
magnetic transition region, )z, is short. We adopt the condition that )z is much smaller than the
transit distance an electron travels during a gyration in the magnetic field:

                                                              )z n $c/Tg.                                                               (10.5)

The quantity Tg is the electron gyrofrequency, Tg = eBo/(mo. When the condition of Eq. (10.5)
holds, the change in the radial position of an electron moving through the transition is small. 
   The electron source at plane A is an immersed source that generates electrons within the
solenoidal field. There is no transverse force that acts on electrons that leave the source in the
axial direction; therefore, they follow straight line orbits. A plot of the projected electron orbit in
the r-2 plane is a single point (Figure 10.3).
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Figure 10.3. Orbit projections in the r-2 plane for electrons
injected near a symmetric magnetic cusp. The letters A, B and C
refer to the locations of injectors in Figure 10.2.

   The plane marked B is a symmetry axis between opposing solenoidal fields of equal
magnitude. The included axial flux equals zero at all radial positions in the plane, A2(r,0) = 0. An
electron source at plane b is a non-immersed injector. Electrons leaving the plane in the axial
direction have P2 = 0 because both v2 and A2 equal zero. Similar conditions apply at a source
located a long distance outside a single solenoid. After the electrons cross the transition region
into the solenoidal field, the vector potential at the injection radius is approximately A2 = -rBo/2.
Conservation of P2 implies that electrons have an azimuthal velocity

                                                             v2 = -erBo/2(mo,                                                        (10.6)

in the solenoid. Electron orbits projected in the r-2 plane are circles, with gyroradius:

                                                             rg = (mov2/eBo.                                                          (10.7)

Substitution of Eq. (10.6) into Eq. (10.7) shows that rg equals one half of the injection radius, r.
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Figure (10.3) shows the orbit projection in the r-2 plane – electrons pass through the axis. When
viewed in the r-z plane, an electron orbit crosses the axis periodically at points separated by
roughly the distance B$c/Tg.
   Electrons emerging from a source at plane C have non-zero canonical angular momentum. If
the field magnitude in the upstream solenoid is -"Bo, then 

                                                               P2 = "er2Bo/2.                                                         (10.8)

After crossing the cusp transition, the azimuthal velocity of electrons is:

                                                       v2 = (erBo/2(mo) (1 + ").                                                (10.9)

For the special case of a symmetric cusp (" = 1), the value of v2 is twice that of Eq. (10.6).
Equation (10.9) implies that the electron gyroradius in the downstream field equals the injection
radius, rg = r. The orbit projected in the r-2 plane is a circle centered on the axis (Figure 10.3).
Symmetric cusps are commonly used to generate rotating electron beams for experiments on
plasma generation.
   Electrons that pass through a magnetic transition gain azimuthal velocity at the expense of
axial velocity. This process sets limits on propagation. Electrons may be reflected at a cusp if
they enter a strong field at large radius. We can estimate conditions for electron reflection by
applying conservation of energy. We shall address the special cases of a half-cusp with non-
immersed injector (plane b) and a symmetric cusp (plane c with " = 1). The total velocity of
electrons is constant:

                                                         vz
2 = ($c)2 - v22 - vr

2.                                                    (10.10)

For the non-immersed injector, Eq. (10.6) shows that the axial velocity at the cusp exit is:

                                      vz
2  =  ($c)2 - r2 (eBo/2(mo)2  =  ($c)2 [1 - (r/2rg)2].                        (10.11)

An electron crosses the magnetic transition only if rg > r/2. As an example, suppose we want to
inject a 20 keV, 0.01 m diameter electron beam into a solenoid. If we set rg = 0.0025 m, Eq.
(10.11) implies that the field magnitude must be less than 2 tesla for beam transport. The
condition for transmission through a symmetric cusp is more stringent, rg > r. For the beam
parameters given, the condition means that Bo < 1 tesla.

10.2. Propagation of beams from an immersed cathode

   Cathodes immersed in an axial magnetic field are found in many devices that use high-current
electron beams. Usually the injector cathode, injector anode, beam transport section and target
are all located in a strong axial magnetic field, Boz. The field counteracts defocusing beam-
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Figure 10.4. Geometry of a cylindrical electron injector immersed in a magnetic field.

generated forces – electrons are tied to the field lines. In a strong solenoidal field transport of
electron beams is effective over a wide range of beam current. An immersed cathode is the only
practicable option for magnetic focusing of very high-current beams. It is difficult to design
injectors with a non-immersed cathode for current higher than 10 kA. 
   A complete derivation of a self-consistent equilibria for a relativistic electron beam in an
applied magnetic field is complex. Often, the results of such a model are strongly dependent on
assumptions about the beam distribution. In this section, we shall construct approximate models
that illustrate many of the physical principles of electron beam transport in an axial magnetic
field. In particular, we will concentrate on two special beam geometries:

     1) A paraxial, cylindrical beam in a region far from the injector.

     2) A large-area sheet beam in a plasma discharge. 

The first geometry is a good model for beams in many microwave devices. The second geometry
represents the control beam in a transverse discharge gas laser. 

   Figure 10.4 illustrates an injector for a circular beam. The device generates a uniform current
density of axially-directed electrons from the axis to a radius ro. The emerging beam has particle
density no. An electron beam leaving the injector does not have a balance of radial forces. When
the electrons have no azimuthal velocity v2 the axial magnetic field exerts no radial force on the
beam. The beam expands radially because of the unbalanced space-charge force. The axial
magnetic field converts the radial velocity of electrons to azimuthal velocity, resulting in a
focusing force. Ultimately the beam returns to its original radius, and expansion begins anew.
We can describe the envelope oscillations of a high-current electron beam in a magnetic field by
a simple model if we adopt the following assumptions:



High-current electron-beam transport in vacuum Charged Particle Beams

440

(10.13)

(10.15)

     1. The beam current is well below the longitudinal space-charge limit. All electrons have
about the same kinetic energy, ((-1)mec2. 

     2. Electron orbits beam are paraxial; therefore, all particles have about the same axial
velocity, $c.

     3. We ignore details of the beam equilibrium over the cross-section and consider only
electron trajectories on the beam envelope. We neglect contributions of beam emittance to the     
envelope oscillations.

     4. Because electric fields near the injector vary in two dimensions, we shall limit attention to
electron motion in a downstream region. In this case we can use electric field expressions for an
infinite-length beam. Neglecting processes near the injector is a good approximation if the     
wavelength for envelope oscillations is much longer than ro.

     5. The change of particle energy associated with envelope oscillations is much smaller than
moc2. As a result, we can use non-relativistic equations for transverse electron motion with an
adjusted mass, (mo.   
   Again the canonical angular momentum of electrons is constant in the cylindrical system. We
can express the conservation principle as: 

                                                (mor(z)v2 - er(z)2Bo/2 = -ero
2Bo/2.                                        (10.12)

The quantity ro is the envelope radius at the injection point, while r(z) is the trace of the
oscillating envelope radius. We can rewrite Eq. (10.12) as:

When the envelope oscillation wavelength is much larger than r, the combined radial electric and
magnetic forces of the beam equal:

                                                          Fr = e2noro
2/2,o(

2r.                                                     (10.14)

The time-dependent envelope motion follows the equation:

   We can convert Eq. (10.15) to a trace equation using the methods of Section 9.1. To make
comparisons to the Brillouin flow solutions of Section 10.3, we will write the trace equation in
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(10.20)

terms of characteristic frequencies instead of the generalized perveance. One fundamental
scaling parameter is the magnetic gyrofrequency of beam electrons:

                                                                 Tgb = eBo/(mo.                                                     (10.16)

We also use the beam plasma frequency:

                                                             Tpb = (e2no/(mo,o)1/2.                                               (10.17)

We shall see in Section 12.3 that Tpb is the characteristic space-charge oscillation frequency for
electrons. Because the current problem involves an interaction between magnetic and space-
charge forces, we expect that the solutions for envelope oscillations are governed by the ratio
Tpb/Tgb. 
   We define the dimensionless variables

                                                                        R = r/ro,                                                        (10.18)

and

                                                                  Z = z/($c/Tgb),                                                    (10.19)

Substituting Eqs. (10.16), (10.17), (10.18) and (10.19), Eq. (10.15) becomes:

It is easy to solve the non-linear equation by numerical methods. The starting conditions at Z = 0
are R(0) = 1 and dR(0)/dZ = 0. Figure 10.5 plots solutions for several values of (Tpb/(Tgb). The
amplitude of envelope oscillations grows if the beam density increases or if the magnetic field
magnitude drops.
   Figure 10.6 plots the amplitude of envelope oscillations as a function of (Tpb/(Tgb). As an
example, suppose that we want to transport a 50 keV, 50 A electron beam with radius 0.025 m.
Depending on the radius of the transport tube, the maximum beam-generated electrostatic
potential is only about 5 keV. The beam particle density is no = 1.3 × 1015 m-3 – the relativistic
plasma frequency is Tpb = 1.9 × 109 sec-1. For envelope oscillations less than 10 per cent of the
beam radius, we find from Figure 10.6 that (Tpb/(Tgb) # 0.3. The magnetic field should exceed
Bo = 0.36 tesla. 
   Next, we shall discuss a sheet beam gun to control a large-area gas laser discharge (Figure
10.7). We want to find the envelope trace for a beam traveling through the discharge plasma in
an axial magnetic field. In an electron-beam-controlled laser, the discharge is stable with current
density proportional to the beam current density – we denote the proportionality constant as M.
In a practical system M is much larger than unity. Again, we shall adopt some assumptions to 
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Figure 10.5. Numerical solutions of the
envelope equation for an electron beam from an
immersed injector in a uniform axial magnetic
field. Normalized radius, R = r/ro, as a function
of normalized axial position, Z = z/($c/Tgb). a)
Tpb/(Tb = 0.50. b) Tpb/(Tb = 0.75. a) Tpb/(Tb =
1.00.

construct a simple envelope equation:

     1. The discharge plasma neutralizes all electric fields.

     2. A space-charge-limited diode with voltage Vo and spacing d generates the electron beam.
The current density at injection is uniform over width ±xo and all electron orbits have zero
inclination angle, x' = 0.
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Figure 10.6. Amplitude of envelope oscillations for an electron
beam from an immersed injector as a function of Tpb/(Tgb.

(10.21)

(10.22)

     3. We neglect electron energy loss to background gas or plasma.

     4. The transverse distribution of plasma current density is proportional to that of the beam.

The last assumption is questionable – plasma electrons are strongly tied to field lines. At best,
the model gives an estimate of the envelope shape for small changes in width.

   Again, we a non-relativistic transverse equation with an adjusted mass. We must modify the
sheet beam envelope equation [Eq. (9.17)] to include the non-zero canonical momentum Py of
electrons created in a magnetic field and current amplification in the discharge. The result is 

The forces acting on the beam arise from the amplified beam-generated magnetic field and the
applied axial magnetic field Bo. The term with the initial envelope width xo represents the effect
of nonzero Py. The axial magnetic field exerts a force only when the envelope width shifts from
xo. The quantity J is the current per meter of the sheet beam. In the nonrelativistic limit, the
linear current density is related to the gun voltage Vo and spacing d by:
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Figure 10.7. Schematic diagram of a sheet beam injector for an
electron-beam-controlled gas laser.

(10.25)

The relativistic velocity factor in Eq. (10.21) is 

                                                             $c – (2eVo/mo)1/2.                                                     (10.23)

   Substituting from Eqs. (10.22) and (10.23) and inserting the dimensionless variables X = x/d
and Z = z/d, we can write Eq. (10.21) in the form:

                                                    d2X/dZ2 = -A1 + A2 (Xo-X).                                                 (10.24)

The first term represents pinching in the combined magnetic field of the beam and discharge; the
dimensionless constant A1 is 

The second term represents the effect of the applied magnetic field when the envelope width
shifts from the injection value. The dimensionless constant A2 is:
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(10.26)

   The width of electron beams to control laser discharges should remain constant. We can use
Eq. (10.24) to find the required magnetic field magnitude in the discharge region. For example,
suppose we have a 100 keV electron beam emerging from a gun with gap width d = 0.05 m. We
take a beam half width of xo = 0.3 m and a discharge current amplification factor of M = 10. The
parameter A1 equals 5.22. We find that a value of A2 gives envelope oscillations that are 5% of
the original beam width. The corresponding applied field is Bo = 0.095 tesla.

10.3. Brillouin equilibrium of a cylindrical electron beam

   In Section 10.2 we found that a cylindrical electron beam generated within a solenoidal field
cannot propagate in a matched equilibrium. Here the term matched means that there are no
oscillations of the envelope radius. The matched condition is desirable when a beam must
propagate through a narrow bore, as in a traveling wave tube. A matched beam can be confined
within a given radius by a minimum value of applied magnetic field.
   We will show in this section that an ideal matched equilibrium is possible for a laminar beam
created outside the magnetic field volume. The solution, valid for non-relativistic electrons, is
called the Brillouin equilibrium [L. Brillouin, Phys. Rev. 67, 260 (1945)]. Figure 10.8 illustrates
the geometry of the calculation. The beam, the surrounding structures, and the electromagnetic
fields have cylindrical symmetry. A gun located in a plane where Bz(r,z) = 0 generates a steady-
state, circular electron beam. Figure 10.8 shows how the zero-flux condition can be achieved
using a bucking coil behind the cathode. The beam emerging from an ideal gun has zero
emittance and radially-uniform current density. At the anode all electrons have the same axial
velocity and kinetic energy eVo.
   At the gun the beam has a simple distribution function – it is singular in total energy and
canonical angular momentum:

                                                       f(T,P2) ~ *(T-eVo) *(P2).                                               (10.27)

The total energy T is the sum of the non-relativistic kinetic energy and the potential energy in the
electrostatic fields. Equation (10.27) is a valid equilibrium distribution because both T and P2 are
constants of the particle motion. The total energy is constant because electric fields are static; the
canonical angular momentum is constant because the forces have azimuthal symmetry.
   Electrons leaving the gun follow complex orbits through the transition region at the edge of the
magnet before entering the uniform solenoidal field. Nonetheless, the beam distribution retains
the form of Eq. (10.27). We shall concentrate on the beam characteristics at a point far from the
transition region. The azimuthal and axial derivatives of all field and beam quantities equal zero. 
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Figure 10.8. Injector to create a magnetically-confined electron beam in a
Brillouin equilibrium.

The problem reduces to the calculation of a self-consistent radial equilibrium with a given
distribution function. We shall seek an equilibrium solution where the beam particle density no is
uniform from the axis to the envelope radius ro. 
   Electrons gain a component of azimuthal velocity when they pass through the radial magnetic
field in the transition region. In the uniform-field region, the condition P2 = 0 gives an
expression for the azimuthal velocity of the non-relativistic electrons as a function of radius:

                                                                v2 = (eBo/2me) r.                                                   (10.28)

The rotational motion of the electrons generates an axial magnetic field. For the time being, we
assume that the beam-generated axial field is much smaller than the applied field. 
   Equation (10.28) predicts that the azimuthal velocity is linearly proportional to radial position.
This condition implies that all electrons rotate about the axis at the same angular velocity:

                                               d2/dt = v2/r = (eBo/2me) = Tgo/2.                                           (10.29)

The quantity Tgo is the gyrofrequency for non-relativistic electrons in the magnetic field Bo:

                                                                Tgo = eBo/me.                                                        (10.30)

Because the angular velocity is independent of radius, the entire beam rotates at the same rate.
Cylindrical equilibria with this property are called rigid rotor equilibria. The angular rotation
frequency of the beam is the Larmor frequency,

                                                                  TL = Tgo/2.                                                         (10.31)
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(10.32)

(10.34)

   The focusing force from the azimuthal magnetic field of a cylindrical electron beam is about a
factor $2 less than the defocusing space-charge force [Eq. (5.25)]. The contribution of magnetic
force is small in a nonrelativistic beam. Neglecting the beam-generated magnetic force, the
following equation describes the radial motion of individual electrons with P2 = 0: 

The first term on right hand side of Eq. (10.32) represents the space-charge force [Eq. (5.26)],
the second term corresponds to the centrifugal force (mev22/r), and the last term is the focusing
magnetic force (v2 × Bz). Setting the right-hand side equal to zero gives the condition for a
matched beam. Note that all terms are linearly proportional to r; therefore, force balance applies
at all radii when the beam has zero emittance. The matched condition is:

                                                      e2no/2,ome = (eBo/me)2/4.                                                (10.33)

We can write Eq. (10.33) in an alternative form that incorporates the beam plasma frequency
[Eq. (10.17)]. Substituting Eq. (10.17) with ( = 1 gives the Brillouin condition:

   In the rigid rotor equilibrium, electrons follow circular transverse orbits under the combined
actions of the space-charge electric field and the applied magnetic field. The electrons move
normal to both the electric and magnetic fields. Charged particle equilibria in crossed field
geometries with laminar orbits aligned in the E × B direction are called Brillouin flow  solutions.
We already studied examples in different geometries in Sections 8.2 and 8.9. When the electrons
have a transverse velocity spread, radial oscillations are superimposed on the azimuthal drifts. 
   To complete the model, we must investigate the radial variation of axial velocity and verify
conservation of total energy. The condition of constant energy is:

                                               (me/2)(vz
2 + v22) - eN(r) = eVo.                                              (10.35)

The quantity N(r) is the absolute electrostatic potential in the beam volume. With the assumption
of uniform density, the radial variation of potential is [Eq. (5.28)]:

                                                     N(r) = N(0) + enor2/4,o.                                                  (10.36)

Equation (5.67) shows that the potential at the center of a circular beam of radius ro propagating
in pipe of radius rw is 
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(10.37)

(10.39)

(10.41)

   Combining the condition P2 = 0 with Eq. (10.33), we find the following expression for the
azimuthal component of kinetic energy:

                                                        mev22/2 = (e2no/4,o) r2.                                                  (10.38)

Substituting Eqs. (10.37) and (10.38) into the energy balance equation [Eq. (10.35)], gives:

Note that terms with a radial dependence have canceled and do not appear in Eq. (10.39). As a
result, all the electrons in the beam travel at the same axial velocity, independent of radius.
Although electrons near the axis sacrifice more energy to enter the region of high electrostatic
potential, they do not acquire as much rotational energy. 
   We can use Eq. (10.39) to find limits on current in a Brillouin beam. The scaling laws are
similar to those of Sections 5.3 and 9.4. The main difference is that the present model gives an
exact prediction that accounts for variations of axial velocity. For a given beam particle density
no, radius ro, and uniform axial velocity vz, the beam current is

                                                             I  =  (Bro
2) enovz.                                                      (10.40)

Substituting for vz from Eq. (10.39), Eq. (10.40) becomes:

Equation (10.41) has the form

                                                            I = 8 (A - B8)1/2,                                                        (10.42)

where

                                                    8 = Bro
2eno,   A = 2eVo/me,

and
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(10.44)

(10.46)

                                                B = (e/2B,ome) [1 + 2ln(rw/ro)].

The quantity 8 is the line density of beam charge, which we take as a variable. Setting dI/d8 = 0
gives a value of 8 for the maximum current:

                                                                 8m = 2A/3B.                                                         (10.43)

The combination of Eqs. (10.41), (10.42) and (10.43) gives a relationship for the maximum
current that can be carried by a laminar electron beam in a uniform solenoidal field:

or

                                         Im = (2.54 × 10-5) Vo
3/2/[1 + 2ln(rw/ro)].

At a low value of 8 the beam current is directly proportional to the line charge density of the
beam. When 8 exceeds 8m, the reduction in axial velocity counterbalances the increased line
charge, reducing the net current. For 8 = 8m, the longitudinal energy equals,

                                                           mevz
2/2 = eVo/3.                                                          (10.45)

   The following example illustrates application of the results. Suppose we want to transport a 10
A electron beam with kinetic energy 30 keV. The beam has radius ro = 0.01 m and propagates in
a tube of radius rw = 0.03 m. For the given parameters, Eq. (10.44) shows that Im equals 41.3 A;
therefore, the 10 A beam is well below the longitudinal space-charge limit. We find the line
charge density by solving Eq. (10.42) with A = 1.055 × 1016, B = 1.011 × 1022 and I = 10 A. A
root solver gives the value of 8 as 1.02525 × 10-7 (coulombs/m); the associated value of beam
density is no = 2.04 × 1015 m-3. Substituting the density into Eq. (10.42) shows that the focusing
field should be Bo = 0.0205 tesla.
   All models in collective beam physics involve approximations. Deriving a result is only a
portion of any analysis; we must also find limits of validity for the model. Here, we shall find
when it is valid to neglect the beam-generated component of axial magnetic field. To make an
estimate, we calculate the axial field generated by a beam in an ideal Brillouin equilibrium and
require that its magnitude be much smaller than Bo. 
   Equation (10.28) gives an expression for the total azimuthal current per length of a Brillouin
beam:
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The magnitude of the beam-generated magnetic field is :oJb. The condition for a small beam
contribution to the axial magnetic field is:

                                                                 :oJb/Bo n 1,

or 

                                                                (TL roc)2 n 1.                                                         (10.47)

Equation (10.47) follows from the Brillouin condition. The equation implies that the beam-
generated axial magnetic field is negligible if the azimuthal velocity of particles on the beam
envelope is much less than the speed of light. The condition holds for most applications. An
exception is the rotating relativistic electron ring [N.C. Christofilos, Phys. Fluids 9, 1425
(1966)]. This configuration has been studied for potential applications to collective acceleration
and fusion plasma confinement. Electron rings generate strong axial magnetic fields – with
sufficient current, the magnitude of the beam-generated can exceed the applied field, creating a
region of closed magnetic field lines.
   The derivation we performed applies only to non-relativistic electrons. The condition of
constant axial velocity results from the non-relativistic form of the energy equation [Eq.
(10.35)]. The general derivation of a self-consistent equilibrium for a relativistic electron beam
in a solenoidal field is much more difficult than the non-relativistic calculation. For the general
case, we must include beam-generated toroidal and axial fields and the variation of ( and $z with
radius. The calculation is simpler in the paraxial approximation. Here, the beam current is well
below the space-charge limit, or 

                                                               eN(0) n ((-1) mec2.                                                (10.48)

In the paraxial limit, all electrons have about the same total energy and longitudinal velocity,
represented by average values of ( and $. Furthermore, the azimuthal velocity is low (v2 n $c) so
that beam-generated axial fields are small. For a relativistic paraxial beam, we must make two
changes to the radial force balance equation: 1) replace the rest mass me with the relativistic
mass (me, and 2) include the focusing force of the beam-generated toroidal magnetic field.
   The relativistic radial force balance is similar to Eq. 10.32. We can write the modified
Brillouin condition in terms of the relativistic beam plasma frequency:

                                                               Tpb
2 = e2no/,o(me,                                                   (10.49)

and the relativistic gyrofrequency,

                                                                Tg = eBo/(me.                                                       (10.50)

The result is:
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(10.51)

We can show that Eq. (10.51) is identical to Eq. (9.58) in the limit of a laminar beam. 

10.4. Interaction of electrons with matter.

   Electron beams that pass through a dense medium lose energy through collisions with
electrons and nuclei. A fraction of the energy heats electrons in the medium while the remainder
is converted to X-ray or (-ray radiation. Collisions also deflect the light electrons. An
understanding of collisional processes in a dense background is essential for many electron beam
applications:

     1. High-current electron diodes often have thin foil anodes. Angular scattering in the foil
limits the brightness of extracted beams.

     2. In devices such as electron irradiators, the beam travels through a foil from the accelerator
to a target at atmospheric pressure. Foil heating limits the time-averaged intensity of the beams.

     3. Many high-energy electron diagnostic devices, such as solid state detectors, rely on energy
loss processes.  

     4. Angular scattering limits the propagation lengths for beams in diffuse media. Section 12.9
discusses the subject in detail.

     5. Applications such as food irradiation and electron-beam welding depend on energy transfer
processes in materials. 

     6. Thin structures, such as grids or wires, can guide intense electron beams (Section 10.5).
Scattering and energy-loss limit the length of such systems.

   In previous sections, we concentrated on beams of charged particles that interact through long-
range collective forces rather than short-range collisions. In contrast, collisions are the most
important processes in dense media. Fortunately we can usually neglect the collective forces of
beams inside a metal. The free electrons in a metal cancel electric and magnetic fields generated
by the beam. As a result, the orbit of each particle in an intense beam is independent of other
beam particles. We can use statistical theories to predict properties of beams emerging from a
foil. 
   We express the energy loss rate for electrons passing through a medium in terms of the
stopping power dTe/dz. The stopping power equals the energy lost by a high-energy electron per 
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(10.52)

Table 10.1 
Mean Ionization Potential of Materials

Material Z I (eV) Z/I
H2 1 19 19 
He 2 44 22 
Be 4 64 16 
Air 7.2 94 13.1 
Al 13 166 12.7 
Ar 18 230 12.8 

Cu 29 371 12.8 
Ag 47 586 12.5 
Xe 54 660 12.2 
Au 79 1017 12.8 
Pb 82 1070 13.1 

unit distance of path length in a material. Here we shall use units of joules/meter – a wide variety
of units may be encountered in the literature. One important energy-loss mechanism is collisions
with low-energy electrons in the medium. In this interaction, the electric field of the high-energy
electron accelerates electrons of the medium as it passes. The electric field interactions are called
Coulomb collisions. The collisional stopping power can be predicted by calculating the average
energy transferred to randomly distributed background electrons.
   The Bethe formula [H.A. Bethe, Handbuch der Physik, Vol. 24 (Julius Springer, Berlin, 1933),
273] gives the collisional stopping power for relativistic electrons:

Equation (10.52) gives the energy per meter extracted from an energetic electron with kinetic
energy Te = ((-1)mec2 and velocity $c. The quantity N is the atomic density of the medium in
atoms/m3, while Z is the atomic number of the medium. Note that the product NZ is proportional
to the number density of electrons in the medium. The quantity I is the average ionization
potential of the material — Table 10.1 gives representative values of I. Finally re is the classical
radius of the electron:

                                               re = e2/4B,omec2 = 2.81777 × 10-15 m.                                   (10.53)

The quantity NZ is also proportional to the mass density of the medium, D (kg/m3). Therefore,
(dTe/dz)c is roughly proportional to D. Many tables quote values of the stopping power with the 



High-current electron beam transport under vacuum Charged Particle Beams

453

Figure 10.9. Collisional and radiative normalized stopping powers for electrons
in solid aluminum as a function of kinetic energy.

(10.55)

density factored out, 

                                                          [dTe/d.]c  = [dTe/dz]c/D.                                              (10.54)

The quantity [dTe/d.]c is the normalized collisional stopping power. We can estimate the
stopping power for a variety of materials by multiplying the normalized stopping power for a
known material by the appropriate value of D. 
   Figure 10.9 shows the collisional stopping power for aluminum asa function of electron kinetic
energy. The quantity [dTe/dz]c is large at low values of Te because the incident electrons move
slowly. They take a relatively long time to pass a background electron – the momentum transfer
to the background is high. On the other hand, [dTe/dz]c is almost independent of Te for relativistic
electrons, which all move at about the same velocity. 
   Energetic electrons also lose energy by the emission of radiation. Electrons radiate when they
are strongly deflected passing the nuclei of atoms. The radiation accompanying electron
collisions is called bremsstrahlung radiation. The radiation stopping power [H.A. Bethe and W.
Heitler, Proc. Roy. Soc. (London) A146, 83 (1934)] quantifies the production of radiation: 

The quantities in Eq. (10.55) have the same meaning as those in Eq. (10.52). 
   Note that energy loss to radiation scales approximately as Z2, while collisional loss is 
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Figure 10.10. Collisional and radiative stopping powers
for electrons in water and tungsten as a function of
kinetic energy over a range of interest for food
processing applications.

proportional to Z. Furthermore, bremsstrahlung losses are proportional to Te, while the collision
loss for relativistic electrons is almost independent of Te. Ignoring small variations in the
logarithmic terms, the ratio of radiation and collisional stopping powers is 
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(10.56)

(10.57)

where Te on the right-hand side is expressed in eV. Equation (10.56) implies that bremsstrahlung
may be the dominant energy loss mechanism for high-energy electron beams in a medium with
high atomic number. In applications where electrons create (-rays, it is best to use a high-energy
beam and a heavy target material, such as tungsten or uranium. On the other hand, if we want to
dump an electron beam with minimum radiation, the best target choice is a low-Z material such
as graphite. Figure 10.10 shows stopping powers for collisions and radiation over the range of
interest for commercial irradiation applications. The figure includes results for low-Z and high-Z
targets. For high-energy electrons, other energy loss processes are possible. Beams in the energy
range above 10 MeV can excite nuclear reactions. Although the probability of a nuclear reaction
is usually small, the interactions may constrain beam parameters for applications such as food
irradiation. 
   The range of a charged particle in matter is the total distance traveled before the particle comes
to rest. The range is related to the total stopping power by

The quantity To is the initial electron kinetic energy. Although the energy-loss range is a useful
quantity for high-energy ion beams, we must take care in using values of electron range.
Electrons suffer substantial angular scattering as they slow down in materials. The quantity R in
Eq. (10.57) is an integrated distance along a path length that differs markedly from a straight
line. We cannot assume that an electron beam deposits its full energy in a range-thick target.
Often, a high fraction of electrons incident on a target scatters strongly enough to leave through
the entrance surface. This process is called backscattering.
   As an example of application of the stopping power results, consider heating of a thin foil by a
high-power electron beam. In-vacuum foils have application as septum electrodes for particle
extraction from a circular accelerator. Thin foils are also used for beam diagnostics and for the
transport of intense electron beams (Section 10.5). There are two modes of operation for
accelerators that require different approaches to thermal analyses:

     1. Pulsed accelerators with low duty cycle generate intense electron beams with high current
density.

     2. Continuous or high repetition-rate accelerators create beams with moderate peak current
but high average power.

Pulsed-power diodes and induction linacs operate in the first mode. To analyze foil heating, we
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assume that the beam pulse is much shorter than the thermal conduction time through the foil
and that thermal radiation from the foil is small during the beam pulse. With these conditions,
the temperature rise in a homogenous foil is:

                                                    )T = je)t [dTe/dz]c / DCpe.                                               (10.58)

In Equation (10.58) Cp is the specific heat of the material in J/kg averaged over the expected
temperature change. The quantity D is the material density in kg/m3, je is beam current density in
A/m2, )t is beam pulse length in s, and [dTe/dz]c is the collisional stopping power in J/m. We use
only the collisional part of the stopping power because most of the radiation generated by
bremsstrahlung escapes from the foil. Because [dTe/dz]c is proportional to the material density,
Eq. (10.58) implies that the temperature rise in materials is inversely proportional to the specific
heat. Low-Z elements have smaller temperature rise because they have higher values of Cp. For
example, the temperature rise in a beryllium foil is only one-fourth that of a copper foil for the
same beam intensity.

   To illustrate the use of Eq. (10.58), suppose a 70 ns electron beam pulse passes through a
titanium foil. The quantities in the equation have the values D = 4.54 × 103 kg/m3, Cp – 0.52 × 
103 J/kG, and [dTe/dz]c = 800 MeV/m. Titanium has a melting point of 1675 °C – we limit the
temperature rise to 1400 °C. Substituting in Eq. (10.58), we find an allowed current density of je
= 5900 × 104 A/m2, a value well above those encountered in high-power induction linacs.
   A foil exposed to a continuous beam reaches a thermal radiation equilibrium. Here, the
material temperature reflects a balance between input power from the beam and thermal
radiation to surrounding structures. To simplify the analysis, we assume the surfaces in a line-of-
sight from the foil are at room temperature, approximately 300 °K. The following equation
describes energy balance over a unit area of a foil of thickness * exposed to a relativistic beam of
current density je: 

                                                   je [dTe/dz]c */e < 2,F(T-300)4 .                                         (10.59)

The quantity F is the Stefan-Boltzmann constant

                                                    F = 5.6697 × 10-8 J/s-m2-°K4.                                           (10.60)

and , is the surface emissivity. For titanium, we take , = 0.6 and T-300 = 1400 °K. For a foil
thickness of * = 1.27 × 10-5 m, Eq. (10.59) implies that the time-averaged current density should
be less than je = 0.0026 × 104 A/m2. Suppose we have a high-repetition-rate induction linac with
a 70 ns pulse length operating at 100 Hz. The peak instantaneous current density incident on the
foil should be less than about 370 × 104 A/m2. 
   Because of their low mass, electrons scatter in angle as they pass through matter. Although
large-angle deflections can occur, electron scattering results mainly from the cumulative effect
of multiple small angle collisions. An electron in matter follows a random walk in angle. An
initially parallel beam emerges from a foil with a spread in inclination angle. In the limit of small
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(10.62)

angular spread, the inclination angles at the foil exit have a Gaussian probability distribution:

                                            P(2)d2 – (22/<22>) exp(-22/<22>) d2.                                    (10.61)

The quantity <22> is the mean squared inclination angle for electrons. The theory of Coulomb
scattering combined with quantum mechanical corrections [See, for instance, J.D.Jackson,
Classical Electrodynamics, 2nd Ed. (Wiley, New York, 1975), Sect. 13.8] gives the following
expression for the change in mean squared angle with propagation distance in the material:

Again, the quantities Z and N are properties of the medium, while ( and $ characterize the
incident electron beam. Note that the scattering angle decreases rapidly with increasing electron
( factor. The effect of scattering is small for particles with high relativistic mass. 

   As an example of the application of Eq. (10.62), suppose we extract a relativistic electron
beam through a thin anode foil. A 2.5 MeV beam passes through an aluminum sheet with
thickness 12.7 :m. From Eqs. (10.52) and (10.55), the electrons lose only 0.2 per cent of their
energy in the foil. In contrast, the angular scattering is significant. Equation (10.62) predicts a
root mean squared angle of 

                                                         (<22>)1/2 = 0.15 rad (8.5°). 

The example illustrates a general rule for electron interactions in the energy range 0.5 to 20
MeV. Scattering makes the main contribution to the decay of a beam passing through a medium.
For high-energy electrons, the 1/(2 factor reduces the importance of scattering. High-energy
electrons, like ions, slow down in a straight line trajectory. 

10.5. Foil focusing of relativistic electron beams 

   It is possible to transport high-current relativistic electron beams in accelerators with no
applied focusing force. This option arises because the beam-generated magnetic force of a high-
( beam almost equals the space-charge electric force. If we can reduce the average electric force
by a small amount, the magnetic force can contain the beam in a self-focused equilibrium. Figure
10.11 illustrates a method to lower the average radial electric field. Conducting meshes and foils
divide a transport tube into cells. Positive induced charge in the foils partially cancels the radial
electric field. The foils have no effect on the magnetic field because they cannot carry axial
current. Although we usually avoid placing objects in the path of a beam, foil focusing is 
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Figure 10.11. Mesh or foil focusing for
relativistic electron beams. a) A cylindrical foil-
focusing system showing the balance of radial
forces. b) Geometry to calculate reduction
factors for a uniform density beam. 

practical in some circumstances because electrons have low stopping power [Eqs. (10.52) and
(10.55)]. Foil focusing has advantages over solenoid focusing in addition to the elimination of
coils and power supplies. For example, a foil array provides active centering of beams in
transport tubes and may have application to curved recirculating accelerators. 
   We will analyze the geometry of Figure 10.11. A cylindrical beam of average radius ro
propagates along the axis of a cylindrical metal tube of radius rw. The foils divide the tube into
sections of length d. If the rise time of beam current is long compared with the period of the
lowest frequency resonant mode in the cells, then we can estimate net electric fields in the static
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(10.63)

(10.67)

limit. For example, the period of the TM010 mode in a cell of radius rw = 0.08 m is 0.7 ns – the
electrostatic conditions are appropriate for a beam pulse with a 10 ns risetime. 
   When there are many closely-spaced foils, the approximate condition for radial equilibrium of
a beam is that the magnetic focusing force balances the forces of emittance and the reduced
radial electric field averaged over a cell. We assume that oscillation amplitude of the beam
envelope )r is much smaller than ro. To calculate electric fields, we approximate the beam as a
uniform charge cylinder with charge density Do. The beam current is Io = Bro

2Do$c. The charge
density has little axial variation if the beam electrons are highly relativistic. This condition
means that $ is almost constant so that the beam density is insensitive to variations of the
electrostatic potential. Finally, we assume that all walls of a cell are grounded and that there are
no applied focusing or accelerating forces.
   The limiting conditions reduce the problem to the solution of the Poisson equation in
cylindrical geometry with a given beam charge density:

We can use the solution for N(r,z) to investigate longitudinal current limits and to derive the
radial electric field:

                                                          Er(r,z) = -MN/Mr.                                                         (10.64)

The boundary conditions for Eq. (10.63) are

                                      N(r, -d/2) = 0,    N(r, +d/2) = 0,    N(rw, z) = 0.                             (10.65)

We use the space-charge function:

                                                    D(r,z) = Do   (0 # r # ro),                                                  (10.66)

                                                    D(r,z) = 0    (ro < r # rw).

The space-charge density varies only in r. Applying this condition and noting the symmetry of
the transport geometry, we can express the electrostatic potential as the product of a radial
function times an axial function. For the cylindrical geometry, a Fourier-Bessel series expansion
represents a solution to the Poisson equation inside the cell:

The constants xm give null values of the zero-order Bessel function at r = rw:
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(10.70)

(10.71)

(10.72)

(10.73)

         x1 = 2.405, x2 = 5.520, x3 = 8.654, x4 = 11.792, x5 = 14.931, x6 = 18.071,. . . .         (10.68)

Note that the form of Eq. (10.67) ensures that N satisfies the boundary conditions at r = ro and z
= ±d/2. Also, N has a maximum value on the axis and has symmetry about the cell midplane at z
= 0. The properties of orthogonal series expansions guarantee that Eq. (10.67) represents any
well-behaved function N(r,z) with a proper choice of the coefficients Nmn.
   Similarly, we resolve the space-charge function into the product of axial and radial parts:

                                                     D(r,z) = Dr(r)@Dz(z).                                                          (10.69)

When Eq. 10.69 is true, we can represent D(r,z) with the series expansion:

For a given space-charge function, we can find the coefficients Dmn. The cylindrical Poisson
equation takes a simple form if we write it in terms of the coefficients of Fourier-Bessel series.
The Laplacian operator has the following effect on trigonometric and zero-order Bessel
functions:

and

Substituting Eqs. 10.71 and 10.72, the Poisson equation has the form:

To solve the problem, we find the coefficients Dmn, substitute in Eq. (10.73) to find Nmn, and then
use Eq. (10.67) to calculate N(r,z).
   We shall carry out the calculation for a uniform cylinder of charge. Following Eq. (10.69), we
resolve the space-charge function into axial and radial parts. We can write the coefficients of the
space-charge function as a product of radial and axial parts, Dmn = Drm@Dzn. In the interval -d/2 # z
# +d/2, the axial function has constant value Dz(z) = Do. Fourier series expansions represent
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(10.74)

(10.76)

(10.77)

(10.78)

periodic functions; therefore, we take the axial variation as a section of a periodic square wave
function. A Fourier analysis of a square wave gives the following values for axial coefficients

                                 = [4Do/(2n-1)B] sin[(2n-1)B/2] = [4Do/(2n-1)B] (-1)n,

for n = 1,2,3,. . . .
   A Bessel function analysis of the radial function

                                                       Dr(r) = 1,   (0 # r # ro),                                                  (10.75)

                                                       Dr(r) = 0.   (ro $ r $ rw)

gives the terms

Substituting Eqs. (10.76) and (10.74) in Eq. (10.73), the coefficients of the electrostatic potential
expansion are:

   The two main quantities of interest are the maximum value of potential, N(0,0), and the radial
electric field at the beam envelope averaged over a cell. The peak potential equals:

By comparing eN(0,0) to the beam kinetic energy, we can define longitudinal space-charge
limits on beam current.
   We find the radial electric field by taking the radial derivative of Eq. (10.67):
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(10.79)

(10.80)

(10.81)

(10.82)

An integral over z from -d/2 to d/2 gives the average of electric field times d. The average radial
electric field on the envelope is:

   To show the effect of the foil, we plot the ratio of N(0,0) to the maximum potential of an
infinite length cylindrical beam in Figure 10.12a. From Eq. (5.67) the potential at the center of a
long beam with radius ro and space-charge density Do is:

The ratio of potentials is the longitudinal reduction factor, denoted as FL =  N(0,0)/N4(0). We
can write the condition for the space-charge limited current as

Figure 10.12a shows FL as a function of ro/d. The curves correspond to different values of the
normalized wall radius, rw/ro. Note that for d o ro, the potential approaches the value for a long
cylindrical beam (FL = 1). In the opposite limit (d n rw) the maximum potential approaches the
value for a uniform charge sheet between plates separated by distance d [Eq. (5.12)]:

                                                         N(0,0) – Dod2/8,o.                                                       (10.83)

   To combat longitudinal space-charge effects for high-current transport, we must use closely-
spaced foils. As an example, suppose we want to transport a 1 MeV, 25 kA beam of radius 0.02
m through a pipe with radius 0.08 m. Without foils, the electrostatic potential at the center of the
beam is N = -3 MV. Reference to Figure 10.12a shows that if the beam propagates through an
array of foils spaced 0.02 m apart, the magnitude of the beam generated electrostatic potential is
only about 260 kV.
   At moderate current, the main action of foils is to provide transverse beam focusing. In this
case we neglect longitudinal field effects and assume that the electrons have almost constant
energy. Figure 10.12b plots the axially-averaged radial electric field at the beam envelope 



High-current electron beam transport under vacuum Charged Particle Beams

463

Figure 10.12. Reduction factors for a uniform density, paraxial
beam. ro: beam envelope radius, rw: wall radius, d: cell axial length.
a) Longitudinal reduction factor, FL. b) Radial reduction factor, FR.
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Figure 10.13. Radial reduction factor for energetic beams in long
cells. (1-FR) as a function of d/ro for different choices of wall radius.

(10.84)

normalized to the radial field on the boundary of an infinite-length beam. We define the radial
reduction factor, FR, as:

A laminar beam is in equilibrium when the reduced average electric force balances the magnetic
force. The condition for a laminar equilibrium is

                                                                 FR = $2.                                                                (10.85)

The quantity $c is the average axial velocity of the beam. In a beam with nonzero emittance, the
inequality FR < $2 is a necessary condition for an equilibrium. The electric and magnetic forces
in highly-relativistic beams are almost balanced without foils – the value of FR for a laminar
equilibrium is close to unity. In such beams, it is more convenient to use the quantity (1-FR).
Figure 10.13 plots (1-FR) versus (d/ro). The scale on the right-hand side of the graph shows the
value of beam ( for a laminar equilibrium. For example, a zero-emittance electron beam with
kinetic energy 4 MeV and radius ro = 0.02 m can propagate in a 0.04 cm radius pipe with foils 
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Figure 10.14. Condition for small envelope oscillations in a foil focusing system
()r/ro # 0.1). Upper limit on d/ro as a function of beam energy and current.

(10.86)

(10.87)

spaced 1.7 m apart. The parameters show that a few widely-spaced transverse foils can guarantee
radial equilibrium even at moderate energy.
   The condition for a laminar equilibrium [Eq. (10.85)] does not depend on Io, the beam current.
Nonetheless, we must consider the value of Io to determine validity conditions for the model. We
require that the variation of the beam envelope in a cell is small, )r n ro. A matched beam has a
waist midway between the foils. The radial expansion of a paraxial cylindrical beam traveling
from the waist to a foil approximately equals:

if )r n ro. If we pick a maximum value of )r/ro, then Eq. (10.86) implies that

where

                                                       IA = (4B,omec3/e) $(.                                                    (10.88)

The quantity IA is the Alfven current – we shall study its physical interpretation in Section 12.7.



High-current electron beam transport under vacuum Charged Particle Beams

466

(10.89)

(10.90)

Figure 10.14 plots implications of Eq. (10.87) for a choice )r/ro= 0.1. The graph shows
combinations of beam current and transport geometry consistent with small beam expansion as a
function of (. Even at high current and moderate (, high values of (d/ro) are acceptable. As an
example, consider transport of a low-emittance electron beam with 1.5 MeV kinetic energy.
Take ro = 0.02 m and rw = 0.08 m. The value of FR should be 0.875 for a laminar flow
equilibrium. Reference to Figure 10.13 shows that d/ro – 20. Finally, Eq. (10.87) implies that the
current corresponding to a ±10% radial oscillation is 0.9 kA.
   We can derive equilibrium conditions for beams with non-zero emittance by modifying the
force balance arguments of Chapter 9. We can combine the electric and magnetic forces in a
form suitable for an envelope equation to give:

The variable R represents an envelope radius that may vary along z, R = ro(z). Setting the right-
hand-side of Eq. (10.89) equal to zero gives an expression for the emittance of a matched beam.
The angular divergence of a beam confined by a foil focusing system, )2 = ,/R, equals:

   As an example of a mesh focusing system, suppose we have a beam with Io = 10 kA, ro = 0.05
m and ( = 10 (4.6 MeV). The Alfven current is IA = 174 kA. The distance between foils is d =
2.5 M and the wall radius is rw = 0.1 m, Figure 10.13 shows that the electric field reduction
factor is FR = 0.973. Because $2 equals 0.995, the net force points radially inward. The beam
current is well below the Alfven level, I/IA = 0.06, so that electron motion is paraxial. Figure
10.14 shows that envelope oscillations have amplitudes less than 10 per cent of the beam radius.
Substitution in Eq. (10.90) shows that the electron divergence angle for a matched beam is )2 =
54 mrad and , = 2.7 × 10-3 B-m-rad. The implication is that a foil transport system can contain
high-emittance beams.
   An alternative formulation [R. Adler, Part. Accel. 12, 263 (1980)] is more useful for the
calculation of equilibrium of high-energy electron beams in foil focusing systems. Here, widely-
spaced foils cancel radial electric fields locally. Near the foils, the magnetic field exerts the
dominant force – each foil acts like a toroidal magnetic-field lens [CPA, pg. 131]. The beam-
generated electric and magnetic forces are almost perfectly balanced in the region between foils.
Here, the difference between electric and magnetic forces is small compared with the emittance
force.
   We can evaluate the focusing action of a single foil by solving the Poisson equation locally to
derive the distribution of induced charge. If Erf(r,z) is the radial electric field generated by the
foil charges, then an electron passing through the foil receives an impulse
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Figure 10.15. Normalized change in radial angle for single electrons in a
solid beam of radius ro passing through a foil across a cylindrical tube of
radius rw. The function GA is plotted as a function of r/rw for choices of
beam radius. Circles show the assumed beam radius. (Adapted from R.
Adler, Part. Accel, 12, 263 (1980).

(10.91)

(10.93)

We can rewrite Eq. (10.91) as

                                             )pr(r)  =  -GA(r) (I/IA) ((me$c),                                              (10.92)

where GA(r) is the geometry-dependent function of radius plotted in Figure 10.15. The figure
shows that the focusing force is non-linear. The function GA has a value of about 2.0 at the beam
envelope. Suppose a beam passes through a series of foils separated by a distance d and that the
change in radial position of envelope electrons is much smaller than the beam radius. We can
write a simple expression for the spatially-averaged force from the foils when the envelope
oscillation wavelength is long compared to d:

We can balance the expression of Eq. (10.93) against the emittance force [Eq. (3.39)] to find 
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Figure 10.16. Compression of toroidal magnetic field lines
generated by a displaced beam in a metal pipe. The beam has
uniform current density.

conditions for a transverse equilibrium.
   The wall of the transport tube of a foil focusing system carries induced charge and return
current when a pulsed beam passes through. We shall derive expressions for the forces exerted
by wall effects in the next section. In an empty tube, the net image force points outward.
Transverse foils reduce the image charge with affecting the return-current force. As a result, the
wall provides a restoring force that acts to maintain the beam position on the axis of the tube.
Figure 10.16 illustrates the origin of the magnetic restoring force. The figure shows toroidal
magnetic field lines for a uniform current-density beam displaced from the axis. Note the
compression of field lines in the direction of displacement. Particles on the side of the beam
closest to the wall experience a stronger magnetic field that forces them back toward the axis.  
    A major issue for foil transport is the increase in beam emittance from angular scattering in
the foils. This effect is easy to calculate in transport systems where the electrons have constant
energy. The effect of scattering is less severe when the electrons are accelerated. Scattering in
each foil decreases as the electrons gain energy, and the spacing between foils can be increased.
There is no simple method to estimate emittance growth for an accelerated beam.  A code to
calculate emittance growth must satisfy several conditions simultaneously. The code must decide
whether transverse or longitudinal limits are important, adjust emittance and foil scattering to 
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Figure 10.17. Numerical study for a high-current accelerator using a foil
focusing system. Beam current: 500 kA, injection energy: 20 MeV, output
energy: 1 GeV, average acceleration gradient: 20 MV/m, aluminum foil
thickness: 10 :m, beam radius: 0.05 m, wall radius: 0.07 m. a) Lengths of 38
focusing cells as a function of position in the accelerator. b) Beam RMS
emittance as a function of position in the accelerator.
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account for acceleration, and assure that envelope oscillations are small. Application of a self-
consistent code gives the following sample parameters for beam transport in an induction linac.
We take a 5 kA beam injected at 2.5 MeV and accelerated to a final energy of 50 MeV. The
beam has constant radius r o = 0.01 m, an input emittance of 3 × 10-4 B-m-rad, and a normalized
emittance of 0.0174 B-m-rad. The initial divergence angle is 1.7°. The accelerator has an average
gradient of 1 MV/m and the focusing foils are 6 :m titanium. The code predicts that the focusing
system has 10 cells. The output emittance is 4 x 10-5 B-m-rad. The normalized emittance is 4.2 x
10-3 B-m-rad, enhanced a factor of 2.5 by foil scattering. 
   The most interesting application of a foil system is the transport of very-high-current beams in
the MA range. In this case the main action of the foils is reduction of the beam space-charge
potential. Accordingly, the spacing between foils is small. For this geometry, the high-current
beams must have high emittance for a transverse force balance.  Injected low-emittance beams
exhibit large envelope oscillations and are subject to filamentation instabilities – these processes
increase the emittance until a force balance is attained. Figure 10.17 shows a computer
calculation for acceleration of a 500 kA beam to 1 GeV in a high-gradient accelerator. The beam
radius is ro = 0.05 m and the transport tube radius is rw = 0.07 m. The 50 m long accelerator has
an average gradient of about 20 MV/m. The beam enters with a kinetic energy of 15 MeV and a
high divergence angle of about 45°. The cell length is 0.09 m at the entrance. The system has 38
cells that increase in length. Figure 10.17a shows a plot of the cell length versus axial position,
while Figure 10.17b plots the emittance. The effect of foil scattering is negligible for the high-
divergence beam in the high-gradient accelerator. The final beam emittance is 8 × 10-4 B-m-rad,
giving a divergence angle of 0.9° for the self-pinched beam.

10.6 Wall-charge and return-current for a beam in a pipe

   In most accelerators and transport systems, beams propagate through metal pipes. Usually, the
pipe constitutes a vacuum chamber. Sometimes the chamber geometry is complex, as in an
induction linac. No matter how complex the vacuum chamber geometry, electric and magnetic
fields near the pipe must have the properties illustrated in FigURE 10.18a. There is no beam-
generated electric field outside the metal boundary. Therefore, the pipe supports an induced
charge (per length) equal and opposite to that of the beam. Also, if the beam has a pulse length
much shorter than the magnetic field penetration time in the metal, there is no beam-generated
magnetic field outside the pipe. Therefore, the pipe carries a return-current with equal
magnitude and opposite direction to the beam current. Sometimes, the return-current in the pipe
equals the beam current regardless of the wall thickness or beam pulse length. This condition
holds if the pipe is the only connection between the charged particle source and the target
(Figure 10.18a). In this case all current must return to the source along the wall to prevent charge
accumulation and a high electrostatic voltage on the target. For example, suppose we have a 1
kA, 60 ns electron beam typical of induction linacs. If the beam charge remains on a spherical
target of radius 0.3 m, the target potential would equal -2 MV. 
   The induced-charge attracts the particles of the beam. Conversely, the return-current repels the 
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Figure 10.18. Induced charge and return-current for a beam in a
cylindrical pipe. a) An isolated high-vacuum transport tube. b) Cross-
section of a pipe with a displaced beam showing non-uniform
distribution of induced charge. c) Geometry to calculate fields generated
by induced charge and return current using the method of images. d)
Redistribution of return current for a resistive transport tube wall with
surrounding structures. 
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Figure 10.18. (Continued)

beam particles. For a beam on the axis of a cylindrical pipe, the induced-charge and return-
current distributions have azimuthal symmetry. Therefore, there is no net force on the beam from
the wall. If the beam moves away from the axis, the induced-charge distribution shifts to
maintain the condition that the pipe is an equipotential surface. The asymmetric charge
distribution exerts a transverse force on the beam. The wall force affects the equilibrium position
of the beam in the pipe and may lead to instabilities. 
   In this section, we shall derive expressions for the electric and magnetic forces between a beam
and a surrounding cylindrical pipe. We apply the expressions in Sections 10.8 and 10.9 to
describe electron beam transport in accelerators with magnetic focusing systems. We adopt some
approximations to simplify the derivation: 

     1. The pipe has uniform radius rw and infinite length in z. The results hold approximately for
pipes that bend or change radius over distances long compared with rw. 

     2. The beam is a straight cylinder with a radius much smaller than rw. 

By the second condition, we neglect details of the beam distribution in the transverse direction.
To calculate wall charge, we represent the beam as a line-charge and line-current with zero
width. 
   The beam has line-charge Q (coulombs/m) and current I. For paraxial particle orbits with
average axial velocity $c, the two quantities are related by    

                                                                   I = Q ($c).                                                         (10.94)

The wall has a total induced charge -Q and carries a return-current -I. To begin, we calculate the
electric fields of a narrow beam displaced a distance * from the axis of a pipe. Figure 10.18b
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shows the asymmetric distribution of wall charge. By analogy with the method of images to find
the fields of a line-charge adjacent to a planar conducting wall, we postulate that the fields inside
the pipe from the induced-charge distribution on the circular wall are identical to those of a
discrete line-charge. We must find a location for the line image so that the superposition of its
electric field and the field of the beam define an equipotential surface at the pipe wall. 
   The analysis is most convenient in a polar coordinate system centered on the beam (Figure
10.18c). The electric field of the beam without the wall is 

                                                                  Er = Q/2B,o r'.                                                     (10.95) 

The electrostatic potential created by the beam is 

                                                         N = (Q/2B,o) ln(r') + K.                                              (10.96) 

The image line-charge must be outside the conducting wall. The distribution of induced charge
on the wall is symmetric about a line connecting the beam center to the axis of the pipe.
Therefore, the wall force vector and the image line-charge must also lie on this line. Suppose
that the image-charge is a distance D from the beam. Following Eq. (10.96), the total
electrostatic potential at the wall from the beam and the image is 

                          N = [Qln(r1) - Qln(r2)] /(2B,o) + K =  (Q/2B,o) ln(r1/r2) + K.         (10.97)

The quantity r1 is the distance from the beam to the wall and r2 is the distance from the image. In
terms of the beam-centered coordinate system, 

                                                               r1 = x'2 + y'2,                                                          (10.98)

                                                            r2 = (D-x')2 + y'2.                                                      (10.99) 

Inspection of Eq. (10.97) shows that equipotential surfaces lie on curves of constant r1/r2, or 

                                                                    r2 = "r1.                                                          (10.100) 

We combine Eqs. (10.98), (10.99) and (10.100) to give 

                                                       (D-x')2 + y'2 = "x'2 + "y'2.                                            (10.101) 

The equation that defines the cylindrical wall in the beam-centered coordinate system is 

                                                            (x'+*)2 + y'2 = rw
2.                                                   (10.102) 

We can show that Eqs. (10.101) and (10.102) hold at all points on the conducting wall if 
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(10.108)

                                                                " = 1 + D/*,                                                       (10.103) 

                                                            D = *[(rw/*)2 -1].                                                   (10.104)
 
   The wall force on the beam points radially outward along a line connecting the beam to the
pipe axis. Equation (10.104) shows that the image-charge moves to infinity as * approaches 0;
therefore, the image electric force vanishes. Equation (10.104) follows from the assumption of a
filamentary beam – it holds only if the beam is not close to the wall. We adopt the condition that
* n rw. In this limit, the following expression gives the electric force from the wall on each
particle of a beam in coordinates referenced to the pipe axis: 

                                     Few – (qQ/2B,orw
2) * r = – (qI/2B,o$crw

2) * r.                            (10.105)

The quantity r is a unit radial vector that points from the pipe axis to the beam center. Note that
the image force varies approximately linearly with beam displacement. Furthermore, Eq.
(10.105) represents a collective effect – the force on each particle is proportional to the total
beam current. 
   We can apply a similar analysis to find the magnetic fields of wall return-current in terms of an
image line-current. In a beam-centered coordinate system, the magnetic field of the beam is 

                                                                     B2 = :oI/2Br'.                                                (10.106) 

Equation (10.106) gives a vector potential 

                                                            Az = (:oI/2B) ln(r') + K.                                         (10.107) 

The wall is a surface of constant Az because magnetic field lines must be parallel to a perfectly
conducting surface. We can show that the net vector potential is a constant for a filamentary
image current -I at the same position as the image-charge [Eq. (10.104)]. The force from the
current points toward the pipe axis. The magnetic force from the return-current equals the
electric force of the image-charge multiplied by -$2. For * n rw, the sum of electric and magnetic
wall forces on a displaced filamentary beam is 

   Wall resistivity may affect the distribution of the return-current for long beam pulses. To
understand the effect, consider the schematic geometry of a beam transport system in Figure
10.18d. There are other connections between the system exit and entrance besides the vacuum
chamber pipe. For simplicity, we represent these connections by a large radius cylinder around
the vacuum chamber. Depending on the accelerator geometry, the outer cylinder may not be
collinear with the vacuum chamber. Immediately following the beginning of a beam pulse, all
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return-current flows through the vacuum chamber wall, the path of lowest inductance. As time
passes, resistivity of the chamber wall causes diffusion of the magnetic field into the volume
between the two cylinders. At late time, the return-current flows along the path of lowest
resistance. We shall derive an expression for the diffusion time in Section 12.6. Field diffusion
may affect the equilibrium position of a long-pulse relativistic electron beam. At early time, the
image-charge and return-current image are collinear – electric and magnetic wall forces almost
cancel. With field diffusion, the return-current image may be displaced from the line-charge
image. In such a situation, unbalanced wall forces may shift the beam position. 
   To conclude, we shall discuss the nature of the elastic beam approximation. In this and several
following sections, we study average displacements of a beam without addressing details of the
transverse equilibrium. Often we can represent a charged-particle beam as an elastic body that
maintains its shape and size when it is displaced in the transverse direction. The model holds if
all applied and beam-generated forces are linear about a symmetry axis. We also include, as
special linear forces, transverse displacement forces that are uniform in position. We assume that
without displacement forces the beam has a matched equilibrium in the linear focusing forces.
Figure 10.19a illustrates equilibrium of a one-dimensional beam centered on the symmetry axis.
All particles have the same betatron wavelength 8b – the beam distribution consists of a mixture
of amplitudes and phases. Contributions of applied forces, beam-generated forces and emittance
give a force balance at all positions. Suppose we introduce a uniform displacement force slowly
compared with the betatron oscillation period. The center of the beam shifts to a new position
where the net transverse force equals zero (Figure 10.19b). Note that the applied focusing forces
referenced to the new beam center are unchanged. Therefore, the matched beam has the same
emittance and radius. 
   Figure 10.19c shows an example of elastic motion. A beam enters a region of linear forces
with no displacement force. All particles have the same betatron wavelength. The matched beam
has an initial displacement from the symmetry axis. The particle motion in the focusing force is
the sum of normal oscillations for a matched beam with non-zero emittance with an additional
component from the initial displacement. The beam distribution at a downstream location is the
sum over particle betatron oscillations. If the beam width is smaller than 8b, the beam has
constant width and exhibits a superimposed oscillation of the centroid. The centroid motion has
wavelength equal to the betatron wavelength and an amplitude equal to the initial displacement.
We also observe elastic beam motion if a beam propagates in linear focusing forces in the
presence of a displacement force that varies over scale lengths much longer than 8b. The
displacement force shifts the centroid of the beam but does not modify the matched equilibrium
(Figure 10.19d). 
   It is important to recognize that a beam does not behave like an elastic body when the particles
have a spread in betatron wavelength. Such spreads result from either non-linear focusing forces
or a dispersion in kinetic energy. In the presence of nonlinearities, the focusing force referenced
to a displaced position differs from the force at the symmetry axis. As a result, a displacement
causes modification of the transverse equilibrium. A spread in betatron wavelength affects the
transverse oscillations of Figure 10.19c and d. Phase mixing of individual particle orbits results
in damping of the oscillations with an attendant growth of emittance. Section 13.3 discusses the
effect of phase-mix damping and its importance for stabilizing transverse instabilities. 
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Figure 10.19. Description of a beam as an elastic body. a) Beam
particles in equilibrium in a linear focusing force. Left-hand-side:
configuration-space orbits, all particles have the same value of 8b. Right-
hand-side: spatial variation of focusing force. b) Forces on a displaced
beam resolved into a focusing component and a uniform transverse force.
c) Configuration-space view of particle orbits in a displaced elastic beam.
All particles have the same value of 8b with oscillation amplitude and
phase randomly distributed within a range. 
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Figure 10.19. (Continued)

10.7. Drifts of electron beams in a solenoidal field

   Solenoidal fields are often used to focus high-current electron beams. We studied equilibria of
beams in magnetic fields in Sections 10.2 and 10.3. For those models we assumed that the beam
had cylindrical symmetry and propagated on the axis of the transport system. In Section 10.8, we
address the problem of beam guiding in a solenoidal field. We want to find how perturbation
forces and system imperfections affect the average beam position. As a preliminary, in this
section we shall derive expressions for electron beam drift motion in a solenoidal field and
discuss the basis of the drift model for a filamentary beam. 
   We shall treat the beam in the elastic approximation discussed in Sect. 10.6. The model is valid
when the following conditions hold:

     1) Beam electrons have paraxial orbits and the same kinetic energy.

     2) Applied focusing forces maintain a matched beam equilibrium with small radius.

     3) To calculate macroscopic motions of the beam, we follow the orbit of a test particle at the
beam center.

The third condition applies if all electrons have about the same betatron wavelength. 
   We shall limit attention to the position of the beam centroid in a plane normal to z. In addition
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to focusing forces with linear variation about the system axis, there are also transverse
perturbation forces. To apply the elastic beam model we assume that these forces are constant
over the beam width – they act uniformly on all electrons. As a result, the response of the beam
to a perturbing force is identical to the response of a individual electron. We divide perturbing
forces into two categories – single-particle forces and collective forces. The effect of a single-
particle force is independent of beam properties. For example, the force of a vertical applied
magnetic bending field affects all electrons equally and does not depend on the beam current. In
contrast, collective forces depend on the density of particles. The wall force described in Section
10.6 is a good example of a collective force – its magnitude is proportional to the beam current.
Note that the wall force of Eq. (10.108) is almost constant over the beam width if the beam
displacement is small compared with the wall radius rw. 
   Figure 10.20 shows an electron beam in a uniform solenoidal field, 

                                                                 B(x,y) = Boz.                                                     (10.109)

We shall calculate the motion of the beam center in a plane normal to z in the presence of a
force:

                                                                    F = Fx x.                                                         (10.110)

We assume that the energy associated with transverse motion is much smaller than the axial
kinetic energy. Therefore, the quantity ( is almost unchanged by the transverse motion. Thus, we
can apply nonrelativistic equations in the transverse directions with an adjusted mass per particle
of m = (mo.
   We shall concentrate on the orbit of a test electron at the center of the beam. Figure 10.20
shows that the force initially causes the electron to move in the positive x direction. The
combined effect of the axial magnetic field and the velocity vx creates a force that accelerates the
electron upwards. The vy × Bz force, directed to the left, leads to a reversal of vx. The result is that
the test electron follows the scalloped orbit shown. The electron moves in the positive y direction
and there is no cumulative displacement in the x direction. The time-averaged motion along y is
called a drift. Analysis of Figure 10.20 shows that a particle with charge q has a drift velocity in
the direction

                                                                   vd ~ q(F × B).                                                  (10.111)

The drift motion of Eq. (10.111) applies to a single electron or to the center of a filamentary
beam.
   If we denote the coordinates of the beam center as [X,Y], the equations of motion are:

                                                 (mo (d2X/dt2) = -eBo (dY/dt) + Fx,                                     (10.112)

and
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Figure 10.20. Drift motion of electrons in a uniform
magnetic field perpendicular to an applied force.

                                                       (mo (d2Y/dt2) = eBo (dX/dt).                                        (10.113)

With the substitution 

                                                                > = Y - (Fx/eBo) t,                                               (10.114)

Equations (10.112) and (10.113) become:

                                                          dvx/dt = -(eBo/(mo) v>,                                             (10.115)

                                                           dv>/dt = (eBo/(mo) vx.                                             (10.116)

Equation (10.114) represents a coordinate transformation to a frame of reference moving at
velocity (Fx/eBo)y. In the moving frame, Eqs. (10.115) and (10.116) show that the beam center
follows a circular path at the relativistic gyrofrequency, Tg = (eBo/(mo). The beam moves on an
orbit that is a composite of a magnetic gyration and the constant drift velocity:
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                                                            vd = q(F × B)/(qBo)2.                                              (10.117)

The magnitude of the drift velocity is |vd| = F/qBo. 
   We can determine the gyroradius for beam oscillations by noting that the beam has zero
transverse velocity at t = 0 in the stationary frame. Therefore, the beam moves at speed vd along
the y axis in the transformed frame. The gyroradius is

                                                                 rg = (movd/qBo.                                                  (10.118)

Figure 10.20 shows that the amplitude of the oscillatory motion is

                                                          ) = 2rg = 2(moF/(qBo)2.                                           (10.119)

   In drift orbit theory, we find the approximate position of the beam by summing drift velocities
and neglecting the oscillatory motion. The drift approximation holds when two conditions are
satisfied:

     1. Over the time of observation )t the beam performs many oscillations in the magnetic field:

                                                          Tg)t = eBo)t/(mo o 1.                                             (10.120)

     2. The size of the transport system rw is much larger than the amplitude of beam gyrations:

                                                      )/rw = 2(moF/rw(qBo)2 n 1.                                          (10.121)

   The most familiar drift motion occurs when the applied force results from an electric field E.
The drift velocity is:

                                                               vd = E x B/Bo
2.                                                     (10.122)

The quantity defined in Eq. (10.122) is the E-cross-B velocity. We have already studied this type
of motion for electrons in magnetically-insulated high-voltage gaps (Section 8.1). Note that the
velocity does not depend on the mass or charge of the beam particles.
   Drift motions of a beam also result from time-varying electric fields and spatially-varying
magnetic fields. Section 8.1 described motion in a time-varying electric field, the polarization
drift. Figure 10.21 illustrates the drift associated with spatial variations of the focusing magnetic
field. Suppose that the beam enters the transport region at x = 0. At this position the magnetic
field has magnitude Bo and has a constant positive gradient (assumed constant) in the x direction,
LB = (MB/Mx)o x. If electrons in the beam have no initial transverse velocity, the beam does not
move normal to the field. On the other hand if individual electrons in the beam have transverse
energy, they gyrate in the magnetic field (Figure 10.21). The electrons experience a higher
magnetic field in the half-plane with x > 0 – here their gyroradius is smaller. The opposite effect
occurs in the region x < 0. The result, illustrated in Figure 10.21, is that electrons have an 
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Figure 10.21. Geometry to calculate the drift
motion of energetic electrons in a magnetic field
with a spatial gradient.

oscillatory motion in x and a net drift in y. The electrons move in the -y direction for a positive
magnetic field gradient along x. If all electrons have the same transverse energy, the beam center
moves downward with no change in the shape of the beam. With a spread in transverse energy,
the beam may stretch along the y direction.
   We can estimate the magnitude of the drift velocity by noting that an electron moves a distance
along y equal to the difference in the average orbit diameters to the left and right of x = 0 in an
interval 2B/Tg. An electron with transverse velocity $zc has an average gyroradius in the region
(x > 0) of

                                               rg
+ – (me$zc/e[Bo+(MB/Mx)o)x)], 

where 
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(10.126)

(10.127)

(10.128)

                                                         )x ~ (1/2)((me$zc/eBo).                                            (10.124)

The electron has an average gyroradius

                                                  rg
- – (me$zc/e[Bo-(MB/Mx)o)x)],

in the region (x < 0). The drift velocity is roughly 

                                                               vd – 2(rg
+-rg

-)Tg/2B.                                             (10.125)

Substituting from Eqs. (10.123) and (10.124) gives 

A detailed analysis of the grad-B drift [see, for instance, G. Schmidt, Physics of High-
temperature Plasmas (Academic Press, New York, 1979), p. 14] gives the velocity as 

Equation (10.127) holds in the limit

10.8. Guiding electron beams with solenoidal fields

   We shall apply the results of Sections 10.6 and 10.7 to the problem of guiding high-current
electron beams. We have already discussed the role of solenoidal fields for beam focusing. The
focusing field confines the beam to a small radius in the presence of space-charge and emittance
forces. In this section, we turn our attention to the problem of gross beam motion from the axis
of an accelerator through force imbalance and instabilities. These effects are particularly
important for circular accelerators such as high-current betatrons and recirculating induction
linacs. Although solenoidal focusing is commonly used in these machines, the field geometry
has poor stability properties that increase the difficulties of beam transport.
   Figure 10.22 illustrates the geometry and the coordinate system for the analysis. A narrow
beam propagates through a pipe of radius rw. We treat the beam as an elastic filament – forces 
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Figure 10.22. Geometry and coordinate system to analyze electron
transport in a torus.

are either uniform over the beam cross-section or vary linearly about the symmetry axis of the
pipe. The z axis corresponds to the pipe axis. We allow the possibility that the pipe has a gentle
bend with radius of curvature much larger than rw. We define two special directions. The y axis
lies along the vertical direction – it is perpendicular to the pipe radius of curvature. The x axis
lies in the horizontal direction – it points outward along the radius of curvature. A focusing
magnetic field extends along the z axis – the field may have a gradient in the x direction:

                                                          B = [Bo + (MB/Mx) x] z.                                              (10.129)

Finally, we assume that motions of the beam center satisfy the drift orbit conditions (Section
10.7). The time scale for transverse beam motion is much longer than the relativistic gyroperiod.
   To begin, we shall study a filamentary electron beam in a straight transport pipe with a
uniform magnetic field  Boz. There are no other applied forces. The paraxial beam has current Io.
The beam electrons have kinetic energy ((-1)mec2 and axial velocity vz = $c. If the beam enters
on the pipe axis there are no transverse forces. On the other hand, a displaced beam experiences
a force resulting from the induced charges and currents in the pipe wall (Section 10.6). Figure
10.23a shows that the wall force is radial. Equation (10.108) gives the magnitude of the force for
a beam displacement *. Following Section 10.7, the combined effects of the axial magnetic field
and the radial force leads to an azimuthal drift. Substituting the wall force expression [Eq.
(10.108)] in the drift velocity equation [Eq. (10.117)], we find that: 
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Figure 10.23. Drift motion of an electron beam in a metal
transport tube with an applied axial magnetic field. a) Drift
resulting from the radial force of induced charge and return
current in the wall. b) Drift motion resulting from a lateral force
such as centrifugal force.
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(10.130)

(10.131)

The quantity K in Eq. (10.130) is the generalized perveance. Because the drift motion is
azimuthal, the beam center follows a circular orbit of radius * around the axis of the pipe (Figure
10.23a). The beam rotates at an angular drift frequency Td = |vd|/*. Substituting from Eq.
(10.130) gives an expression for the drift frequency:

The quantity Tg is the relativistic gyrofrequency for individual electrons:

                                                             Tg = eBo/(me.                                                         (10.132)

   As an example, suppose a 1 MeV, 1 kA electron propagates in a cylindrical vacuum chamber
of radius rw = 0.08 m. The generalized perveance is K = 5.42 × 10-3. The beam electrons have (
= 2.96 and $ = 0.941. The applied solenoidal field must be strong enough to maintain a small
beam equilibrium radius. If the emittance is small, Section 9.4 shows that the radius of a
matched beam is

                                                          ro = 2K1/2 ($c/Tg).                                                     (10.133)

We take ro = 0.01 m to satisfy the filamentary beam condition. Equation (10.133) implies a
focusing field magnitude of Bo = 0.070 tesla, corresponding to a relativistic electron
gyrofrequency of Tg = 4.16 × 109 sec-1. The rotation caused by the wall force has an angular
frequency of Td = 1.62 × 107 sec-1. The drift orbit limit gives a good description of beam motion
because Td n Tg. The drift motion is slow – it takes 390 ns to complete a revolution.
   Next, we shall apply a lateral perturbation force Fxx to a beam in a straight pipe. The force is
small enough so that drift orbit theory describes the motion of the beam center. Without a
conducting wall there is no preferred propagation axis. Equation (10.117) implies that the beam
drifts without limit in the y direction under the influence of the x-directed force. This behavior
results from a property of focusing by a uniform axial magnetic field – there is no stability axis
where the beam energy is a minimum. Therefore, a small perturbation force can displace the
beam to any transverse location. 
   Wall forces can stabilize a magnetically-focused electron beam in a pipe. Sometimes, the
combination of the wall force with a lateral force leads to closed drift orbits that do not intersect
the wall. We can express the wall forces in the Cartesian coordinates of Figure 10.23a:

                                        Fw = K (($c)2 r r = K (($c)2 (x x + y y).                                   (10.134)
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Combining the wall force with the perturbation force, the drift orbit equations for the beam are:

                                                                 vx = -Td y,                                                           (10.135)

                                                           vy = Td x + Fx/eBo.                                                    (10.136)

The quantity Td is given by Eq. (10.131). With the substitution > = x - Fx/eBoTd, Eqs. (10.135)
and (10.136) become

                                                                 v> = -Tdy,                                                            (10.137)

                                                                  vy = Td>.                                                            (10.138)

Equations (10.137) and (10.138) describe circular motion at angular frequency Td about a point
displaced along the x axis a distance 

                                                            )x = Fx/eBo Td.                                                        (10.139)

If the beam enters on the system axis the drift orbit passes through the axis (Figure 10.23b).
    Equation (10.139) shows that for given properties of the beam and transport system, there is a
maximum tolerable perturbation force. For a beam injected on the axis, the condition 2)x < rw
must hold, or:

                                                              Fx < 2rw eBoTd.                                                      (10.140)

Another viewpoint is that for a given perturbation force, there is a minimum value of the
generalized perveance for successful beam transport. Here we have an interesting case where the
collective force of a high-current beam improves transport. We also note that conducting walls
cannot stabilize a neutralized electron beam focused by solenoidal fields. If a high-current
electron beam propagates in a plasma so that there is no net current or charge inside a pipe, there
is no wall force. Therefore, a small perturbation force will push the beam to the wall. 
   A beam in a circular accelerator is subject to forces in the horizontal direction. Figure 10.22
shows the geometry for the analysis of a curved transport system. The pipe has minor radius rw
and major radius R. Magnet windings around the pipe create a toroidal magnetic field of average
magnitude Bo. A vertical magnetic field Bv is necessary to combat the centrifugal force on the
beam. The quantity x is the displacement of the beam center from the pipe axis parallel to the
radius of curvature, while the y-displacement is parallel to the vertical field.
   To avoid evaluating complex toroidal field expressions we assume that rw n R. In this limit, the
expression for the wall interaction force [Eq. (10.134)] holds approximately. Ampere's Law
requires that that magnitude of focusing field varies in the horizontal direction according to: 

                                                               Bz(x) – BoR/(R+x).                                               (10.141)
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The focusing field has a horizontal gradient:

                                                                  LB – -(Bo/R) x.                                                 (10.142) 

To construct a drift equation for the beam we must list all forces that act on the electrons. In the
y direction the only force is the wall interaction, proportional to the vertical deflection of the
beam. There are three forces in the horizontal direction: the wall force, the centrifugal force, and
the action of the bending magnetic field. The centrifugal force equals:

                                       Fc = (mo($c)2/(R+x) x – [(mo($c)2/R] [1 - x/R] x.                      (10.143)

We define the vertical bending magnetic field in terms of a scaling field:

                                                              Bv = (mo$c/eR.                                                     (10.144)

The quantity Bv is the field magnitude that gives an electron gyroradius equal to R. Without
perturbations and collective effects, a field magnitude Bv would maintain the beam on the
symmetry axis. We introduce an error factor , for the vertical field – the bending force is:

                                                          Fm = -e$cBv (1 + ,).                                                  (10.145)

The quantity , could represent a mismatch between the bending field and the electron beam
energy or an adjustment deliberately introduced to compensate perturbations.
   The beam drift velocity in the vertical direction is the sum of the following components: 

   1) the wall interaction, 

                                                                   vd = Td x.                                                          (10.146)

   2) the magnetic and centrifugal forces, 

                                                        vd = [$c(Bv/Bo)][-, + x/R].                                          (10.147)

   3) the grad-B drift,

                                                         vd = ($c/2)(Bv/Bo)($z/$)2.                                           (10.148)

The expression for the grad-B drift comes from Eqs. (10.127) and (10.142). In Eq. 1(0.148) $zc
equals the average transverse velocity of beam electrons. 
   The complete drift equations for solenoidal field focusing in a circular accelerator are:

                                                                     vx = -Td y,                                                       (10.149)
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(10.152)

                           vy = Td x - ,($c)(Bv/Bo) - ($c)(Bv/Bo)(x/R) + ($c/2)(Bv/Bo)($z/$)2.          (10.150)

   We can use Eq. (10.150) to find conditions for a beam equilibrium defined by vx = vy = x = y =
0. When the electron transverse velocity equals zero ($z = 0), the beam center lies on the pipe
axis if , equals zero. Usually the electrons of high-current beams in solenoidal fields have
substantial transverse velocity. This velocity results from envelope oscillations if the beam is
generated in the field (Section 10.2) or from magnetic deflections in the transition region if the
electrons are generated outside the field (Section 10.3). When $z is non-zero, the condition for a
beam equilibrium is: 

                                                                 , = ($z/$)2/2.                                                      (10.151)

Equation (10.151) shows that the bending field must exceed Bv to counteract the outward force
from the interaction between the negative gradient of focusing field and the electron transverse
energy. In real beams, the electrons have a spread in $z. The variation in drift velocities causes
distortion of the beam profile.
   We can investigate the effects of force imbalances by solving Eqs. (10.149) and (10.150). For
simplicity we take $z = 0. If we make the substitution

the equations become

                                           (d>/dt) = -Td[1 - ($c/RTd)(Bv/Bo)] y,                                        (10.153)

                                                              (dy/dt) = +Td >.                                                      (10.154)

We can combine Eqs. (10.153) and (10.154) into the single equation,

                                            (d2>/dt2) = -Td
2 [1 - ($c/RTd)(Bv/Bo)] >.                                   (10.155)

If the beam enters on the axis (x=0, y=0) at t = 0, then Eq. (10.155) has the solution

                                                             >(t) = >o cos St,                                                       (10.156)

where 

                                                S = Td [1 - ($c/RTd)(Bv/Bo)]1/2,

and
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(10.157)

(10.159)

                                                        >o = (,$c/Td)(Bv/Bo).

We can substitute Eq. (10.156) into the original equations to give the following expressions for
x(t) and y(t):

                                                  y(t) = -(,$c/Td)(Bv/Bo) sinSt.                                           (10.158) 

   The beam center sweeps out the ellipse shown in Figure 10.23c at angular frequency S. The
major axis of the ellipse lies along the x direction. The maximum distance that the beam center
moves from the pipe axis is 

A necessary condition for the existence of a closed orbit is that the bracketed quantity in the
denominator of Eq. (10.159) is positive, or 

                                                       ($c/RTd)(Bv/Bo) > 1.                                                    (10.160)

With some work, we can reduce Eq. (10.160) to the simple stability requirement, 

                                                             K > (rw/R)2.                                                            (10.161)

Given the existence of a closed orbit, a sufficient condition for beam transport is 

                                                                      )xmax < rw.                                                     (10.162)
 
   We shall illustrate the utility of the transport theory with some examples. Suppose we have an
accelerator with R = 1 m and rw = 0.08. An electron beam with kinetic energy 1 MeV and current
1 kA current has a generalized perveance of only 5.42 × 10-3. Equation 10.161 shows that we
cannot transport such a beam in the accelerator, even with very high values of Bo. Any field error
, drives the beam to the wall. We can achieve a closed drift orbit if we raise the beam current to
5 kA. The generalized perveance of a 5 kA, 1 MeV beam is 2.7 × 102. If the beam has zero
emittance a focusing field of 0.16 tesla maintains the 0.01 m beam radius. The vertical field is Bv
= 4.8 × 10-3 tesla, and the wall interaction drift frequency is Td = 8.1 × 107 sec-1. Substituting into
Eqs. (10.159) and (10.162), we find an upper limit on the error of the vertical field, , < 0.34. It is
easy to adjust the magnetic field to such a tolerance. On the other hand severe problems arise
when the beam accelerates. The generalized perveance drops as K ~ 1/(3 – wall forces are small
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for high-energy electron beams. An accelerating beam quickly reaches a kinetic energy where
the condition of Eq. (10.161) does not hold. For example, wall stabilization fails when a 5 kA
beam in the given accelerator geometry reaches a kinetic energy of only 1.9 MeV.

10.9. Electron beam transport in magnetic cusps

   A magnetic cusp array consists of a series of solenoid lenses with alternating field polarity.
The focusing properties of such a system are similar to those of a uniform solenoid. The main
difference is that the cusp array guides beams more effectively in the presence of perturbations.
This property compensates for the higher current that cusp coils require to achieve the same
focusing strength. In this section, we discuss several topics related to high-current electron-beam
propagation in an alternating solenoid lens array.

A. Magnetic fields

   The cusp field geometry has a long history of application to space-charge dominated beams in
devices with permanent-magnet focusing. Periodic-permanent-magnet (PPM) arrays consist of a
series of annular magnets separated by iron rings (Figure 10.24a). The magnetization alternates
in direction between elements. If the magnet length is comparable to the diameter, a useful
fraction of the magnetic flux returns through the inside of the annulus. This portion of the field
energy is available for beam focusing. 
   A series of magnet coils with alternating azimuthal current also generates a series of magnetic
cusps. Figure 10.24b shows field lines for a coil array with no ferromagnetic material. The
addition of iron flux return structures outside the coils reduces the amp-turns required to achieve
a given on-axis field [CPA, Section 5.7]. Figure 10.24c shows numerical solutions for a cusp
array with flux return through iron.

   We can calculate the magnetic fields of a cusp array directly when there are no nearby
ferromagnetic structures. We use the analytic expression for the vector potential A2 from a single
current loop [CPA, pg. 73] and sum contributions from all coils in the array. Figure 10.25 shows
results from such a calculation. The coil current is represented by a series of current loops of
radius Rc distributed uniformly in z. The polarity of the current follows a step function variation
with cell length L. Figure 10.25 shows the field on axis Bz(0,z) for three values of L/Rc. The
dashed line shows the field of a solenoid with the same value of linear coil current density (amp-
turns/m). The field in the cusp array is lower because of cancellation between adjacent cells.
Field cancellation increases in importance as L/Rc decreases. The figure shows that for moderate
values of L/Rc the axial field in a cusp array has the approximate variation:

                                                Bz(z) = Bo sin(2Bz/L) = Bo sin(kmz).                                    (10.163)

The quantity Bo depends on the linear current density and L/Rc.
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Figure 10.24. Multiple magnetic cusp geometries for electron beam transport. a)
Periodic-permanent-magnet (PPM) array. External arrows show direction of
magnetization. b) Calculated magnetic field lines, multiple solenoid lenses with
alternating polarity. c) Calculated field lines, multiple solenoid lenses with an iron flux-
return tube.
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Figure 10.24. (Continued)

Figure 10.25. Calculated axial field Bz(0,z) for multiple solenoid lenses
(Fig. 10.24b) as a function of the magnet geometry. Uniform magnet
windings of radius rc reversed in direction periodically over a distance L.
The magnetic field is normalized to Bo, the field generated by a solenoid
winding of infinite length.
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(10.164)

(10.167)

B. Radial force balance for a laminar beam

   We shall next derive the limiting current for a high-energy electron beam in a cusp array. In
contrast to the continuous radial focusing force of an extended solenoid the force is periodic;
therefore, it is difficult to derive exact solutions for self-consistent beam equilibria. Instead we
shall use a model based on the average force approximation of Section 9.4. The model holds
when the lengths of focusing cells are much shorter than the single particle betatron wavelength.
To simplify the discussion, we limit attention to laminar beam equilibria. Again we take a
paraxial beam with current well below the longitudinal space-charge limit [Eq. (5.77)].
   The following equation describes the envelope radius R of a laminar high-current electron
beam in a cusp array:

The quantity K is the generalized perveance [Eq. (5.88)]. The first term on the right-hand side of
Eq. (10.164) represents the beam-generated forces while the second term describes the combined
effects of focusing and centrifugal forces for electrons with zero canonical angular momentum,
P2 = 0. We find conditions for an axially-averaged matched equilibrium by setting R" – 0 and
averaging the force over the length of a focusing cell. We assume that R remains close to an
average value Ro. The equilibrium condition is:

                                               K – e2 <Bz(z)2> Ro
2/4(2me

2$2c2.                                           (10.165)

Equation (10.165) is similar to Eq. (9.56) for a solenoidal field. The difference is that the mean-
squared magnetic field appears rather than a uniform field value. If Bz(z) follows the harmonic
variation of Eq. (10.163), the radial force-balance condition is 

                                                     K – e2Bo
2Ro

2/8(2me
2$2c2.                                                (10.166)

Equation (10.165) leads to an expression for the limiting current in a cusp array:

If Bo has units of tesla and Ro is in meters, the current limit for electrons in amperes is

                                                   I # 3.67 × 108 ($() Bo
2Ro

2.                                               (10.168)

   As an example, suppose we have a 5 kA electron beam with kinetic energy 2.5 MeV (( = 5.89 
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Figure 10.26. Electron orbits in magnetic transport systems projected in the r-2 plane.
Electrons generated by a non-immersed cathode. Solid line: Orbit in a uniform solenoidal
magnetic field. Dashed line: Orbit in a magnetic cusp array. a) Single-particle orbits with
no beam-generated radial electric field. b) Orbits in a matched equilibrium for a laminar
beam with included space-charge force. Beam in uniform field has a Brillouin
equilibrium, while the beam in the cusp array has radial force balance averaged over a
cell.

and $ = 0.986). If the envelope radius is 0.01 m and the transport pipe radius is 0.04 m, the
beam-generated electrostatic potential is only 0.57 MV [Eq. (5.68)]; therefore, electron motion is
paraxial. Equation (10.168) implies that the beam is almost in radial equilibrium if the peak field
in the cusp array is Bo = 0.15 tesla. 

C. Single particle orbits

   Although conditions for radial force balance on the beam envelope are similar for a uniform
solenoid and a cusp array, the orbits of individual particles are quite different. Figure 10.26a
shows particle trajectories projected in the r-2 plane with no beam-generated field. In a uniform
solenoidal field, an electron with zero canonical angular momentum follows a circular path that
passes through the axis. In a cusp array electron orbits are more complex. Electrons oscillate in
the azimuthal direction because of the reversing field. If the betatron wavelength is much longer
than a cell, the azimuthal motion averages to zero over many cells. On the other hand the radial
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(10.170)

(10.171)

force points inward in all cells resulting in a cumulative motion. The dashed line of Figure
10.26a shows a typical orbit. The electron trajectory lies close to a straight line that passes
through the axis. 
   Figure 10.26b plots electron orbits in laminar beams in space-charge equilibrium. In a
solenoidal field the beam has a Brillouin equilibrium (Section 10.3). All electrons follow axis-
centered circular orbits with the same rotation frequency (solid line). In contrast, the orbit
projections in a cusp array show small oscillations about a point (dashed line).

D. Envelope oscillations

   Although Eq. (10.168) is a necessary condition for a radial beam equilibrium, it is not
sufficient to define the current limit in a cusp array. Stability requirements constrain the
amplitude of the focusing magnetic field in the periodic system. The instability for a space-
charge dominated beam is the collective equivalent of the familiar single-particle orbital
instability [CPA, pg. 182] – it occurs when the single particle vacuum phase advance per
focusing cell exceeds 180°. We shall derive the stability criterion for a high-current beam by
investigating the behavior of beam envelope oscillations in a harmonically varying focusing
force. The derivation also yields validity conditions for the average force model.
   We shall study perturbations of a laminar beam about the equilibrium defined by Eq. (10.166)
by solving Eq. (10.164) with a harmonic variation of focusing field [Eq. (10.163)]. We can
simplify Eq. (10.164) by introducing dimensionless variables. A good choice for the radial
scaling length is Ro, the equilibrium envelope radius. The dimensionless radial coordinate is

                                                                    D = R/Ro.                                                         (10.169)

We also need a characteristic axial scale length. We shall use the reciprocal of the wavenumber
for betatron oscillations of a single particle with zero canonical angular momentum in a constant
axial magnetic field equal to the root-mean-squared field magnitude, Bo/21/2. We can find the
betatron wavenumber ks by solving the equation: 

Equation (10.170) implies that

We can rewrite the equilibrium condition of Eq. (10.166) in terms of the betatron wavenumber
as:
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Figure 10.27. Numerical solution to the envelope equation for a high-current electron beam
focused by a cusp array.

                                                               K = (ksro)2.                                                            (10.172)

The dimensionless axial variable is 

                                                                 Z = ksz.                                                              (10.173)

   The reduced envelope equation is

                                                 D" = 1/D - 2D sin2[(km/ks)Z].                                               (10.174)

Equation (10.163) defines the quantity km. The single parameter km/ks governs the nature of
envelope oscillations. We can solve Eq. (10.174) numerically. A solution for a matched beam
has an envelope radius that varies periodically over length B/km. Figure 10.27 shows the
expected form of the matched beam envelope for the focusing magnetic field of Eq. (10.163).
We carry out the numerical solution in the range 0 # Z # (km/ks)(B/2). At Z = 0, we take D' = 0
and set D(0) = Do. The quantity Do is an initial guess of the radius with magnitude less than unity.
We continue solutions with adjusted values of Do until D' = 0 at Z = (km/ks)(B/2). 
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Figure 10.28. Envelope oscillation of a high-current electron beam focused by a
cusp array - minimum and maximum values of R/Ro as a function of km/ks.

   Figure 10.28 summarizes results of the calculation. The plot shows minimum and maximum
values of D for a matched beam as a function of km/ks. Envelope oscillations are small when the
betatron wavelength is much larger than the focusing cell length, km o ks. The oscillation
amplitude increases when km approaches ks. The solutions show the presence of a beam envelope
instability when km/ks < 1. In this range there is no matched beam solution because the value of
D' at Z = (km/ks)(B/2) is less than unity for any choice of Do. The implication is that the amplitude
of envelope oscillations grows from cell to cell. The condition for the envelope instability is the
same as the condition for a single particle orbital instability – the phase advance per cell exceeds
180°. Section 13.1 gives detailed discussions of the collective envelope instability in a periodic
focusing system. 
   We can write the stability criterion in terms of a limit on generalized perveance:

                                                             K # km
2ro

2 = (Bro/L)2.                                             (10.175)

The envelope instability in a cusp array presents little problem for beams commonly used in
applications. For example consider a 5 kA, 2.5 MeV electron beam in an induction linac. The
generalized perveance is K = 3 × 10-3. If ro = 0.01 m, Eq. (10.175) implies that 

                                                            L < Bro/K1/2 = 0.57 m.

The condition on cell length is easy to satisfy. For example, if the beam travels through a tube of 
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Figure 10.29. Radial variation of axially-averaged focusing force in a cusp array as a function of
the coil geometry. Uniform magnet windings of radius rc reversed in direction periodically over a
distance L.

radius 0.04 cm, it is straightforward to design cusp coils with L $ 0.1 m. For a choice L = 0.16,
the quantity km/ks equals 3.6. Inspection of Figure 10.28 shows that the beam is stable and that
the amplitude of envelope oscillations is only ±2.5 per cent.

E. Radial force variation

   The radial focusing force in a solenoid of infinite length is linear with displacement from the
symmetry axis [CPA, Sect. 6.7]. The radial variation of focusing force in a cusp array depends
on the magnet coil geometry. The force has non-linear variation when L # Rc. We can make a
rough estimate of the radial variation of focusing force in the limit that envelope oscillations are
small. Here, the radial position of an electron is almost constant crossing a focusing cell. An
axial average gives a good approximation for the force that acts on an electron passing through a
lens. If the electrons have zero canonical angular momentum, we can express the combined
effect of magnetic and centrifugal forces in terms of the vector potential. The axially averaged
force is: 
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(10.176)

Figure 10.29 shows implications of Eq. (10.176) for numerically calculated values of A2. The
magnet coil geometries are the same as those of Figure 10.25: L/Rc = 4, 6.4, 3.2 and 1.6. All
geometries have the same value of linear current density. Figure 10.29 shows that the focusing is
highly non-linear when the solenoid lenses are short.   

F. Macroscopic stability of elastic, filamentary beams 

   Section 10.8 showed that perturbation forces caused drift motions of electron beams in a
uniform solenoidal field. A major advantage of the cusp geometry is that drifts do not occur. In
the beam rest frame the direction of the axial magnetic field varies rapidly in time. The drift
motions reverse, cancelling cumulative motions. The only forces that affect the beam coherently
over many focusing cells are the axi-centered focusing forces. In a cusp array, a transverse
perturbation force does not displace a beam without limit. Instead, it moves the beam to a
different equilibrium position.
   We can extend the elastic beam theory of Section 10.8 to the cusp geometry. Again, we use the
coordinate system of Figure 10.22. To simplify the calculation, assume that km/ks o 1 and that the
radial force varies almost linearly with displacement. For small cell length, we neglect the effect
of the azimuthal forces. We express the axially-averaged focusing forces in terms of the single
particle betatron wavenumber [Eq. (10.171)]:

                                                         Ffx = -(me($c)2 ks
2 x,                                                  (10.177)

                                                         Ffy = -(me($c)2 ks
2 y.                                                  (10.178)

The wall forces on an electron beam with current Io in a conducting pipe of radius rw are:

                                                  Fix – (eIo/2B,o$(
2c) (x/rw

2),                                              (10.179)

                                                  Fiy – (eIo/2B,o$(
2c) (y/rw

2).                                              (10.180)

   Only the focusing and wall forces act in the vertical direction. For beam confinement, the
focusing force must exceed the wall force:

                                                         Fi/Ff = K/(ksrw)2 < 1.                                                  (10.181)

The limit of Eq. (10.181) usually holds for paraxial beams of practical interest. The focusing
magnetic field must be strong enough so that:
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(10.185)

                                                                   ks > K1/2/rw.                                                       (10.182)

   The force-balance expression in the horizontal direction is more complex. For transport in a
circular accelerator, we include the possibility of an error in the bending magnetic field. If the
main orbit lies on a circle of radius R, we can represent the vertical magnetic field as Bv(1 + ,),
where , is an error factor and 

                                                              Bv = (me$c/eR.                                                      (10.183)

Take x as the displacement of a beam from the ideal radius, 

                                                                  x = r - R.                                                           (10.184)

Combining the centrifugal force, focusing force, and magnetic bending force with an error term,
the condition for horizontal force balance is:

   The first term in brackets in Eq. (10.185) represents a vertical field error, the second term a
change in centrifugal force associated with a beam displacement, the third term cusp focusing,
and the forth term defocusing from wall forces. Equation (10.185) implies that a vertical field
error causes a shift in the equilibrium radius of a beam:

                                              )x = -,R/[1 + (ksR)2 - K(R/rw)2].                                          (10.186)

In contrast to beam behavior in a uniform solenoidal field, the transverse energy distribution of
the electrons has no effect on the beam position – there is no LB drift. The beam displacement
equals zero when , = 0. 
   Vertical field errors in a cusp array are not as critical as those in a uniform solenoid. An
equivalent statement is that a circular accelerator with cusp focusing can contain a beam with
larger momentum spread. Again take the example of a 5 kA, 2.5 MeV beam in a circular
accelerator with major radius R = 1 m and a toroidal vacuum chamber radius of rw = 0.04 m.
Suppose the betatron wavelength in the magnetic focusing system is 1.0 m (ks = 6.28 m-1).
Substituting values in Eq. (10.186) we find that a field error of 20 per cent gives a displacement
of only 0.005 m. 
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11
Ion Beam Neutralization

______________________

   It is more difficult to transport high-current ion beams than electron beams. Nonrelativistic
ions move slower than electrons of equal kinetic energy. Therefore an ion beam has higher
space-charge electric fields than an electron beam of the same current. Also magnetic focusing
by beam-generated fields is ineffective for nonrelativistic beams. We must apply neutralization
to create and to transport high-flux ion beams. The idea is to mix electrons with the ions to
reduce the beam-generated electric field. The process is feasible because of the low mass of the
electron. The mobile electrons rapidly enter the beam volume. Low-energy electrons can follow
high-energy ions to neutralize a beam propagating into free space. Also the technology to
generate electrons is straightforward compared with the complexity of ion sources (Chapter 7). 
   There are two ways to neutralize an ion beam with electrons. First, we can direct the beam
through a dense plasma. The plasma electrons shift in position to compensate for the added
positive charge. Plasma neutralization is an important process for large-area ion extractors that
use a gas-injection plasma source. The beam ionizes gas leaking from the source to produce a
high-density, low-temperature plasma. Although this neutralization method has practical
importance, we shall not address it in this chapter. The characteristics of the plasma depend on
complex collisional processes. Prediction of the plasma properties and residual electric fields
involves applied plasma and atomic physics rather than beam theory.
   In this chapter, we shall concentrate on an alternative approach, vacuum neutralization. Here,
sources located outside the vacuum beam transport region create the electrons. The electrons join
the ions as needed. The resulting neutralized beam has an electron density approximately equal
to the beam density. Collisions with the electrons have little effect on the ion trajectories.
Therefore, beams neutralized by externally-generated electrons can propagate long distances.
   Section 11.1 describes longitudinal neutralization where electrons follow an ion beam entering
a field-free vacuum. There are two options for the generation of collinear electrons. The first is
to accelerate the electrons to the ion velocity by an electric applied field. The second is to allow
the space-charge field of the beam to attract electrons. We shall show that the latter method of
passive neutralization results in an electron distribution with a density and average velocity equal
to that of the ions. Section 11.2 treats a similar process where electrons enter the side of the
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beam in response to space-charge electric fields. This model applies to ion beams in magnetic
quadrupole lenses or bending magnets where the fields prevent the axial motion of electrons.
Section 11.3 describes propagation of an ion beam in a bounded field-free region where
electrons neutralize space charge fields but do not cancel the beam current. This effect can be
useful for flux measurements of neutralized ion beams. 
   One motivation for neutralization is to achieve tightly-focused ion beams. With complete
cancellation of space-charge fields, only emittance limits the focal spot of an intense beam.
Section 11.4 shows that an ideal focus does not occur if the neutralizing electrons have a non-
zero temperature. The electric fields generated by electron thermal motion can reach high values
in a converging beam, defocusing the ions. To conclude the chapter, Section 11.5 reviews the
control of neutralizing electrons with applied magnetic fields to guide and to accelerate ion
beams.

11.1. Neutralization by co-moving electrons

   In this section, we study the propagation of neutralized ion beams in free space with no applied
electric and magnetic fields. Figure 11.1a shows the ideal neutralized beam. The electron and ion
densities are equal so there is no beam-generated electric field. The electrons move at same
velocity as the ions, ve = vi. The conditions of equal densities and equal velocities imply that the
current densities of electrons and ions have equal magnitude but opposite direction. The net
current is zero, so there is no beam-generated magnetic field. If Ti is the ion kinetic energy,
electrons with equal velocity have kinetic energy: 

                                                      Te = mevi
2/2 = (me/mi) Ti.                                                  (11.1)

The electron energy is much smaller than Ti. For example, electrons moving with 1 MeV protons
have Te = 540 eV. The problem we shall address in this section is how to create a neutralized
beam like that of Figure 11.1a. We limit attention to longitudinal neutralization where electrons
enter the transport region at the same location as the ions and travel in the same direction. 
   One option for neutralization is to accelerate electrons to kinetic energy Te and combine them
with the ion beam. This process is called active neutralization. We shall analyze the process with
a one-dimensional model. Figure 11.1b illustrates the geometry. Ions with kinetic energy Ti pass
through a set of grids. A cathode grid acts as an unlimited source of electrons. If the voltage
difference between the grids is 

                                                          Vo = (me/mi)Ti/e,                                                           (11.2) 

electrons reach the anode grid with velocity equal to that of the ions. The electric field between
the grids has a negligible effect on the velocity of energetic ions. Therefore, the ions have
constant density no and velocity (vi = (2Ti/mi)1/2) throughout the acceleration and propagation
regions. 
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Figure 11.1. Ion beam neutralization. a) Ideal neutralized beam -
ions and electrons have equal densities and velocities. b) Active
neutralization - acceleration of electrons to match the density and
velocity of the ion beam.

   Ideal neutralization results if the magnitude of the electron current density at the anode equals
the ion current density, enovi. We are free to choose the spacing between grids to achieve this
condition. Again, we seek a one-dimensional self-consistent equilibrium for electron flow. The
main difference from previous analyses is the inclusion of a uniform ion density. The following
boundary conditions hold for a steady-state solution: 

     1. The electrostatic potential of the cathode (at z = 0) is N(0) = 0. 

     2. The anode at z = d has potential N = Vo = Ti (me/mi)/e. 
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(11.3)

(11.4)

     3. Space-charge-limited electron emission reduces the electric field at the cathode to zero,
dN(0)/dx = 0. 

     4. The electron density equals the ion density at the gap exit, ne(x=d) = no. 

The one-dimensional Poisson equation that satisfies the boundary conditions is 

Following the method of Section 6.4, we can show that the electron current density is given by

where

Because of the ion space-charge, the electron current density is slightly higher than the single-
species Child limit [Eq. (5.48)]. 
   As an example of the characteristics of an electron acceleration gap for ion beam
neutralization, suppose we have a 100 keV deuteron beam with current density 1 × 104 A/m2.
The neutralizing electrons have kinetic energy Te = 27 eV. The acceleration gap must be very
narrow to generate the required electron current-density at low energy, d = 0.22 mm. The
fundamental problem of active neutralization is the creation of high current density electron flux
from a structure that transmits a high-intensity ion beam with little attenuation. Although the
one-dimensional mathematical solution is straightforward, the technological realization is quite
difficult. 
   A more practical way to reduce space-charge forces in an ion beam is through auto-
neutralization. In this process, the space-charge potential of the ion beam accelerates electrons
from a grounded surface. Figure 11.2 illustrates a one-dimensional geometry to describe the
process. An ion beam of infinite transverse extent leaves a planar surface at z = 0. The region z >
0 is a field-free volume. The surface at z = 0 supplies an unlimited electron flux. The
acceleration of electrons by the ion space-charge is a self-limiting process. We recognize that
even a small imbalance of charge in an intense ion beam results in a high value of space-charge
potential, N o (me/mi)Ti/e. If the electron density is less than that of the ion beam, the resulting
electric fields draw more electrons into the beam. An equilibrium occurs when electrons move 
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Figure 11.2. Hypothetical desired conditions for ion beam neutralization through
space-charge acceleration of electrons.

into the propagation region at the same rate as the ions. 
   Figure 11.2 illustrates the desired equilibrium solution for auto-neutralization. The space-
charge fields accelerate electrons in a thin sheath to match the velocity of the ions. We assume
that the sheath occupies the region 0 # z # d. Several conditions constrain the solution of the
Poisson equation: 

     1. The voltage drop across the sheath equals (me/mi)Ti/e. 

     2. The electron current density at z = d equals the ion current density, je = jo = enovi.

     3. The electric field at z = 0 must equal zero because the electron flow is space-charge
limited, dN(0)/dz = 0. 

     4. The electric field at the sheath exit equals the field inside the propagating beam because
there is no charge layer at d. By the assumption of a neutralized beam, dN(d)/dz = 0. 

There are too many boundary conditions for a solution of the Poisson equation. In order to have
zero electric field at both sides of the sheath, the potential must follow an S-shaped curve with
both positive and negative inflection. The dual inflection occurs only if the ion density exceeds
the electron density near z = d and the electron density is larger near z = 0. Condition 2 implies
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(11.5)

(11.6)

(11.9)

(11.10)

that the electron and ion densities are equal at z = d; furthermore, we know that ne ~ 1/N1/2 in
steady-state. The implication is that the electron density is higher than the ion density
everywhere in the sheath. 
   We must seek solutions with different boundary conditions to explain how auto-neutralization
works. One possibility is to look for a steady-state solution where variations of the potential are
not contained to a sheath but extend to infinity. For any potential variation, the electron density
has the form: 

We retain the condition of uniform ion density no and current density jo. To ensure that the
electron and ion fluxes are equal, the constant A in Eq. (11.5) has the value (jo/e)(2eVo/me). In the
region z $ 0, the Poisson equation is: 

We can simplify Eq. (11.6) by defining the dimensionless variables:

                                                               M = N/Vo.                                                                 (11.7)

                                                         Z = z/(Vo,o/eno)1/2.                                                          (11.8)

The reduced Poisson equation is:

   If emission of electrons from the surface at Z = 0 is space-charge limited, the boundary
conditions for the solution of Eq. (11.9) are M(0) = 0 and dM'(0)/dZ = 0. A dual integration of the
equation leads to the solution: 

Figure 11.3 illustrates the spatial variation of M(Z). The potential is periodic with values between
M = 0 and M = 4. The distance from the cathode to the first potential maximum is Z = (2)1/2B.
The electrons over-neutralize and under-neutralize the beam. The electron velocity varies 
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Figure 11.3. Ion beam neutralization by space-charge acceleration of electrons.
Steady-state solution when a uniform ion beam occupies the entire region Z > 0.
M = N/Vo, Z = z/(Vo,o/eno)1/2.

between ve = 0 and ve = 2vi. 
   We might conclude from the solution of Eq. (11.10) that effective auto-neutralization is
impossible. To explain experimental observations, we recognize that the derivation proceeds
from two questionable conditions: 

      1) The model assumes that an equilibrium state exists in the full half plane z > 0 for all times.
It ignores processes that may occur as ions and electrons fill the propagation region. 

     2) The model takes electron motion as purely one-dimensional. The electrons have a delta-
function distribution in longitudinal energy. 

Regarding the second assumption, we recognize that neutralization is a disordering process
where electrons join with ions to form a homogeneous mixture. If we limit motion to one
dimension, we may have set an artificial constraint that prevents the electron distribution from
attaining thermodynamic equilibrium. 

   We shall develop a model to show that there are alternative equilibrium solutions that give
auto-neutralization with a well-defined sheath region. We include time-dependent processes as
an ion beam fills the vacuum propagation region z $ 0. The uniform density beam enters the
region at t = 0 and moves in the z direction at velocity vi. We resolve the problem of inconsistent
boundary conditions by introducing the possibility of low-energy electrons in the propagating
beam. These electrons reflect from the moving ion front –  Figure 11.4 illustrates the process. If 
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Figure 11.4. Time-dependent solution for ion beam neutralization by the space-charge acceleration of
electrons. a) Geometry, showing electrons reflected by a virtual cathode at the moving ion front. b)
Variation of electrostatic potential with z: eNo = (me/mi)Ti. c) Spatial variation of densities of ions (ni),
entering electrons (ne) and reflected electrons (ner).

the potential across the sheath exceeds the voltage Vo, electrons enter the beam with velocity
higher than vi. The electrons try to run ahead of the ion front, but the unbalanced space-charge
creates a virtual cathode. Electrons reflected from the moving virtual cathode have reduced
kinetic energy.
   Suppose that the voltage drop across the sheath equals 4Vo – electrons enter the beam with
velocity 2vi. Applying conservation of momentum, we find that an electron loses all its kinetic
energy when reflected from the moving beam front. As a result, the electron distribution in the
propagating beam has two components: stationary reflected electrons and a uniform density of
newly injected electrons moving at 2vi. Conservation of flux implies that the moving ion front
deposits stationary electrons at the same rate as electrons exit the acceleration sheath. Therefore,
the density of stationary electrons ns equals the density of injected electrons at the sheath exit
ne(d). In a neutralized beam, the densities are:

                                                               ns = ne(d) = no/2.                                                    (11.11)
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   By including stationary electrons in the beam, we can solve the Poisson equation in the
electron acceleration sheath. The following boundary conditions define the solution:

                                                                 1)   N(0) = 0.                                                         (11.12)

                                                               2)   N(d) = 4Vo.                                                       (11.13)

                                                             3)   dN(0)/dz = 0.                                                      (11.14)

                                                             4)   dN(d)/dz = 0.                                                      (11.15)

                                                               5)   ne(d) = no/2.                                                      (11.16)

Equation (11.16) implies that the density of electrons near the exit of the sheath is lower than the
ion density. By Eq. (11.5), the electron density is higher near the cathode grid. Therefore, it is
possible to generate a solution for N that follows an S-shaped curve. The solution of the Poisson
equation with conditions (11.12) through (11.16) is identical to Eq. (11.10) in the sheath region,
0 # z # d. The sheath width is

                                                              d = B (2Vo,o/eno)1/2.                                                 (11.17)

In the region z > d the additional low-energy electrons give a solution with constant potential, N
= 4Vo, rather than the oscillatory solution of Figure 11.3. The electric field is confined to the
sheath. The propagating beam is field-free. In the beam volume, the net electron density equals
no while the average electron velocity equals vi. Figure 11.4 shows a plot of electron density and
potential over the sheath and beam.
   The modified sheath solution gives an electron distribution in the beam with two discrete
velocity components at ve = 0 and ve = 2vi. In the beam rest frame, the electron components
stream through each other with velocity ±vi. Such a distribution is potentially unstable to the
two-stream instability (Section 14.1). This instability randomizes the axial velocity distribution.
We can find the actual electron distribution that results from auto-neutralization from a one-
dimensional computer simulation. Figure 11.5 shows results from a computer program that uses
the dimensionless variables of Eqs. (11.7) and (11.8). The figure gives electron phase-space
distributions in terms of the dimensionless electron velocity V = ve(z)/vi.  Figure 11.5a shows a
distribution at early time when the ion beam has moved only a few sheath widths. The spatial
variation of electron velocity closely follows the prediction of Eq. (11.10). As predicted, the
peak potential of 4Vo occurs at a distance Z = (2)1/2B from the source. The solution has an
oscillatory component of potential similar to that of Figure 11.3. Some reflected electrons appear
as negative velocity particles. 
   Figure 11.5b shows the electron distribution at a later time with the ion beam front at Z = 9.
There is considerable activity near the injection point, but the downstream electrons have settled
into an equilibrium with small variations of potential. The average beam potential is Vo and the
average electron velocity equals vi. Thermalization of the electron distribution results from the 
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Figure 11.5. Particle-in-cell computer
simulation of one-dimensional auto-
neutralization. A uniform-density ion beam
with a sharp front moves into a field-free
region. Ion kinetic energy: Ti, ion velocity: vi,
ion beam density: no. Vo = (me/mi)Ti, Z =
z/(,oVo/eno)1/2. a) Axial phase-space plot of the
electron distribution with the ion front at Z =
15. b) Axial phase space plot of the electron
distribution with the ion front at Z = 40. c)
Relative electron velocity distribution,
averaged over the spatial region marked by the
thick line in part (b).

two-stream instability. Figure 11.5c plots the electron velocity distribution averaged over the
downstream region of Figure 11.5b. The computer simulation illustrates the main difference
between auto-neutralization and ideal active neutralization. For the auto-neutralization solution,
the electrons have a velocity spread of about )ve = 0.6vi (full-width at half-maximum). 
   We can use Eq. (11.17) to find the electron acceleration sheath width. Again, suppose we have
a 100 keV deuteron beam with density 104 A/m2 – the predicted sheath width is 1.2 mm. This
width is much smaller than the width of a high-current ion beam; therefore, the one-dimensional 
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Figure 11.6. Schematic drawing of the transverse neutralization process.

sheath model is a good representation. In many intense ion beam experiments neutralizing
electrons are generated when the beam passes through a conducting grid or foil. A localized
plasma sheet can also supply electrons for auto-neutralization.

11.2. Transverse neutralization

   Figure 11.6 shows the geometry for transverse neutralization of an ion beam. The beam passes
between conducting boundaries that act as electron sources. The space-charge electric field of
the ions pulls electrons from the boundaries. Ideally, the electrons cancel electric fields in the
beam. The main differences from the models of Section 11.1 are that the ions propagate through
a bounded region and that the electrons need not move with the ion beam. By studying
transverse neutralization, we can understand how electrons merge with ion beams in more
complex geometries. 
   The geometry of Figure 11.6 is a good representation of the transport region near a
magnetically-insulated ion diode (Section 8.8). The diode magnetic field penetrates into the
transport region, inhibiting axial propagation of neutralizing electrons. The electrons can flow
only along the magnetic field lines. In a vacuum, the only way to neutralize an intense ion beam
is to supply electrons on all magnetic field lines that the beam crosses. Electrons generated on
the surfaces shown in Figure 11.6 flow into the beam. For intense ion beam diodes with pulse
lengths less than 0.1 :s, we must study the response time for this process to determine the
success of transverse neutralization. 
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(11.19)

(11.20)

(11.21)

(11.22)

   We shall take an approach similar to that of Section 11.1. We start with a simple equilibrium
model that has reasonable assumptions but leads to non-physical results. By analyzing the
limitations of the model, we can gain insight into how neutralization occurs in a real system.
Finally, to get an accurate description of the disordered collective process we turn to computer
simulations. For the simplified one-dimensional model, suppose that an ion beam moves in the z
direction through a field-free region between two conducting walls at x = ±d/2. The walls can
supply a space-charge-limited electron flux. We assume that the maximum space-charge
potential energy is much smaller than the ion kinetic energy, eN n Ti. Therefore, we shall
concentrate on the electron motion. For simplicity, we let the ions fill the space between the
boundaries with a uniform density no.
   For one-dimensional motion the density of electrons is inversely proportional to their velocity
in the x direction. The density is related to the electrostatic potential by

                                                           ne = A/N1/2.                                                                 (11.18)

We define the wall potential as N(±d/2) = 0. For space-charge-limited electron emission, the wall
electric field equals zero, dN(±d/2)/dx = 0. The electric field also equals zero on the symmetry
axis, dN(0)/dx = 0. We can write the Poisson equation for a space-charge equilibrium as: 

We define the quantity No as the potential at the midpoint between the boundaries, N(0) = No.      
The first integral of Eq. (11.19) is:

Equation (11.20) satisfies the boundary conditions if A = noNo
1/2/2. Substituting for A and

introducing dimensionless variables M = N/No, X = x/xo, Eq. (11.20) becomes:

Equation (11.21) has the multiple solutions:
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Figure 11.7. Spatial variations of electrostatic potential for transverse
neutralization with ideal one-dimensional electron motion and an ion density
constant over all time.

The maximum electrostatic potential, M = 1, occurs at the midplane X = 0. In physical units, the
midplane potential is:

                                                     No = enod2/2B2,o(2m+1)2.                                                 (11.23)

where m = 0,1,2,.... The maximum potential from a uniform-density ion beam without
neutralizing electrons is enod2/8,o. We define a space-charge potential reduction factor:

                                               No/[enod2/8,o] = 4/B2(2m+1)2.                                                (11.24)

Figure 11.7 shows the spatial variation of potential of neutralized and unneutralized beams for
different values of m. 
   One problem with the model is that it does not predict a unique equilibrium state. We expect
that a unique set of initial conditions should give a unique final state. We can choose any value
of m – the model does not show whether neutralization is effective. For m = 0 the reduction
factor equals 0.405. This reduction is useless for intense ion beam transport where the electric
fields must be less than a factor of 10-6 of the unneutralized value. 
   The simplified model is unrealistic for two reasons. First, it takes electron motion as perfectly
one-dimensional. In consequence conservation of energy implies that an electron that leaves one
boundary reaches the other boundary with zero velocity. Therefore the density of reflexing
electrons diverges at the boundaries. For the m = 0 solution electrons spend most of the time near
the boundaries and move quickly through the midplane. As a result the ion beam is over-
neutralized at the boundary and under-neutralized at the midplane. Another problem with the 
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Figure 11.8. Particle-in-cell computer simulation of transverse
neutralization. a) Simulation geometry –  the ion density increases
with time between grounded conducting electron emitters. The figure
shows an electron orbit deflected by a skewed magnetic field. b)
Simulation results - time-variation of electrostatic potential on the
midplane. Dashed line shows variation of ion density with peak
value no = 1018 m-3. Quantities 0.4No and N(0)max described in text.
Curve A: magnetic field inclination angle: 0° - one-dimensional
electron motion. Curve B: magnetic field inclination angle: 15°.
(Courtesy, J. Poukey, Sandia National Laboratories).

model is that the monoenergetic electron distribution is valid only if the ion density is constant at
all times. For a pulsed beam the ion density and the associated space-charge fields change with
time. Therefore, electrons emitted early in the pulse have different orbit properties than those
that enter at late times.
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   Transverse neutralization is effective if electrons in the beam volume do not return to the
boundary. If electrons are trapped in the beam volume, then additional electrons can enter from
the boundaries until space-charge fields are completely canceled. Relaxing the constraint of one-
dimensional motion allows electron trapping. If an electron suffers a deflection normal to the x
direction (Figure 11.8a), conservation of energy implies that it cannot return to the boundaries. A
temporal variation of space-charge fields also traps electrons. A rising ion density pulls electrons
away from the boundary.
   A computer simulation is the best approach to model complex electron orbits. We shall review
results from a particle-in-cell simulation for the geometry of Figure 11.8a. Electrons leave
conducting boundaries with a space-charge-limited flux. The boundaries and ion density have
infinite extent in the z direction. The ion density is also uniform in the x direction. The
simulation model has two main differences from the simple equilibrium model:

     1) The ion density rises with time to an equilibrium value.

     2) A transverse magnetic field in the transport region influences the electron orbits. When the
magnetic field points along x the electrons have purely one-dimensional orbits as before. On the
other hand, tipping the field direction (Figure 11.8a) results in electron velocity components in
the y and z directions. 

The skewed magnetic field is an easy way to introduce the effect of geometric variations into the
one-dimensional code.
   Figure 11.8b shows results of the simulation. The graph plots the electrostatic potential at the
midplane No as a function of time. The boundaries are at positions d = ±0.005 m, the ion density
rises to a final value no = 1018 m-3 with a rise time )tr = 0.5 ns. The dashed line in Figure 11.8b
shows the variation of ion density. For the given parameters, the equilibrium model predicts a
potential No = [0.405enod2/8,o] = 91 kV for m = 0. Curve A of the figure corresponds to a
calculation where the magnetic field lies in the x direction. The reduced potential results from
the time dependence of space-charge fields. The final potential is lower than the equilibrium
model prediction by about a factor of two. Curve B is the result of a simulation with deflected
electron orbits – the magnetic field has an inclination of 15°. This small change in geometry
results in a dramatic difference in the nature of the solution. After the ion density reaches
equilibrium, the potential rapidly drops almost to zero. (The residual potential oscillations at late
time result from the finite number of particles in the simulation.) The simulation implies that in
real systems with asymmetries, transverse electron neutralization rapidly cancels space-charge
electric fields.
   Because of their low mass, electrons respond rapidly to changes in the density of an ion beam.
Nonetheless, the variation of ion density in pulsed ion diodes is so rapid that the electron
response time can result in high values of space-charge potential. The simulation results (Figure
11.8b) show that a non-zero space-charge potential is necessary to draw electrons into the beam
volume during the rise of ion density. We can estimate the required potential for the geometry of
Figure 11.9. A sheet ion beam of width ±xb and velocity vi enters a region between electron-
emitting plates separated by distance ±d. At a given axial location, the ion density varies as:
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Figure 11.9. Geometry to estimate the peak electrostatic potential in an
ion beam with rising density neutralized by the transverse flow of
electrons.

(11.26)

(11.27)

                                                              ni(t) = no(t/)tr),                                                       (11.25)

for t # )tr, and ni(t) = no for t > )tr. When vi)tr o d the space-charge electric fields lie
predominantly in the x direction. 
   A transverse magnetic field prevents electron motion in the z direction. We can estimate the
electrostatic potential during the ion density rise by invoking global charge balance in a section
of the transport system of length )z. During the rise of ion density, the beam potential must be
high enough to pull electrons across the vacuum region from the walls. We assume that field
asymmetries are strong enough to trap electrons in the beam; therefore, electrons enter
continually from the wall. Finally, we assume that neutralization is effective so that the global
integrals of electron and ion densities over the volume element 2d)z)y are almost equal, or

Equation (11.26) holds when the space-charge potential is much smaller than that of an
unneutralized beam.
    The integral of the time variation of ion density over the volume element of Fig. 11.9 equals: 
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(11.28)

(11.30)

If the current density of electrons leaving each boundary is je and if the beam traps the electrons,
the rate of change of the integrated electron density is approximately:

If No represents the average electrostatic potential of the beam, the electron current density scales
as:

                                            je # (4,o/9) (2e/me)1/2 No
3/2/d2.                                                    (11.29)

The inequality depends on the fraction of the transport region filled by the ion beam. Combining
Eqs. (11.26) through (11.29) gives the following expression for the beam potential during the ion
density rise: 

   When applied to the parameters of the simulation of Figure 11.8 (where the ion beam fills the
transport region), Eq. (11.30) overestimates the potential by about a factor of 2.5. The dashed
line in the figure shows the estimate. As an application example consider a neutralized ion beam
accelerator (Section 11.5). A Na+ beam has current density 50 × 104 A/m2, kinetic energy 20
MeV, and ion density no = 2.4 x 1017 m-3. The beam has width xb = 0.02 m and propagates
between boundaries at d = A0.04 m. With a beam density risetime of 50 ns, the predicted
midplane electrostatic potential is No #30 kV. The transverse electric fields associated with the
residual potential can result in beam defocusing, limiting the utility of high-current ion diodes
and accelerators. 

11.3. Current neutralization under vacuum

   When a high-current ion beam moves into an infinite field-free volume, accompanying
electrons provide both space-charge neutralization and current neutralization. We can show that
a high-flux ion beam is also current-neutralized if it crosses a finite length region from a source
to an electrically-isolated target. Without electron flow, the beam would induce a large voltage
drop between the target and source. As an example, suppose a focused ion beam charges a
spherical target of radius 0.1 m. The beam has 10 A current and a 1 MeV kinetic energy. If the
distance between target and the source is 0.3 m, the inter-electrode capacitance is about C = 10-12

F. The voltage difference is )V – Ii)t/C, where )t is the beam pulse length. The deposited
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Figure 11.10. Current neutralization of ion beams by electron
flow in vacuum. a) Intense ion beam focused to an inertial fusion
target. b) Ion beam in a closed pipe neutralized by the axial flow
of electrons.

charge creates a potential equal to the beam kinetic energy in about 1 :s. On the other hand, the 

voltage to accelerate an equal current of electrons is only about 500 V. We expect that if
electrons are available at the source electrode, they will flow to the target with the ion beam to
cancel the space-charge potential. Figure 11.10a shows the elements of a one-dimensional auto-
neutralization solution for an ion beam crossing to an isolated target. The net current to the target
is zero if it has potential is +eVo.
   The current of an intense ion beam is not canceled completely when the beam moves through a
vacuum region surrounded by conducting boundaries. To describe time variations of the electron
current, we shall use the idealized geometry of Figure 11.10b. A cylindrical beam of ions with
kinetic energy Ti travels through a pipe of radius rw and length d with conducting walls at each
end. The beam has current Ii, radius ro and velocity vi – (2Ti/mi)1/2. The source plane can supply
an electron flux equal to the beam current density. For current neutralization, the electrons must
have kinetic energy; on the other hand, stationary electrons could provide space-charge
neutralization. In the static field limit there are no electric fields to give electrons a directed
energy because the surrounding walls are all grounded. At late time (compared with the ion
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transit time d/vi), we expect that the neutralizing electrons are stationary. Inside the pipe there are
no electric fields but there are magnetic fields created by the ion beam current.
   Processes are more interesting at early times because the changing magnetic flux inside the
pipe can create an axial electric field to accelerate neutralizing electrons. During the initial
transit of the beam front through the pipe, electrons follow the beam with velocity vi. In this
phase, the electron distribution is determined by the auto-neutralization process described in
Section 11.2. When the beam contacts the downstream wall the flow of neutralizing electrons
continues. If the electron flow were to stop immediately, the toroidal magnetic field of the beam
would appear instantaneously, creating an infinite electric field. Therefore, the electron flow
must decrease gradually. For current neutralization to persist, a continuous flow of electrons
from the entrance wall must accelerate to kinetic energy Teo = (me/mi)Ti. Changing magnetic flux
inside the pipe supplies the accelerating voltage. The small fractional deceleration of ions in the
electron acceleration sheath at the entrance wall contributes energy to create the magnetic field.
The inductive voltage results from a changing net current. Because the ion current density is
constant the electron current must decay.
   We can construct a simple model for the decay of neutralizing electron current with the
following assumptions:

     1. The ion beam current rises rapidly. During the initial ion transit through the pipe, the
electron current equals the ion current. At time t = 0 when the beam fills the pipe, the net current
equals zero. If Ie(t) is the net electron current, then Ie(0) = -Ii.

     2. Electrons accelerate in a narrow sheath at the entrance wall. We denote the average
electron kinetic energy at t = 0 as Te(0) = Teo.

     3. The beam radius is much smaller than the pipe radius, ro n rw. As a result, the magnetic
field energy from a net chamber current is concentrated in the volume outside the beam. To first
order, the inductive voltage acts uniformly on all electrons.

     4. The ion and electron densities ni and ne are uniform over the beam radius. 

     5. The space-charge of the high-intensity ion beam is always neutralized. Thus, the electron
density always equals the ion density, ne – ni.

   The ion current Ii is constant following injection, while the magnitude of the electron current
Ie(t) decreases in time. The net current is I(t) = Ii - Ie(t). The chamber has an inductance L
roughly equal to:

                                                      L = (:o/2B) d ln(rw/ro).                                                   (11.31)

The voltage between the entrance and exit walls is:

                                                            V = L (dI/dt).                                                            (11.32)
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(11.35)

(11.40)

Because the electron and ion densities are always equal, the ratio of ion to electron current is
proportional to the ratio of the average particle velocities:

                                                             Ie/Ii = ve/vi.                                                                (11.33)

where ve(t) = (2Te(t)/me)1/2. We can rewrite Eq. (11.33) as:

                                                          I = Ii  (1 - ve/vi).                                                           (11.34)

   The electrons gain their velocity in a narrow sheath at the entrance wall. With this condition,
Eq. (11.34) becomes

We can combine Eqs. (11.32) and (11.35) into a single equation for the time-variation of total
current:

                                                L (dI/dt) = (Teo/e)[1 - (I/Ii)]2.                                                (11.36)

In terms of the dimensionless variables,

                                                           J = t/(eLIi/Teo),                                                           (11.37)

and

                                                                 3 = I/Ii,                                                                  (11.38)

Equation (11.36) becomes:

                                                           d3/dJ = (1 - 3)2.                                                          (11.39)

With the initial condition that 3 = 0 at J = 0, the solution of Eq. (11.39) is:

Figure 11.11 plots the result of Eq. (11.40). The net current rises to a significant level over the
dimensionless interval J = 1. At late time the total current approaches the ion current. As
expected, stationary electrons provide long-term space-charge neutralization. 
   In most experiments with pulsed high-current ion beams in bounded chambers the fractional
decay of electron current is small. For example, suppose we have a high-flux beam of 500 keV 
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Figure 11.11. Variation of the net current for a neutralized ion beam inside a closed pipe. a) Geometry of
the calculation. b) Variation of total current I as a function of time. Ii equals the constant injected ion
current, J equals t/(eLIi/Teo), and L equals (:o/2B)d ln(rw/ro).

protons with ji = 100 x 104 A/m2, and ro = 0.05 m. The beam travels through a drift chamber of
length d = 1 m  and radius rw = 0.15 m. The total beam current is Ii = 7.9 kA, the chamber
inductance is L – 2.2 x 10-7 H, and the average electron energy for current neutralization is Teo =
271 eV. Inserting the values in Eq. (11.37), the characteristic current decay time is J = LIie/Teo =
6.4 :s. The quantity J is much longer than pulselengths typical of many experiments (#0.1 :s).
   By adjusting the propagation chamber inductance and the beam width, we can achieve
conditions where J is much shorter than the beam pulselength. In this limit we can use small
propagation chambers for measurements of the current density of energetic, neutralized ion
beams. Figure 11.12 shows the geometry of a detector. It consists of a bounded cylindrical
chamber with a Rogowski loop [CPA, Section 9.14] to measure the net axial current. Ions enter
through a foil with thickness less than the ion range. Besides acting as an electron source, the foil
provides discrimination against low-energy ions. Each ion in the beam creates several secondary
electrons on the inner surface of the foil. We can design the chamber geometry for a rapid decay
of electron current. For example, with d = 0.01 m, ro = 0.002 m and rw = 0.015 m, the chamber
inductance is only L = 4 x 10-9 H. For a beam of 500 keV protons with ji = 100 x 104 A/m2, the
decay time is J = LIie/Te – 0.2 ns. As a result, the detector has good time resolution. We can find
the ion current density by dividing the net chamber current by the area of the entranced aperture.
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Figure 11.12. A detector to measure the current density of an energetic, high-current ion beam
neutralized by electrons. (Courtesy, J. Greenly, Cornell University).

11.4. Focal limits for neutralized ion beams

   One motivation to neutralize an ion beam is to focus it to a small spot size. Recent
neutralization studies have concentrated on intense ion beam transport to small inertial fusion
targets. In Section 5.4, we saw that space-charge forces interfere with focusing. In this section,
we shall study processes that limit focusing of neutralized beams in vacuum. Although the focal
spot size for a neutralized beam is smaller than that for a bare beam, we shall see that collective
effects may present limitations for some applications.
   Figure 11.13 shows a pulsed neutralized beam crossing a vacuum region to a target. A current
of electrons equal to the ion current enters the beam at the entrance. The electrons almost
eliminate electric fields in the beam. Nonetheless, there is a small transverse electric field if the
electrons have non-zero transverse temperature, kTe. Sections 11.1 and 11.2 showed that both the
longitudinal and transverse neutralization processes lead to thermal electron distributions. As a
first step in the calculation of ion trajectories in a neutralized beam, we shall estimated the
magnitude of the thermally-generated fields.
   We take an ion beam with cylindrical symmetry — changes in the beam dimension take place
over axial distances much larger than the beam radius. The radial variation of high-energy ions is
a given function:

                                                                 ni(r) = nio f(r).                                                      (11.41)

The quantity nio is the ion density on axis and f(r) is a normalized function that equals unity at r
= 0 and drops to zero at large radius. We assume that the electron transverse velocity distribution 
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Figure 11.13. Coordinate system to analyze propagation of a
pulsed neutralized ion beam to an inertial fusion target in a
spherical reactor. 

(11.43)

viewed in the beam rest frame is close to a Maxwell distribution with uniform temperature kTe.
Section 2.11 showed that the electron density is related to the electrostatic potential by:

                                                           ne(r) = neo exp[eN(r)/kTe].                                         (11.42)

With the choice N(0) = 0, the quantity neo is the electron density on axis. Although Eq. (11.42)
applies only to beams in equilibrium, it is useful to estimate the electron density when the ion
beam changes slowly compared with the average electron transit time over the beam-width.
   When a neutralized ion beam propagates in free space, the net beam current is zero. The line
charges of ions and electron have equal magnitude, or:

When the neutralizing electrons are cold the radial distributions of electrons and ions are
identical. On the other hand the density profile of hot electrons may extend radially outside the
ion distribution. We can calculate the variation of electron density by substituting Eqs. (11.41)
and (11.42) in the cylindrical Poisson equation:
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(11.44)

We can identify the scaling parameters by rewriting Eq. (11.44) in terms of the following
dimensionless variables:

                                                             M = eN/kTe,                                                              (11.45)

                                                 R = r/(kTe,o/e2neo)1/2 = r/8d,                                                  (11.46)

where 8d is the Debye length [Eq. (6.13)]. The reduced form of Eq. (11.44) is:

where Nio = nio/neo. Inspection of Eq. (11.47) shows that M changes significantly over a scale
length R ~ 1. 
   We can solve Eq. (11.47) numerically by an integration from the axis to large radius. We
initiate the calculation with the starting conditions M(0) = 0, dM(0)/dR = 0 and an assumed value
of Nio. Equation (11.43) and Gauss's law imply that the radial electric field outside the beam
equals zero. If the choice of Nio is correct, dM/dR approaches 0 at infinite radius. Figure 11.14
illustrates two solutions. In the first (Figure 11.14a), the ion density is uniform between the axis
and a sharp edge. In the second solution (Figure 11.14b), the ion density drops smoothly to zero.
In both case the transverse temperature pushes electrons outside the ion distribution. The ion
density exceeds the electron density near the axis. As a result, there is a positive radial electric
field. The equilibrium solution represents a balance between the radial electric force and the
gradient of the electron pressure. 
   For an ion beam with a well-defined boundary, the electric field is concentrated within a few
Debye lengths of the edge. The peak electric field roughly equals:

                                                                    Er ~ kTe/8d e.                                                     (11.48)

For the smooth beam profile, charge separation occurs over the fill width of the beam. The radial
variation of electric field is almost linear.
   We can use Eq. (11.48) to estimate the effects of electron temperature on neutralized ion beam
focusing. Figure 11.13 shows the geometry of the calculation. Ions enter a spherical chamber and
travel through vacuum to a small target. At the entrance point, the ions draw electrons from a
source. Following Section 11.1 we expect that the entering electrons have a small but non-zero
temperature kTeo. Near the entrance, electric fields resulting from electron temperature are small
and have a negligible effect on the ion orbits. On the other hand electric fields resulting from
electron temperature can be very strong near the target. In a short neutralized ion beam the 
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Figure 11.14. Spatial variations of normalized particle density and radial electric field for a cylindrical
ion beam neutralized by hot electrons with temperature Te. 8d = (kTe,o/e2neo)1/2. a) Uniform density ion
beam with a sharp boundary. b) Ion beam with a gradual density decrease to zero.

volume occupied by electrons shrinks substantially as the beam moves toward a focus.
Compression of the electrons raises their temperature.
   We shall use an envelope equation to describe propagation of a neutralized ion beam. The
process of neutralized beam focusing is complex – our model illustrates the application of
approximations and the limitations they introduce. The main assumption is that the length of the
ion beam pulse is much shorter than the distance from the injection point to the target. As a
result, the ions and electrons form a closed system during propagation. Given the initial electron
distribution we can estimate the final properties by applying the principle of phase volume
conservation (Section 3.8). If the beam is not isolated, an exchange of hot electrons in the beam
for cold electrons from the vacuum chamber or target can take place. This process is much more
involved so that we must turn to computer simulations for predictions. 
   We take the electron distribution at injection as isotropic with temperature kTeo. As the beam
travels to the focal point, the electrons compress radially. As a result, the electron temperature
varies with the axial position of the beam, Te(z) $ Teo. We can describe the compression of
electrons in two special cases:
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(11.50)

     1) For an ideal radial compression, the transverse energy of electrons increases while the
thermal energy in the axial direction remains constant. We apply the theory of Section 3.8 for a
two-dimensional compression.

     2) If the beam compression is non-uniform in the z direction, some of the transverse energy
gain converts to an axial velocity spread. If there is strong coupling between axial and transverse
motion, the electron velocity distribution remains isotropic. Here, the beam undergoes a two-
dimensional compression with energy shared between three degrees of freedom.

The final electron distribution of a real beam is likely to have properties intermediate between
the predictions of the two limiting cases.
   The solutions of Eq. (11.47) imply that the radial electric field at the beam roughly equals:

                                                         Er(z) – 0 (kTe(z)/e8d).                                                  (11.49)

The quantity Te(z) is the transverse electron temperature and 0 is a scaling parameter with a
value near 0.5. The Debye length of electrons in the beam changes with propagation distance
according to

For a radial compression, the electron density is related to the envelope radius R by

                                                      ne(z) = neo [Ro/R(z)]1/2.                                                     (11.51)

To construct an envelope equation, we need an expression for the transverse temperature as a
function of the beam radius. To begin, consider an ideal two-dimensional compression. From
Section 3.8,

                                                       kTe(z) = kTeo (Ro/R)2.                                                     (11.52)

Substitution of Eq. (11.52) in (11.50) shows that the Debye length is constant during
propagation, 8d(z) = 8do.  For the parameters of inertial fusion beams, the Debye length near the
focal point often exceeds the beam radius. Therefore, the radial electric fields are close to those
of an unneutralized beam near the target.
   Combining Eqs. (11.49), (11.50), (11.51) and (11.52) leads to the following expression for the
envelope electric field as a function of radius:

                                                 Er(R) – (0kTeo/e8do) (Ro/R)2.                                                (11.53)
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(11.55)

(11.56)

(11.58)

The envelope equation for a nonrelativistic ion beam with zero emittance in a field-free region is

                                                 R" = [0kTeoRo
2/mivi

28do]/R2.                                                  (11.54)

We can integrate Eq. (11.54) from the target at z = 0 back to the injection point at z = -L. Assume
that the beam has a waist at the target so that R(0) = Rmin and R'(0) = 0. At the injection point 
R(-L) = Ro and R'(-L) = -2o. The quantity 2o is the envelope injection angle, 2o – Ro/L. We find
that:

The quantity vi is the axial ion velocity. If we drop the term 1/R(z) in brackets, Eq. (11.55) leads
to a relationship for the minimum beam spot size:

The quantity Ti is the ion kinetic energy mivi
2/2.

   We find a different result from Eq. (11.56) if the electron energy growth is uniform in three
dimensions. Conservation of phase volume (Section 3.8) implies that:

                                                        kTe(z) = kTeo (Ro/R)4/3.                                                   (11.57)
   
Using Eq. (11.57) in place of Eq. (11.52), the predicted focal spot size is:

   We can illustrate the implications of Eqs. (11.56) and (11.58) for beam parameters in a
conceptual heavy ion fusion reactor. Suppose that multiple beams of 10 GeV U+ ions irradiate a
target. Each beam radius is Ro = 0.06 m while the propagation distance is L = 10 m. The beam
length of 0.9 m is shorter than the propagation length. Neutralizing electrons with the same
velocity as the ions have a kinetic energy of 23 keV. Following the discussion of Section 11.1
we assume an initial electron temperature of kTeo – 10 keV. The initial density of ions and
neutralizing electrons is neo = 3.1 x 1016 m-3. The initial Debye length, 8do – 4.2 mm, is much
smaller than the beam radius. Inserting the parameters into Eq. (11.56) with 0 = 0.5 gives a spot
size prediction of Rmin = 12 mm for an ideal two-dimensional compression. If the thermal energy
is equal in three dimensions, the spot size from Eq. (11.58) is Rmin = 5.3 mm. In both cases the
predicted radius is larger than a fusion target. Therefore, the problem of thermally-generated
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electric fields warrants detailed study. Our simplified model may over-estimate the electric fields
near the target. When the beam contacts the target, hot electrons may exchange with cold
electrons from the target surface, short-circuiting the transverse electric fields.

11.5. Acceleration and transport of neutralized ion beams

   Neutralized ion beams can carry high power densities – beam currents may exceed 1 kA. Such
beams present special problems for acceleration and transport. It is essential to maintain a close
balance between ion and electron density throughout the acceleration process. In this section we
shall discuss methods to guide neutralized beams and to increase their kinetic energy.
Conventional methods of beam focusing, such as electrostatic lenses or quadrupole magnets, are
ineffective. The fields in these devices strongly deflect electrons and may interfere with
neutralization of the ion beam. Here, we shall concentrate on alternative focusing methods based
on collective effects. High-density ion beams cannot propagate without neutralizing electrons.
By inducing small electron displacements we can generate large space-charge electric fields that
can guide energetic ions.
   Figure 11.15a shows a simple example of electron control for a high-intensity ion beam. A
neutralized beam enters a vacuum region through a grounded grid. The entering ion and electron
fluxes are exactly equal. The ion beam has non-zero emittance – we represent the spread in
velocity by a transverse temperature kTi. The region has an applied solenoidal magnetic field Bo.
Although the field is too weak to affect the orbits of energetic ions directly, it is strong enough to
confine the low-energy neutralizing electrons. In the propagation region the ions expand while
the electrons are confined to a cylindrical volume. The resulting charge separation creates radial
electric fields that can focus the ions.
   Exact solutions for the electrostatic potential in the electrostatic sheath at the edge of the beam
depend on details of the ion distribution. Here we shall make a rough estimate of the sheath
dimension from scaling arguments. A strong magnetic field bonds electrons to field lines. In the
strong field limit electrostatic effects determine the sheath width. If the ions have a Maxwell
distribution in transverse velocity, we can apply the results of Section 6.2 to find the sheath
width. The width is close to an ion Debye length:

                                                              8E ~ (kTi,o/e2ni)1/2 .                                                 (11.59)

In Equation (11.59) ni is the density of the entering ion beam and the subscript E denotes the
sheath width from electrostatic effects. 
   With a weak magnetic field electron confinement in the presence of space-charge electric
fields determines the sheath width. We can apply results from Section 8.1. We want to find the
size of orbits for electrons in a magnetic field Bo subject to a voltage of about Vo ~ kTi/e. From
Eq. (8.11) the magnetic sheath width is roughly

                                                            8M ~  (2kTime)1/2/eBo.                                                 (11.60)
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Figure 11.15. Transport of high-intensity neutralized ion beams by the control of electrons. a) Weak
solenoidal magnetic field confines electrons, while the space-charge electric field confines ions. b)
Multipole magnetic fields concentrated at the boundary confine neutralizing electrons.

Figure 11.16 shows plots of the electric and magnetic sheath dimensions as functions of kTi, ni
and Bo. The condition 8M o 8E defines the weak magnetic field regime. In an intermediate regime
the expansion width for the ions equals the larger of 8E and 8M. 
   As an example suppose we have a neutralized beam of C+ ions with current density ji = 1 × 104

A/m2, kinetic energy 2 MeV, and density ni = 1.1 × 1016 m-3. The beam has an angular
divergence of 0.5° corresponding to a transverse temperature of kTi = 150 eV. Equation (11.59)
predicts that the electrostatic sheath width is only 0.87 mm. To ensure that 8M < 8E, the magnetic
field should be Bo > 0.048 tesla. The results show that low magnetic fields can confine energetic
ion beams through charge-separation effects.
   The system of Figure 11.15a is impractical for high-flux beams because of the entrance mesh.
Also extraction of the neutralized ion beam from the magnetic field is difficult. Figure 11.15b
shows an alternative geometry for collective ion beam transport. The applied magnetic field is a
cusp array (Section 10.9). Magnetic windings with alternate polarity or permanent magnets line
the wall of the transport chamber. The axial length of cells is smaller than the coil radius. The
resulting cusp field is concentrated at the wall and is small on the axis. Although the weak
magnetic fields have little effect on the ions, they strongly focus the neutralizing electrons. The
radial electric fields generated by charge separation confine the ions. The cusp array has
advantages over the solenoid: 1) the minimum-B field provides stable confinement of the low-
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Figure 11.16. Sheaths for electron control of intense neutralized ion beam transport -
dimensions in cm. 8M, the scale length for magnetic confinement of electrons, depends on
Bo (kG) and Ti (eV). 8E, the scale length for electostatic confinement of ions, depends on
Ti (eV) and ni (cm-3). 

energy electrons, 2) the neutralized ion beam emerges from and travels to field-free regions.      
The space-charge lens is another option for collective focusing of neutralized ion beams. In
contrast to the cusp transport system, the space-charge lens is an isolated solenoid lens with
linear radial forces that focus a neutralized ion beam toward a point. To analyze its effect we
shall use of the geometry of Figure 11.17. An ideal neutralized beam enters a weak solenoid
lens. The ions and electrons of the incident beam have only axial velocity. The density and
velocity of the electrons exactly equals that of the ions. The magnetic field of the lens has little
effect on the energetic ions – without space-charge electric fields single ions would pass through
with little deflection. On the other hand the converging magnetic field lines exert a radial force
on the electrons. Compression of the electron distribution creates electric fields that point toward
the axis.
   To calculate electric fields in the space-charge lens we must find a self-consistent beam
equilibrium. For a first order treatment, we neglect changes in the ion density and consider a
long solenoidal field. All electrons have zero canonical angular momentum and equal total
energy:

                                                                   Te = Ti(me/mi).                                                    (11.61)

The constraints on the electron distribution are similar to those we used to calculate the Brillouin 
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Figure 10.17. Geometry of the space-charge lens.

equilibrium – we can apply the results of Section 10.3. The main difference is the presence of the
ions. In the theory of Section 10.3 the charge density no represented a bare electron beam. In the
space-charge lens the negative charge density arises from an excess of electrons near the axis.
We shall denote the negative charge enhancement as )n. For a high-current neutralized beam,
we expect that 

                                                                     )n n ni, ne.                                                       (11.62)

   Section 10.3 showed that )n is uniform in radius in a self-consistent electron equilibrium.
Equation 10.33 implies that the charge imbalance has magnitude 

                                                        )n = (eBo/2me)2 (2,ome/e2).                                           (11.63)

From Eq. (5.26) the resulting radial electric field is

                                                              Er = - (Tgo
2me/4e) r.                                                 (11.64)

The electric field of Eq. (11.64) combined with the centrifugal force balances the focusing force
of the magnetic field so that the neutralizing electrons pass through the lens with small change in
radius. The electric field varies linearly with r – the field from the perturbed electrons is
independent of the radial variation of ion beam density when the fractional charge imbalance is
small. 
   The space-charge electric force on nonrelativistic ions is much larger than the direct magnetic
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force. Within the solenoid lens, the electric force is: 

                                                        Fe = - me (eBo/2me)2 r.                                                  (11.65)

Equation 9.25 implies that the magnetic force is

                                                        Fm = - mi (eBo/2mi)2 r.                                                   (11.66)

The ratio of forces is:

                                                              Fe/Fi = (mi/me).                                                        (11.67)

Equation (11.67) shows that the focusing effect from space separation is over a thousand times
stronger than the direct action of the magnetic field. 
   The space-charge lens has the apparent ability to focus intense ion beams with modest
magnetic fields. Unfortunately further analysis shows that a linear force variation is possible
only in a restricted parameter regime, limiting applications to low-current ion beams. One
restriction is that the magnetic field cannot be so strong that it reflects entering electrons. We
discussed this process in Section 10.1. Equation 10.11 gives a constraint on the maximum radius
of a neutralized beam: 

                                                               rb < 2mevi/eBo.                                                        (11.68)

To illustrate the implication of Eq. (11.68) suppose we have a 10 MeV C+ beam with velocity vi
= 1.26 × 107 m/s. For a beam radius of 0.02 m, the equation implies that Bo < 7.2 x 10-3 tesla. A
neutralized beam can penetrate through a lens with higher applied magnetic field by creating
axial space-charge fields that pull electrons through the lens. Although the beam crosses the lens,
the associated spread in electron total energy violates the conditions of the model and the radial
electric field is non-linear.
   With a limit on applied magnetic field we can investigate the constraints imposed by the
condition of small fractional change in electron density, Eq. (11.62). From Eq. (11.63) the ratio
of the electron density perturbation to the density in the undisturbed beam is

                                                  )n/ne = (eBo/2me)2 (2,o me/e2ne) n 1.                                  (11.69)

We can rewrite Eq. (11.69) in a form that shows the limit on the ion beam current,

                                                          I n (B/2) (eBo
2,ovi/me) rb

2.                                           (11.70)

Inserting parameters for the carbon ion beam with Bo = 5 x 10-3 tesla and rb = 0.02 m, we find
that I n 0.31. The implication is that space-charge lenses have linear focusing strength only for
low-current ion beams.
   To conclude this section, we discuss methods to accelerate neutralized ion beams. The 
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Figure 11.18. Methods to accelerate high-current neutralized ion beams.
a) Low gradient, large-area injector. Biased grids prevent streaming of
electrons into the acceleration gaps. b) Radial magnetic field acceleration
gap. The magnetic field inhibits electron streaming.
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challenge in a neutralized beam accelerator is control of electrons in the presence of strong axial
electric fields. The electrons cannot cross acceleration gaps with the ions. The neutralizing
electrons must be removed from the ion beam at the entrance to a gap and replaced at the
downstream side. Also the drift regions between acceleration gaps must be electrically isolated
from the gaps. Accelerating electric fields that penetrate into the drift regions would pull
electrons from the neutralized beam and accelerate them backward. Electron loss wastes energy
and prevents effective neutralization between gaps. Figure 11.18a shows an accelerator for a
high-current ion beam that uses grids for electrical isolation of the acceleration gaps. The gap
electric field penetrates into the drift region a small distance comparable to the spacing between
grid wires. Electron loss is small if the beam in the drift region has a positive potential relative to
the grid. In the drift region electrons mix with the ion beam through the transverse neutralization
process described in Section 11.2. A beam with a long pulse length traps a distribution of
stationary electrons in the drift spaces between narrow acceleration gaps. Shaped grids create
transverse components of electric field to focus the ions. The grid accelerator has the
disadvantages of ion loss on the grids and degradation of beam emittance by facet lens effects.
Nonetheless the device can create high-perveance beams of moderate kinetic energy (~1 MV)
and current density (~1 × 104 A/m2). 
   The radial magnetic field acceleration gap of Figure 11.18b allows acceleration of high-flux
neutralized beams. In contrast to the grid accelerator the radial field gap has no physical
structure to intercept the beam. Transverse magnetic fields prevent electron flow across the
acceleration gaps. The radial field gap is similar to the magnetically insulated gap of Section 8.8
– a pre-accelerated beam replaces the ion source. By conservation of canonical angular
momentum the magnetic fields do not contribute a net azimuthal velocity to accelerated ions. For
long-pulse beams electrons trapped in the acceleration gap allow enhanced ion flux (Section
8.9). Multiple gap radial field accelerators have generated 3 kA pulsed C+ beams at 600 keV.
Observed current densities of 30 × 104 A/m2 are well beyond conventional space-charge limits.
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12

Electron Beams in Plasmas
_______________________

   We have looked briefly at plasma properties several times in previous chapters. In this chapter,
we shall initiate a more detailed study of plasmas with emphasis on their response to pulsed
high-current electron beams. There is a large body of literature on the topic because of the
possibility of long-distance propagation of electron beams through the atmosphere and the
potential use of intense beams for plasma heating. We shall concentrate on the motion of
charged particles rather than the atomic processes involved in the creation of plasmas. The
models assume pre-formed plasmas and do not address the involved process of ionization by the
beam.
   We shall limit attention to infinite plasmas with no applied magnetic field. The ideal plasma
responds immediately to a pulsed beam, providing complete neutralization of the beam space-
charge and current. Four sections in this chapter review plasma properties that limit their
response to changes of charge and current density. Section 12.1 describes how plasma electrons
neutralize space-charge by shifting their positions. Residual electric fields depend on the
temperature of the electrons. The derivations leads to the Debye scale length. Field cancellation
may be incomplete over distance smaller than the Debye length. Section 12.2 reviews
electrostatic plasma oscillations. These occur when there is a sudden change in charge density,
such as the injection of a beam. The oscillations have a characteristic frequency, the electron
plasma frequency Tpe.
   Although low-temperature plasmas conduct current, they have a much lower conductivity than
metals. Sections 12.5 and 12.6 discusses imperfect conduction in plasmas. Resistive effects
modify the distribution of plasma return-current for a pulsed beam. Section 12.5 describes how
the inertia of electrons delays the plasma response to rapid changes in current. We derive the
magnetic skin depth, a characteristic dimension for cancellation of pulsed magnetic fields in
plasmas. Section 12.6 reviews the effect of collisional resistivity in plasmas. Resistivity results
in spatial spreading of plasma return current over a cross-section larger than that of the beam. As
a result, the magnetic field in the beam volume can provide a self-confined equilibrium.
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   Section 12.3 extends the theory of plasma oscillations to the transverse motion of beam
electrons about a core of immobile ions. We will apply the results in Section 13.7 to the hose
instability of an ion-confined electron beam. Section 12.4 covers the space-charge neutralization
of a pulsed electron beam. We shall calculate the time-dependent shift of plasma electrons by a
direct numerical solution of the non-linear moment equations. The treatment illustrates some
methods to solve partial differential equations with computers and shows that neutralization is
almost complete is the beam current rise time is much longer than 1/Tpe. 
   Section 12.7 describes propagation of a long pulse length beam in a resistive plasma. At late
time the plasma return current covers a larger area than the beam current; therefore, there is a
non-zero confining magnetic field in the beam volume. The magnetic deflection of electrons in a
charge-neutral beam defines an upper limit on the transportable current. The Alfven current IA is
a useful scaling parameter for intense beam studies. Section 12.8 reviews the theory of self-
contained equilibria for a beam with current less than IA in a resistive plasma. We shall study the
Bennett equilibrium, a self-consistent model for magnetically-pinched beams with non-zero
emittance. The Bennett equilibrium, based on a Maxwell distribution of transverse energy, is a
good representation for collision-dominated beams. Section 12.9 applies the equilibrium results
to model long-distance transport of an electron beam through a weakly-ionized plasma.
Collisions with gas atoms increase the transverse emittance, resulting in an expanding beam
envelope. We derive the Nordsieck length, an expression for the collision-limited propagation
distance.

12.1. Space-charge neutralization in equilibrium plasmas

   When a high-current beam enters a plasma, plasma particles move to cancel the beam-
generated electric field. In this section we shall calculate the response of a plasma to a steady-
state beam and investigate the significance of the plasma Debye length.
   To begin we shall review the quantities we need to characterize a plasma. Plasmas are
collections of ions and electrons governed by long-range electromagnetic interactions. Usually,
the densities of ions and electrons, ne and ni, are almost equal so that the mixture is space-charge
neutralized. In many experiments on plasma transport of electron beams the beam density nb is
much smaller than the plasma density, nb n ne. The beam drives out a few of the plasma electrons
to achieve complete space-charge neutralization, where: 

                                                                ni = ne + nb.                                                             (12.1)

Relativistic electron beams generate strong magnetic focusing forces. Such beams can be self-
contained with only partial space-charge neutralization. Therefore, the transport of such beams
in low-density plasmas (nb > ne) is of considerable interest. In this case the beam expels all the
low-energy plasma electrons.
   The kinetic energy of plasma particles affects how they respond to beams. In this chapter we
shall represent the velocity dispersion of plasma ions and electrons as Maxwell distributions with
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(12.5)

temperatures Ti and Te. Plasma particles may also have average drift velocities vi and ve. Usually
unconfined plasmas are stable against velocity space instabilities if 

                                                           |vi|, |ve| n (2kTe/me)1/2.                                                  (12.2)

The condition of Eq. (12.2) holds when moderate-current beams propagate through dense
plasmas. On the other hand, high-current pulsed electron beams can induce a large plasma
electron drift velocity, leading to a two-stream instability and rapid plasma heating.
   Plasmas used for electron beam transport usually have low temperature (kTe < 100 eV), and
large spatial extent. Methods for beam plasma generation include laser ionization, pulsed plasma
guns, low-energy electron discharges or collisions of beam particles with a background gas.
Beam-generated plasmas are often not fully ionized – neutral atoms are present in the beam
volume. Although atoms do not participate in electromagnetic interactions, they may influence
the beam and plasma responses through collisions.
   We shall use a simple model to calculate the steady-state response of a plasma to an injected
beam. The beam enters an unconfined plasma of infinite dimension with no included magnetic
field. Low-energy electrons respond rapidly to the presence of the beam while the massive ions
respond slowly. We neglect ion motion and assume that the beam pulse is long enough for
plasma electrons to adjust to a modified equilibrium. The electron beam density is uniform in z
and has cylindrical symmetry. We write the beam density as:

                                                              nb(r) = nbo f(r).                                                          (12.3)

The function f(r) equals unity on the axis and drops to zero on the beam envelope, f(rb) = 0. The
plasma ions are spatially uniform with density ni(r) = no. If the electrons are in thermal
equilibrium, their density is:

                                                   ne(r) = no exp(+eN(r)/kTe).                                                   (12.4)

The electrostatic potential N(r) is negative over the region of interest. The form of Eq. (12.4)
ensures that at large radius the potential drops to zero and the plasma electron density
approaches the ion density. 
   Using Eqs. (12.3) and (12.4), the Poisson equation is: 

Equation (12.5) is similar to Eq. (11.44) for the neutralization of an ion beam by hot electrons.
We again scale the potential in terms of kTe and the length in terms of the Debye length [Eq.
(6.13)]:

                                                         M = -eN/kTe,                                                                  (12.6)
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Figure 12.1.a. Neutralization of a steady-state, cylindrical electron beam
in a homogeneous plasma. Numerical solutions for a broad beam.
Unperturbed plasma electron density: no, plasma temperature: Te, 8d =
(kTe,o/e2neo)1/2. Beam has uniform density nbo = 0.1no, and a sharp
boundary at rb/8d = 8. Top: spatial variation of electrostatic potential.
Bottom: solid line, spatial variation of plasma electron density; dashed
line, spatial variation of beam density. 

(12.8)

                                                             R = r/8d.                                                                     (12.7)

The dimensionless form of Eq. 12.5 is
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Figure 12.1.b. Analytic solution for Debye shielding of electric fields in
a narrow beam, rb/8d n 8. Top: Spatial variations of electrostatic
potential. Bottom: Spatial variation of plasma electron density.

(12.9)

where Nbo = nbo/no. Given f(R) and a value for Nbo, we solve Eq. (12.8) by integrating from the
origin with the symmetry condition dM/dR = 0. The proper choice of M(0) gives a solution where
M = 0 and dM/dR = 0 at large radius. This value of M(0) gives an electron density that preserves
net neutrality:
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(12.10)

   Figure 12.1a shows a solution of Eq. (12.8) for a broad beam (rb/8d = 8) with a sharp boundary.
The reduction of the plasma electron density equals the beam density over most of the beam
width. Electric fields are concentrated within one Debye length of the beam edge. The on-axis
potential energy eN(0) is much smaller than kTe if the beam density is low, nbo n no.
   The nature of Debye shielding in a plasma is often illustrated with the example of the fields of
a point test particle with charge q. To find the distribution of plasma electrons, we solve the
Poisson equation in spherical coordinates centered on the test particle. We assume that the test
charge makes a small perturbation to the plasma distribution, or qN(r)/kTe n 1. The approximate
form of the Poisson equation is:

We solve Eq. (12.10) analytically with the boundary condition that the potential approaches the
vacuum potential for a charge q as r approaches zero: 

                                                  N(r) = (q/4B,o r) exp(-r/8d).                                               (12.11)

The expression of Eq. (12.11) is the product of the vacuum electrostatic potential times a term
resulting from the plasma, exp(-r/8d). The plasma cancels the electric field of the test charge at
distances greater than 8d – the process is called Debye shielding. Figure 12.1b shows a numerical
solution for a related case, an immersed narrow cylindrical electron beam with rb n 8d. The
plasma shields the radial electric of the beam over a length scale equal to 8d.

12.2. Oscillations of an un-magnetized plasma

   To study the transport of pulsed beams we must understand time-dependent plasma processes.
Section 12.4 presents numerical calculations of plasma response to a rapidly pulsed electron
beam. As a preliminary, this section reviews analytic calculations of plasma oscillations induced
by charge imbalances. We limit the discussion to uniform plasmas with infinite extent and no
applied magnetic field. In this case all plasma disturbances oscillate at the plasma frequency, Tpe.
The quantity 1/Tpe is the characteristic time for plasma electrons to shift position to balance a
charge perturbation.
   Again, we shall make several approximations to simplify the mathematics and to emphasize
the relevant physical processes:

     1. The plasma oscillation is a small perturbation about a stationary state.
 
     2. The motion of plasma particles is one-dimensional. Electric fields and particle
displacements are in the x direction. 
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(12.14)

(12.15)

(12.16)

     3. The plasma is cold, kTe = kTi = 0. As a result, the macroscopic electric force determines the
motion of electrons. Because all electron orbits at a position x are identical, the first two moment
equations (Section 2.10) gives a complete description.

     4. Ions are immobile over time scales for electron motion. 

     5. Collisions have a negligible effect on electron dynamics. The time between collisions is
much longer than 1/Tpe.

   The steady-state plasma has electron and ion densities that are uniform and equal:

                                                            neo(x) = nio(x) = no.                                                    (12.12)

Equation (12.12) implies that the equilibrium plasma has no electric field. The density of
immobile ions remains uniform over time scales of interest:

                                                                 ni(x,t) = no.                                                           (12.13)

We use moment equations to describe the electron response to a perturbation. The one-
dimensional equation of continuity is:

The equation of momentum conservation for the non-relativistic plasma electrons is

The function Ex is the electric field resulting from displacement of the electrons. It is related to
the electron density through the one-dimensional divergence equation: 

The first term in parenthesis is the contribution of the uniform ion density. 
   Equations (12.14), (12.15) and (12.16) are a coupled set of non-linear differential equations.
We can find an analytic solution in the limit of small changes from equilibrium. We write the
variation of electron density as:
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(12.18)

(12.19)

(12.20)

(12.21)

(12.23)

                                                      ne(x,t) = no + )n(x,t),                                                      (12.17)

where )n n no. In the equilibrium state, there is no average electron velocity or electric field. We
denote the small perturbed values of these quantities as )v and )E. The continuity equation
becomes:

We drop the third term in Eq. (12.18), a second-order differential quantity. Later, we shall prove
that the term is small. The momentum equation takes the form:

We also eliminate the second term on the left-hand-side of Eq. (12.19). The divergence equation
involves only the perturbed density: 

   We can combine Eqs. (12.18), (12.19) and (12.20) into a single equation using the chain rule of
partial derivatives:

Equation (12.21) has the general solution

                                        )n(x,t) = f1(x)cos(Tpet) + f2(x)sin(Tpet).                                       (12.22)

The quantities f1(x) and f2(x) are arbitrary functions of position – they are constrained by the
initial density and velocity variations in the plasma.  For any initial state, the plasma response is
oscillatory at the characteristic plasma frequency:

The oscillation frequency of Eq. (12.23) is high for plasmas commonly used for electron
transport. For example, a plasma with density 1019 m-3 has a plasma angular frequency of Tpe = 
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Figure 12.2. Mechanism of plasma oscillations. The initial perturbation of plasma electrons is a step
function in density with no velocity change. a) Initial density perturbation. b) Density variation at t =
B/Tp. c) Electric field distribution at t = 0. d) Velocity distribution at t = B/2Tp. 

1.78 × 1011 s-1. The oscillation frequency is f = 28.4 Ghz, corresponding to a period of only 0.035
ns.
   To illustrate the physical meaning of Eq. (12.21), suppose we have a plasma with a specified
initial density perturbation at t = 0 but with no initial electron velocity. Figure 12.2a illustrates
the density perturbation, a step function that varies between no ± )no over a spatial period of 2xo.
For this special case, the function f1(x) is a step function and f2(x) = 0. Equation (12.22) predicts
that the density changes to the form shown in Figure 12.2b at t = B/Tpe. The regions with excess
electron density become regions of minimum density. A plot of the electric field at t = 0 (Figure
12.2c) clarifies the mechanism of the density reversal. From Eq. (12.20) the initial electric field
is a sawtooth function with maximum amplitude: 

                                                             )E = e)nxo/2,o.                                                         (12.24)

Equation (12.19) implies that the spatial variation of velocity is proportional to -)E(x) – the
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temporal velocity variation is 90° out of phase with the electric field. Figure 12.2d illustrates the
spatial variation of velocity at t = B/2Tpe. The direction of the velocity is such that electrons shift
from regions of high density towards regions of low density. According to the equation of
continuity, the linear spatial variation of velocity means that the density decreases uniformly
over a region with )n > 0.
   We can use Eqs. (12.18) and (12.19) to estimate how far individual electrons move during the
the density compression and rarefaction. The magnitudes of the perturbed position, velocity and
electric field are related by

                                              )x = )v/Tpe = e)E/meTpe
2 = xo ()n/no)/2.                               (12.25)

In the limit that )n/no n 1, the amplitude of individual particle oscillations )x is much smaller
than the length scale of the disturbance, xo. Plasma oscillations result from small shifts of large
numbers of electrons. We can use Eq. (12.25) to estimate the magnitudes of terms on the left-
hand-side of Eq. (12.19). The time-derivative of a quantity is roughly equal to the magnitude of
the quantity multiplied by Tpe – a spatial derivative is comparable to the quantity multiplied by
1/xo. A dimensional analysis shows that the first term of Eq. (12.19_ has magnitude:

                                                            M)v/Mt # Tpe)v,                                                        (12.26)

while the second term is

                            )v(M)v/Mx) # )v2/xo – (2)v2/)x)()n/no) – (Tpe)v) ()n/no).                   (12.27)

The non-linear term is smaller by a factor of ()n/no). Hence, we were justified dropping it from
the analysis.
   The plasma oscillations represented in Figure 12.2 are stationary. We can generate traveling
wave oscillations if the initial electron distribution includes perturbations in both density and
velocity. Because Eqs. (12.18), (12.19) and (12.20) are linear, we can represent any initial
variation and subsequent oscillation as a sum of independent harmonic components. Suppose
that the density perturbation at t = 0 has the form:

                                                      )n(x,0) = )no cos(kx)                                                     (12.28)

and the initial velocity variation equals:

Equations (12.28) and (12.29) imply that the spatial functions of Eq. (12.22) are:

                                                           f1(x) = cos(kx),                                                           (12.30) 
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Figure 12.3. Relationships between perturbed electron density,
velocity, and electric field for a plasma wave with a positive
phase velocity. Left-hand-side: t = 0, right-hand-side: t = )t.

and

                                                          f2(x) = sin(kx). 

Combining the trigonometric terms of Eq. (12.22), we can express the density as: 

                                               )n(x,t) = )no cos(kx-Tpet).                                                    (12.31)

   Equation (12.31) is a traveling density perturbation with phase velocity Tpe/k. Such waves are
called plasma waves. Plasma waves oscillate at frequency Tpe. They may have any phase
velocity, depending on the choice of wave number. As an example, suppose we inject a 100 keV
electron beam into a plasma with density no = 1019 m-3. The electron beam interacts strongly with
plasma waves if the phase velocity of the wave equals the beam velocity, vz = $c, where $ =
0.548. Here, beam electrons move with a point of constant phase and see a steady state electric
field. The condition for resonant interaction is
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(12.34)

(12.35)

                                                                   T/k = $c,                                                           (12.32)

or

                                                               8 = 2B$c/Tpe.

For the given plasma density, we expect to observe the growth of plasma waves with 8 –  5.8 ×
10-3 m.
   For a harmonic disturbance moving in the +x direction, the density, velocity and electric field
are given by

                                                     )n(x,t) = )no cos(kx-Tpet).                                              (12.33)

and

Figure 12.3 illustrates the relations between plasma quantities in the moving disturbance. The
left-hand-side of the figure shows the initial plasma state while the right-hand-side shows the
quantities after an interval )t. First, consider the velocity variation. In the region between x = 0
and x = 8/2, the velocity decreases as x increases. Therefore, in this region the velocity
dispersion bunches particles (Section 15.3) and the density increases. Conversely, electrons
disperse in the region -8/2 # x # 0 so that the density decreases. The combination of increasing
and decreasing density causes the point of maximum density to move to the right. Inspection of
the spatial variation of electric field shows that electrons accelerate in the region 0 # x # 8/2 and
decelerate at position -8/2 # x # 0. The combination of increasing and decreasing velocity causes
the point of maximum velocity to move to the right.

12.3  Oscillations of a neutralized electron beam

   In this section, we shall show that a uniform current-density electron beam in a neutralizing ion
background oscillates at a characteristic frequency. The beam oscillation frequency is called the
beam plasma frequency because it has the same form as the plasma frequency of Section 12.2.
We shall apply the results in Sect. 13.6 to study hose instabilities of ion-confined electron
beams. 
   We shall begin by modeling a non-relativistic electron beam and add relativistic corrections 
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Figure 12.4. Coordinates to analyze transverse oscillations of a cylindrical non-relativistic electron beam
in an ion background. 

later. A cylindrical electron beam with uniform density ne from the axis to radius ro moves
through an equal density of ions, ni = ne = no. The massive ions are immobile in the transverse
direction. In equilibrium, there is no electric field. Electrons move in the axial direction with
velocity vz. For vz/c n 1, the effect of beam-generated magnetic forces is small. We shall
calculate the response of the beam to a perturbation in the electron rest frame moving at velocity
vz. The condition vz n c means that the particle densities and electric fields are almost the same in
the rest frame and laboratory frame.
   Suppose that at t = 0 we displace all electrons a distance *(z,0) from the ions (Figure 12.4).
The charge separations results in an electric field Ex. The electrons subsequently oscillate about
the immobile ion core. The quantity *(z,t) represents the time-dependent displacement of the
beam center. We can calculate the nature of beam oscillations with the following assumptions:

     1. The displacement is small, * n ro.

     2. The electrostatic approximation is valid for the calculation of fields – electromagnetic
radiation from the  beam is negligible.

     3. The axial length for variations of the displacement is much greater than ro.

The second conditions holds if the oscillation period is much longer than ro/c. With the third
assumption, we can approximate local fields with expressions for an infinite length beam.
   As a first step, we shall find the electric field that results from a uniform electron displacement
using the polar coordinate system of Figure 12.4. The figure shows the effect of a small electron
beam displacement. Although the core of the beam maintains zero charge density, there is a
charge imbalance on the surface. For small displacement, we can represent the charge as a thin
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(12.39)

(12.41)

surface layer. The magnitude of the surface charge density is proportional to the thickness of the
layer – Figure 12.4 shows that 

                                              F (coulombs/m2) = -enoF* cos2.                                            (12.36)

Gauss' law implies that the electric fields inside and outside the beam surface are related by:

                                                         E2(out) = E2(in),                                                          (12.37)

                                                    Er(out) = Er(in) + F/,o.                                                     (12.38)
To find the electric field, we can solve the Laplace equation for electrostatic potential inside and
outside the surface and match the values of the potential at r = ro using Eqs. (12.37) and (12.38).
The Laplace equation is valid within the beam core because there is no net space-charge.
   For an axially uniform system, the Laplace equation is:

The method of separation of variables gives a general solution for Eq. (12.39). We take the
potential as:

                                                        N(r,2) = R(r)1(2).                                                        (12.40)

Substitution of Eq. (12.40) into Eq. (12.39) gives individual equations for the radial and
azimuthal functions R(r) and 1(2). We can write the general solution in terms of cylindrical
harmonic functions:

where

                                                          1o = Ao2 + Bo,                                                             (12.42)

                                                         Ro = Co lnr + Do,                                                           (12.43)
 
                                                 1n = An cos(n2) + Bn sin(n2),                                               (12.44)

and                                                     Rn = Cn rn + Dn r-n.                                                       (12.45)

The electrostatic potential for the geometry of Figure 12.4 must have symmetry about the y axis; 
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(12.46)

(12.47)

Figure 12.5. Electric field lines resulting from small upward displacement of a cylindrical electron beam
in an ion background (Adapted from J.D. Jackson, Classical Electrodynamics. Used by permission, John
Wiley and Sons).

therefore, we can drop the sine terms in the expansion of Eq. (12.44). The requirement that the
potential inside the beam has a finite value at the origin reduces the expansion to the following
form: 

Similarly, the potential in the region r > ro approaches zero at large radius. Here, the potential is:

We can determine the coefficients in Eqs. (12.46) and (12.47) by matching the solutions at r = ro.
Note that the equations must hold at all values of 2. Therefore all coefficients except those with
n = 1 equal zero. The constraints on the coefficients for n = 1 imply that the electrostatic
potential is:

                                                   Nout(r,2) = (Fro
2/,o) (cos2/r),                                             (12.48)

                                                Nin(r,2) = (F/,o) r cos2  = (F/,o) x.                                       (12.49)

Figure 12.5 plots electric field lines for the potential of Eqs. (12.48) and (12.49). Outside the
beam, the potential is identical to that of an electric dipole located at the origin. 



Electron beams in plasmas Charged Particle Beams

550

(12.54)

   The implication of Eq. (12.49) is that the x directed electric field inside the beam volume is
constant, 

                                                                Ex = -eno */,o.                                                       (12.50)
 
A uniform displacement of electrons gives a uniform electric field. The equation of motion for
all electrons inside the beam core is

                                                     me (d2*/dt2) = -(e2no/,o) *.                                               (12.51)

Equation (12.51) implies that in the beam rest frame the electrons oscillate at frequency Tpe =
(e2no/,ome)1/2. We can write the transverse beam motion of the beam in the general form:

                                                 *(z,t) = *(z) Re exp[Tpet + N(z)].                                        (12.52)

The quantities *(z) and N(z) are arbitrary amplitude and phase factors that depend on the initial
perturbation. As with any collection of independent oscillators, we can construct standing wave
or traveling wave disturbances by choosing appropriate forms of N(z). With *(z) uniform and
N(z) = ±kz, Eq. (12.52) represents a traveling wave with phase velocity ±T/k.
   Neutralized relativistic electron beams also can perform transverse electrostatic oscillations.
To develop a theory for this regime, we assume that the change of energy in the transverse
direction is much smaller than the electron kinetic energy ((-1)moc2. A uniform cylindrical beam
of electrons of density nb travels through a uniform ion cylinder with equal density ni. In the
laboratory frame there is a beam-generated magnetic force. This force is always symmetric about
the center of the beam so it does not contribute to transverse oscillations. The asymmetric charge
distribution of the displaced beam acts like a surface charge layer:

                                                              F = -enb F* cos2.                                                   (12.53)

Following the previous discussion, the charge layer creates a uniform electric field Ex = -enb */,o.
To calculate the electron response to the field, we must remember that they have relativistic
mass (mo in the laboratory frame. The electron beam oscillates at Tb, the beam plasma
frequency:

   The beam oscillation frequency differs from Eq. (12.54) if the beam and ion densities are
unequal. Generally nb is greater than ni for a neutralized relativistic electron beam in equilibrium.
For example, Section 5.5 showed that a uniform-density electron beam with zero emittance in a
uniform ion background of the same radius has radial force balance when 
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Figure 12.6. Partial neutralization of a relativistic electron beam by an ion background. a) Radial forces
acting on the beam in equilibrium. b) Charge distribution for a displaced beam.

                                                                ni = nb/(2.                                                              (12.55)

The ions cancel only a fraction of the radial electric field. The ion density for equilibrium must
be higher if the electron beam has non-zero emittance. We can symbolize the relation between
ion and beam densities by the neutralization fraction [Eq. )5.124)]:

                                                               fe = ni/nb,

where fe $ 1/(2. 
   Suppose an electron beam moves through an ion background of density fenb. Figure 12.6a
illustrates forces on an equilibrium electron beam in the laboratory frame. With no displacement,
there is a balance between the forces of the net radial electric field, emittance, and the beam-
generated magnetic field. Figure 12.6b shows forces when the beam moves sideways a small
distance *. The beam-generated magnetic force and the emittance force are unaffected by the
displacement. To calculate the electric force, we divide the beam charge into two components 
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(12.56)

Figure 12.7. Geometry for numerical solutions of fluid equations describing the injection of a pulsed
electron into a homogeneous, field-free plasma.

with densities (1-fe)nb and fenb. The first component creates a radial electric field centered on the
beam axis with magnitude equal to the magnetic and emittance forces – it does not contribute to
transverse beam oscillation. The second component, when combined with the displaced ion
charge, approximates the effect of a charge layer F = -e(fenb)F* cos2. The result is that the beam
oscillates at frequency

12.4. Injection of a pulsed electron beam into a plasma

   In this section, we shall study detailed solutions for the response of a plasma to a rapidly
pulsed electron beam using the moment equations of Section 2.10. The model illustrates the
excitation of plasma oscillations by a pulsed beam. It also gives us another opportunity to apply
numerical methods to the solution of collective problems. We shall solve a set of non-linear
moment equations using the Lax-Wendroff method. 
   In collective problems the preliminary analysis and simplifying assumptions are as important
as the actual solution. To describe plasma neutralization of a pulsed beam, we want to reduce the
problem so that the solutions have generality and do not depend critically on details of the
boundary conditions. Nonetheless we must be certain to include the essential physical processes
so that the results reflect the behavior of real systems. Figure 12.7 illustrates the geometry of the
calculation. A sheet beam of high-energy electrons enters a uniform, fully-ionized plasma
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enclosed between conducting boundaries at ±xw. The plasma has an equilibrium electron density
of neo. The beam has half-width xo. 
   To reduce the mathematical complexity, we limit attention to solutions where all quantities
vary only in the x direction. This assumption is not entirely consistent – the density of a pulsed
beam must change along the direction of propagation. In particular if the beam current at a
position on the z axis has risetime )tb, then the density varies over the axial length vz)tb. A one-
dimensional calculation gives a good prediction of the local behavior of the plasma if 

                                                                xw n vz )tb.                                                            (12.57)

We shall adopt the condition of Eq. (12.57) and ignore z derivatives. In the local region of the
calculation, the beam density varies with time. We take the beam density as uniform between ±xo
with a time variation:

                                                             nb(t) = nbo g(t).                                                         (12.58)

The function g(t) varies from 0 to 1 over the beam rise time )tb. 
   To simplify the model further, we assume that there are no applied magnetic fields and that the
beam-generated magnetic fields are small. The calculation of electric fields is easy if we neglect
electromagnetic radiation. The electrostatic limit applies if the relaxation time of the plasma is
much longer than the time for electromagnetic radiation to cross the system:

                                                                1/Tpe o xw/c.                                                          (12.59)

Finally we use the approximation of immobile plasma ions – the ion density equals neo over the
duration of the calculation. The validity condition is:

                                                               1/Tpi o )tb.                                                             (12.60)

In Eq. (12.60) Tpi is the ion plasma frequency:

The quantity 1/Tpi is the time for ions to respond to an imbalance of space-charge.
   With a stiff beam and immobile ions we need solve only moment equations for plasma
electrons. We take the plasma electrons as cold. The effects of electron temperature are small if
kTe n e|N|, where |N| is the magnitude of electrostatic potential created by the injection of the
beam. In the cold-electron limit we can describe the plasma completely with the Poisson
equations and the equations of continuity and momentum conservation (Section 12.10). We can
write the coupled set of equations in a convenient form by defining dimensionless variables. The
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(12.68)

dimensionless plasma electron density is referenced to the equilibrium density before injection
of the beam:

                                                               N = ne/neo.                                                              (12.62)

Similarly, the dimensionless maximum beam density is Nbo = nbo/neo. As we saw in Section 12.2,
there is no inherent length scale associated with plasma oscillations. Therefore we choose a
length scale characteristic of the specific problem, xw. The dimensionless distance is 

                                                               X = x/xw.                                                                 (12.63)

The space-charge imbalance created by the beam induces a plasma oscillation. The characteristic
time scale is 1/Tpe – dimensionless time is

                                                               J = Tpe t.                                                                 (12.64)

We normalize the velocity in terms the maximum velocity of plasma waves in the system:

                                                          V = ve/(xw Tpe).                                                            (12.65)

Finally, we scale the electric field Ex in terms of the maximum field that results if bare plasma
electrons fill the entire region between the conducting boundaries. The dimensionless electric
field is

                                                      += Ex/(-eneo xw/,o).                                                         (12.66)

   Recasting a numerical calculation in dimensionless variables is a valuable procedure because
the quantities have magnitudes than we can compare to unity. This makes it easier to choose
reasonable input parameters, to recognize errors, and to interpret results. For example, an
effective plasma neutralization solution has + n 1. Inserting the dimensionless variables, the
equation of continuity [Eq. (2.102)] becomes:

The equation of momentum conservation is:

The first term on right-hand-side of Eq. (12.68) represents a change of momentum at a point by
electron convection. The second term is the momentum change resulting from space-charge
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electric fields. The dimensionless form of the Poisson equation is:

   For a solution on a digital computer, we must convert continuous differential equations to a
discrete form. The usual approach is to define approximations to the continuous quantities at a
finite set of locations, replacing the spatial and temporal derivatives in the original equations
with finite-difference operators. For the present problem we define the quantities N, V and + at
NMesh locations separated by a uniform distance )X. To calculate the evolution of the quantities
in time, we advance them through a large number of states separated by a uniform interval )J.
Figure 12.8a shows quantities used in the discrete formulation. The set of discrete positions and
times is called a numerical mesh or grid. We specify spatial position with the index j and
temporal position by the index n. Discrete quantities defined at mesh points represent the original
continuous functions:

                                                           N(X,J) Í N(j,n).                                                          (12.70)

The difference equations that advance N(j,n), V(j,n) and +(j,n) are correct if the discrete
quantities approach the values of the continuous quantities at all positions and times in the limit
that )X, )J − 0.
   We must define the mesh parameters clearly. Mesh quantities along the time axis are simple –
time starts at zero and proceeds continuously until the end of the calculation. If we take n = 0, 1,
2,...then J = n)J. The spatial mesh has boundaries. If the spatial index has the range j = 0, 1,
2,...,NMesh-1, NMesh, then the spatial position is 

                                                               X = j )X.                                                                (12.71)

In the present problem, the final mesh point corresponds to the conducting wall at X = 1;
therefore, the mesh spacing is )X = 1/NMesh.
   The two primary concerns of computer calculations are to preserve numerical stability and to
achieve good accuracy. We shall discuss the stability criterion later. Regarding accuracy, we
want results that are in close agreement with an exact solution of the partial differential
equations. A necessary condition for a valid solution is that the quantities )X and )J must be
smaller than the finest spatial or temporal features of the problem. For example, we want the
time-step to be smaller than 1/Tpe – in our dimensionless units, this is equivalent to )J < 1. We
also want the total computational time to be as short as possible; therefore, )J should not be too
small. The best approach is to choose a numerical method that gives good accuracy for a
moderate number of computational steps. Here we shall review the two-step Lax-Wendroff
method. The errors that result from this finite-difference formulation are on the order of )X2 or
)J2; therefore, the numerical solutions converge rapidly toward the exact solution as the step
size decreases.
   The Lax-Wendroff method [see, for instance, D. Potter, Computational Physics (Wiley, New 
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Figure 12.8. Elements of the finite-difference solution of fluid equations. a) Definition of a
computational mesh in time and a single spatial dimension. Conventions for indices. b) Approximation
for the spatial derivative of Y at position j)P and time n)J. c)  Strategy of the Lax-Wendorf method for a
time- and space-centered solution of the convective fluid equation.
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York, 1973), p. 67] is effective for partial differential equations like Eqs. (12.67) and (12.68)
where the time derivatives are proportional to the spatial derivations. Section 2.3 stressed the
importance of time-centering for ordinary differential equations. In this section we shall extend
the two-step method to partial differential equations and seek equations centered in both space
and time. Before attacking the coupled non-linear moment equations, we shall illustrate the
method with the simple equation:

                                             MY(X,J)/MJ = - MY(X,J)/MX.                                                      (12.72)

   Figure 12.8b shows the strategy of the numerical solution. Suppose we have a discrete set of
values of Y defined over the spatial mesh at time J = n)J. We denote these values as Y(j,n). The
object is to advance the values to the next time step, generating a set Y(j,n+1) that agrees with
Eq. (12.72). The finite difference approximation for the spatial derivative of Y at time n is:

                                          MY(j+½,n)/MX – [Y(j+1,n) - Y(j,n)]/)X.                                      (12.73)

Note that the derivative is referenced to a location between two mesh points at time n (point " in
Figure 12.8b). Following the discussion of time centering in Section 2.3, an accurate way to
advance Y with Eq. (12.72) is to use the spatial derivative at a spatial mesh point and at a time
n+½ (point $ in Figure 12.8b):

                                          Y(j,n+1) – Y(j,n) - [MY(j,n+½)/MX])J.                                        (12.74)

We can estimate the derivative at the intermediate time point by the two-step process shown
schematically in Figure 12.8c:
   In the first step, we calculate quantities at intermediate space and time steps from Eq. (12.72):

                 Y(j+½, n+½) = [Y(j+½, n) + Y(j, n)]/2 - {[Y(j+½, n) - Y(j, n)]/)X} {)J/2}.      (12.75)

The first term on the right hand side of Eq. (12.75) is the average value of Y at time n between
spatial mesh points j and j+1. The second term is the change in Y in the interval )J/2 using the
spatial derivative at the point (j+½, n). Next, we can use the values Y(j+½, n+½) to estimate the
derivative at a time-centered position, MY(j, n+½)/MX. We then apply the derivatives to advance
the set of Y(j,n):

                           Y(j,n+1) = Y(j,n) - [Y(j+½,n+½)-Y(j-½,n+½)]()J/)X).                         (12.76)

Note that second term on the right-hand side approximately equals the desired time-centered
derivative of Eq. (12.74). 
   To show how to apply the algorithm to a real problem, we shall write out all terms to advance
the set of non-linear equations for plasma neutralization [Eqs. (12.67), (12.68) and (12.69)]:
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First Step

A. Continuity equation

The expression to find intermediate values of the density from the continuity equation is
straightforward:

                                 N(j+½,n+½) = [N(j+1,n)+N(j,n)]/2                                                    (12.77)

                                           - ()J/2) [N(j+1,n)+N(j,n)]/2 [V(j+1,n)-V(j,n)]/)X

                                           - ()J/2) [V(j+1,n)+V(j,n)]/2 [N(j+1,n)-N(j,n)]/)X.

B. Momentum equation

The momentum equation is more involved - we need values of the electric field at intermediate
spatial points, +(j+½,n). Following Eq. (12.69), we can evaluate the electric field by an iterative
numerical integration:

                                               +(½,n) = [1 - Nbog(n) - N(0,n)]()X/2),                                 (12.78)

                                     +(j+½,n) = +(j-½,n) + [1 - Nbog(n) - N(j,n)]()X/2).

Using the shifted electric field values, the first step to advance the momentum equation is:

     V(j+½,n+½) = [V(j+1,n) + V(j,n)]/2 - ()J/2) +(j+½,n) - ()J/2) [V(j+1,n)2 - V(j,n)2]/(2)X).
                                                                                                                                              (12.79)

Second Step

   With the intermediate quantities N(j+½,n+½) and V(j+½,n+½) we proceed to the second step.
Again we need to calculate electric field – this time at the time centered mesh position:

                                                                  +(0,n+½) = 0,                                                    (12.80)

                                +(j,n+½) = +(j-1,n+½) + [1 - Nbog(n) - N(j-½,n+½)]()X/2).

The equations to advance N and V through a full time step are:

                                                              N(j,n+1) = N(j,n)                                                   (12.81)

                 - )J {[N(j+½,n+½)+N(j-½,n+½)]/2}{[V(j+½,n+½)-V(j-½,n+½)]/)X}

                 - )J {[V(j+½,n+½)+V(j-½,n+½)]/2}{[N(j+½,n+½)-N(j-½,n+½)]/)X}
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and

           V(j,n+1) = V(j,n) - )J +(j,n+½)  - )J [V(j+½,n+½)2 - V(j-½,n+½)2]/(2)X).           (12.82)

   In the plasma neutralization problem we must include boundary conditions at the extremities
of the mesh, j = 0 and j = NMesh. The problem has symmetry about X = 0. We can carry out the
solution in the upper half x plane with the conditions:

                                            +(0) = 0,  V(0) = 0,  MN(0)/MX = 0.                                          (12.83)

   The boundary conditions at the conducting wall are more subtle. We must assign spatial
derivatives of quantities at the wall that are consistent with physical processes in the plasma.
One way to define a derivative at j = NMesh is to add a virtual mesh point within the conducting
wall at j = NMesh+1. We can think of the wall as a grounded zero-thickness foil – plasma
electrons can stream out through the foil. Within the wall space-charge electric fields are
completely canceled. Because there are no forces on electrons inside the wall there is no
difference in the velocity between the last two points, V(NMesh,n) = V(NMesh+1,n) – the
derivative at the intermediate point always equals zero. Similarly the continuity equation implies
that the electron density at the two points is the same, N(NMesh) = N(NMesh+1). Note that
electrons at the virtual mesh point have no effect on electric fields in the plasma. The virtual
mesh point resolves some mathematical difficulties but has little effect on the physical results. 
   We must add other constraints at the wall to represent absorption of the plasma electrons.
Because electrons cannot flow inward from the wall the value of V at j = NMesh cannot be
negative. Therefore, whenever the density and velocity values in adjacent cells imply a negative
value of V(NMesh,n), we set the quantity equal to zero. We also set N(Nmesh) equal to zero
because the wall cannot supply electrons to compensate for electron flow to inner cells.
   Table 12.1 lists the body of a computer program to calculate the response of a plasma to a
pulsed electron beam. The single-page program (written in BASIC) uses the two-step Lax-
Wendroff method to solve Eqs. (12.67), (12.68) and (12.69). The program applies symmetry
conditions at X = 0 and absorbing boundary conditions at X = 1. The division of the advancing
routine into two steps is easy to see. Some other features of the program include:

     Lines 132-192: Absorbing wall. 

     Lines 193-194: Boundary conditions at wall.

     Line 200: Boundary condition on symmetry axis.

     Lines 1000-1040 and 1250-1280: Numerical integration to find electric field.

     Lines 1750: Subroutine to give beam density as a function of time, g(J).

   For numerical stability, the spatial and temporal steps must satisfy the constraint:
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TABLE 12.1. Solution of One-dimensional Plasma Neutralization
 (Diagnostic, input/output and initialization routines omitted)

10 REM ---PROGRAM SCNEUT---

30 REM ---DEMONSTRATION OF SPACE CHARGE NEUTRALIZATION
40 REM ---SHEET ELECTRON BEAM INJECTED INTO A PLASMA

70 REM ---MAIN TIME LOOP

80 FOR T=DTAU TO TMAX STEP DTAU

82 GOSUB 1750:REM --ION AND BEAM DENSITY AT NEXT TIME STEP
85 PRINT "----------CALCULATING AT T = ";T;"----------"

90 REM ---STEP 1. ADVANCE TO INTERMEDIATE POSITION

100 FOR K=0 TO NMESH:REM K=J+1/2
110 NI(K)=(N(K)+N(K+1))/2 - DTAU*(N(K+1)*V(K+1)
     - N(K)*V(K))/(2*DX)
115 IF NI(K)<0 THEN LET NI(K)=0
120 VI(K)=(V(K)+V(K+1))/2 - DTAU*(E(K)+E(K+1))/2
     - DTAU*(V(K+1)^2-V(K)^2)/(4*DX)
130 NEXT K
132 IF VI(NMESH)<0 THEN LET VI(NMESH)=0
140 GOSUB 1250:REM EVALUATE EI(K)

150 REM ---STEP 2. ADVANCE TO NEXT TIME POSITION
160 FOR J=1 TO NMESH
170 N(J)=N(J) - DTAU*(NI(J)*VI(J)-NI(J-1)*VI(J-1))/DX
175 IF N(J)<0 THEN LET N(J)=0
180 V(J)=V(J) - DTAU*(EI(J)+EI(J-1))/2 
    - DTAU*(VI(J)^2-VI(J-1)^2)/(2*DX)
190 NEXT J

192 IF V(NMESH)<0 THEN LET V(NMESH)=0:
     V(NMESH+1)=V(NMESH):N(NMESH)=0
193 V(NMESH+1)=V(NMESH)
194 N(NMESH+1)=N(NMESH):E(NMESH+1)=E(NMESH)
200 N(0)=N(1):V(0)=0:E(0)=0

205 GOSUB 1000

206 ND=ND+1
207 IF ND=NDIAG THEN GOSUB 1500:ND=0: REM --DIAGNOSTICS
220 NEXT T
230 END

1000 REM ---SUBROUTINE TO CALCULATE E(J)
1010 E(0)=0
1020 FOR J=1 TO NMESH:
     E(J)=E(J-1)+DX*((NION(J)+NION(J-1)-N(J)-N(J-1))/2):NEXT J
1030 E(NMESH+1)=E(NMESH)
1040 RETURN

1250 REM ---SUBROUTINE TO CALCULATE EI(K) WHERE K=J+1/2
1260 EI(0)=DX*(NION(0)-NI(0))/2
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1270 FOR K=1 TO NMESH:
     EI(K)=EI(K-1)+DX*(NION(K)-(N(K)+N(K-1))/2):NEXT K
1280 RETURN

1750 REM --SUBROUTINE ION AND BEAM DENSITY
1760 REM ---LINEAR RISE TO NB IN TIME TINJ
1765 IF T < TINJ THEN GOTO 1780
1770 FOR J=0 TO INT(XB*NMESH):NION(J)=1-NB*T/TINJ:NEXT J 
1780 RETURN

                                                              )J < )X/V(j,n).                                                      (12.84)

When the calculation goes unstable, small variations in quantities grow in a non-physical
manner. The origin of the numerical instability is easy to understand by inspecting Eq. (12.84). If
V(j,n))J is greater than )X, electrons travel more than one spatial mesh length in a time-step.
The interval )J is not short enough to fix the mesh location of electrons unambiguously at each
time-step, leading to non-physical transport mechanisms.
   Figures (12.9) and (12.10) show histories of normalized density, directed velocity and electric
field for a beam density uniform in the range 0 < X < (xo/xw) with time variation:

                                                Nb(J) = Nbo(J/Jb),  (0 # J < Jb),                                            (12.85)

                                                         = Nbo,  (J $ Jb).

The dimensionless form of the equations helps to pick appropriate run parameters. For example,
the condition of a fast-rising beam density is:

                                                          Jb = Tpe)tb n 1.                                                          (12.86)

Figure 12.9 shows results for an instantaneous rise of beam density, Jb = 0. The beam has Nbo =
0.25 and (xo/xw) = 0.25. The spatial resolution is NMesh = 25 ()X = 0.04). The maximum space-
charge imbalance in the system at any time is less than 0.25. Therefore the directed velocity lies
in the range V(j,n) < 0.5. We take a time-step of )J = 0.05 to guarantee stability. Despite its
simplicity, the model gives interesting results. Figure 12.9 confirms the contention of Section
12.2 that a beam with a fast rise time (Jb # 1/Tpe) creates a large space-charge imbalance. The
solution shows high directed plasma electron velocity and large electric fields. Note the inward
and outward propagation of a plasma disturbance. As expected, the bounce period in
dimensionless time units equals 2B. 
   Figure 12.10 shows a calculation with a longer beam rise time, Jb = 12. The directed velocity
and electric field are much smaller. By the end of the run (J = 16), the plasma density has
adjusted to the presence of the beam – at the center it is lower by a factor of 0.75. The large
electron density spikes result from the interference of plasma waves – the divergences would
disappear if we added effects of electron temperature to the moment equation model.
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Figure 12.9. History of the normalized plasma electron density (N), directed velocity (V) and electric field
(E) as a function of J following instantaneous injection of a high energy sheet electron beam. The figure
gives plots of the spatial variation of N, V and E at several values of J. Nbo= 0.25, Xb = 0.25, Jb = 0, )X =
0.04, )J = 0.05.

12.5. Magnetic skin depth

   A rapidly-pulsed electron beam induces current in a conductive plasma. The plasma current
opposes the beam current and may interfere with self-pinched propagation of the beam. A pulsed
beam entering a plasma creates a changing magnetic field. The resulting inductive electric field
accelerates plasma electrons in the direction opposite to that of the beam electrons. If the plasma
current density has about the same spatial distribution as the beam current density, the plasma
cancels the beam-generated magnetic field – the beam is current neutralized.
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Figure 12.10. History of the normalized plasma electron density (N), directed velocity (V) and
electric field (E) as a  function of J following slow injection of a high energy sheet electron
beam. Nbo= 0.25, Xb = 0.25, Jb = 12, )X = 0.04, )J = 0.05.

   To understand the response of a plasma to a changing magnetic field we shall study the
simplified geometry of Figure (12.11). A coil produces a pulsed magnetic field outside the sharp
boundaries of a uniform density plasma with infinite extent in the y and z directions. The plasma
has width L and equal electron and ion densities, ne = ni = no. Following Figure 12.11, the
magnetic fields are symmetric about the line x = L/2. Outside the plasma the magnetic field is a
specified function of time Bo(t) given by the variation of coil current. We want to find the
distribution of magnetic field inside the plasma as a function of position and time, Bz(x,t).
   A perfectly-conducting plasma excludes the applied magnetic field for all time. With plasma
collisional resistivity the field ultimately penetrates the plasma (Sect.ion12.6). Even with no
collisions magnetic fields can penetrate a distance into the plasma because of the electron inertia.
The penetration distance is called the magnetic skin depth.
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Figure 12.11. Schematic geometry to calculate the magnetic skin depth of a
homogeneous plasma.

(12.87)

   In calculating the response of a zero-resistivity plasma to a pulsed magnetic field, we initially
neglect the motion of massive plasma ions. We shall concentrate on the left-hand boundary of
Figure 12.11. The coil current moves in the -y direction, generating an applied magnetic field in
the +z direction. The inductive electric field accelerates plasma electrons in the -y direction – the
plasma current flows in the +y direction. The plasma current opposes the applied current,
excluding magnetic field from the plasma volume. For a given spatial variation of plasma
electron current density at time t, jey(x,t), Eq. (1.31) determines the spatial variation of magnetic
field: 

   Electric fields in the plasma result from a changing magnetic flux. With the symmetry of
Figure 12.11, the total magnetic flux enclosed within position x at time t for a unit length in the y
direction is the integral over x of Bz(x,t) from x = 0 to x = L/2. In the limit of strong field
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(12.88)

(12.89)

(12.90)

(12.91)

(12.92)

exclusion at the center of the plasma the integral can extend to +4 with little loss in accuracy.
Faraday's law is:

   To simplify the calculation, we shall temporarily neglect the effect of the magnetic field on the
electron orbits – electrons move only in the -y direction. The acceleration is:

We can integrate both sides of Eq. (12.89) over time t'. The integration extends from t' = 0 to the
time of interest, t' = t. If Bo(0) = 0, then vey(x,0) = 0 and Bz(x,0) = 0. With these conditions, the
integration gives: 

The derivative of Eq. (12.90) with respect to x is:

   Combining Eqs. (12.87) and (12.91) gives an equation for the spatial variation of Bz at time t:

With the boundary condition Bz(0,t) = Bo(t), the solution of Eq. (12.92) is:

                                                             Bz(x) = Bo exp(-x/8m).                                             (12.93)

The quantity 8m is the magnetic skin depth:

                                                        8m = c/(e2no/,ome)1/2 = c/Tpe.                                         (12.94)

The final form of Eq. (12.94) incorporates the electron plasma frequency [Eq. (12.23)]. Because 
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Figure 12.12. Spatial profiles of beam current-density, plasma
current-density, and toroidal magnetic field following injection
of a cylindrical electron beam into a plasma with zero resistivity.
a) rb n 8m. b) rb n 8m.

of electron inertia a magnetic field penetrates into zero-resistivity plasma a distance comparable
to 8m. As an example a plasma with density 1019 m-3 has an electron plasma frequency of Tpe =
1.8 × 1011 m-3. Substitution in Eq. (12.94) gives a collisionless skin depth of 8m = 1.6 mm.
    Figure 12.12 shows the significance of 8m for the current neutralization of a pulsed electron
beams. Usually the plasma frequency is high enough to guarantee complete space-charge
neutralization during the rise of beam current. If the beam propagates in plasma with no nearby
conducting boundaries, the net plasma current has magnitude equal to that of the beam current. If 
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Figure 12.13. Mechanism for the magnetic acceleration of a plasma. The plasma has a boundary at x = 0
and extends over the region x > 0. A pulsed magnetic field fills the region x < 0. Dashed line shows
region of induced electron current extending to x ~ 8m. 

the beam radius is smaller than 8m the plasma return current occupies a larger cross-section area
than the beam (Figure 12.12a). As a result, the magnetic field inside the beam almost equals the
value of the beam-generated field without the plasma – the beam can propagate in a self-pinched
equilibrium. In the opposite limit of large beam radius the spatial distributions of beam and
plasma current density are almost the same. Figure 12.12b shows that the net magnetic field
inside the beam almost equals zero.
   We can apply the result of Eq. (12.94) to calculate the magnetic acceleration of a plasma. This
process is often applied in pulsed plasma guns for intense ion beam extraction. Here we must
include effects of magnetic bending of electron orbits and acceleration of ions by the resulting
charge separation. Figure 12.13 shows the behavior of particles at the boundary between a
plasma and a rising magnetic field. The field generates an electron current localized to a surface
layer of width 8m. The magnetic field in the layer also exerts an x-directed force on the electrons.
The electrons shift away from the ions in the layer creating an electron field Ex(x,t). The flow of
electrons approaches an instantaneous force equilibrium if the electric field has the value:

                                                           Ex(x,t) – vey(x,t) Bz(x,t).                                             (12.95)

The electric field accelerates ions, resulting in a long-term motion of the plasma boundary. We
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(12.96)

(12.100)

can estimate the velocity of the plasma by applying the condition of global force balance over
the current sheath. The force per volume in the sheath is jeyBz (newtons/m3). The force per area
on the plasma equals the integral of the volume force over the sheath width:

Equations (12.91) and (12.93) imply that the electron current density has the following variation
with depth in the plasma:

                                            jey(x,t) – (e2no8m/me) Bo(t) exp(-x/8m).                                     (12.97)

Substituting Eqs. (12.93) and (12.97) in Eq. (12.97) gives an expression for total force per area
on the plasma:

                                                              Fa = Bo
2(t)/2:o.                                                       (12.98)

Equation (12.98) is the familiar expression for the magnetic pressure exerted by the field Bo(t) on
a highly-conducting body. 
   The inertia of ions governs the velocity of the plasma front. Suppose that the boundary moves
in the +x direction at velocity vd. In the single-particle limit we expect that ions gain a velocity
2vd in an elastic reflection from the moving front. On the other hand experiments show that
accelerated ions streaming through a plasma are subject to strong momentum transfer
instabilities. As a result ions are swept up and carried with the moving front at about velocity vd.
If the ion density is no the change of plasma momentum per area per time equals the momentum
gain of a single ion multiplied by the number of ions swept up by the moving front per unit time
in a unit cross-sectional area:

                                                         dpa/dt = (mi vd) (no vd).                                                 (12.99)

   Equating the rate of change of plasma momentum to the magnetic force gives the following
expression for the plasma front velocity:

The quantity vd of Eq. (12.100) is called the Alfven velocity. For a plasma of density 1019 m-3 and
an applied field of 0.10 tesla, the Alfven velocity equals 1.41 × 105 m/s for C+ ions. The velocity
corresponds to a directed ion kinetic energy of 2.5 keV. The available pulsed current density of
C+ ions is ji – enovd = 23 × 104 A/m2. This value is much higher than those from steady-state ion
sources (Section 7.6).
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Figure 12.14. Definition of mean-free-path for collisions of free electrons with background atoms.

12.6. Return current in a resistive plasma

   Section 12.5 showed that the magnetic fields of a rapidly-pulsed electron beam entering a
plasma are almost completed neutralized in the limit ro o 8m. Inductive axial electric fields create
a plasma return current – a small reduction of the beam kinetic energy supplies the energy of the
plasma current. If the beam current stays roughly constant for t > 0, the spatial distribution of
return current may change with non-zero plasma resistivity. In this section we shall study the
nature of plasma resistivity. First we shall derive expressions for resistivity and then develop
equations describing the time-variation of plasma current density. The section concludes with a
discussion of implications of the diffusion equation, including wake effects.
   The cold plasmas that are often used for high-current electron beam propagation are poor
conductors compared with metals. Plasma resistivity can lead to significant perturbations of the
return current even for short pulsed electron beams. Resistance results from collisions that
interrupt the directed plasma electron motion. Collisions with neutrals are important in weakly-
ionized plasmas – at high current density electrons can exchange momentum with plasma ions
through collective instabilities. In this section we shall concentrate on the resistivity of a fully-
ionized plasma with no applied magnetic field. The current density is moderate – momentum
transfer to ions occurs through Coulomb collisions. These collisions are electric field electric
field deflections that occur when an electron passes close to an ion. The model holds when the
electron drift velocity vd that produces the plasma current is smaller than the randomly-directed
electron thermal velocity vth. In this limit the current density is proportional to the applied
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(12.103)

electric field and the electron flow is stable against the two-stream instability.
   Collisions between electrons cannot change the average momentum of a drifting electron
distribution. Momentum transfer takes place between the electrons and stationary ions. We
define the mean-free-path for momentum transfer 8 as the average directed distance an electron
travels before a collision with an ion. In the simplified representation of Figure 12.14 an applied
electric field accelerates electrons. They lose their directed momentum through a collision with
an ion after moving an average distance 8. When vth o vd the thermal velocity determines the
time between collisions:

                                                                     )t – 8/vth.                                                      (12.101)

The collision frequency for momentum transfer to ions Lei is the inverse of )t,

                                                               <ei – 1/)t = vth/8.                                                 (12.102)

If electrons freely accelerate between collisions, the average directed velocity superimposed on
the random thermal velocity is:

For a uniform electron density no the current density associated with the drift velocity is 
je = -enovd, or

                                                              je = (e2no/2me<ei) E.                                              (12.104)    

Equation (12.104) shows that plasma electron flow satisfies Ohm's law:

                                                                        E = D je.                                                      (12.105)

if we take the volume resistivity as:

                                                             D = 2me<ei/e2no (S-m).                                           (12.106)

   An analysis of the deflection of electrons traveling past ions leads to an estimate of the
collision frequency in a fully ionized plasma [See, for instance, D.J.Rose and M. Clark, Plasmas
and Controlled Fusion (MIT Press, Cambridge, 1961), p. 167]. For physically-correct results it
is necessary to include plasma shielding effects for the ion charge at distances greater than the
Debye length 8d. The following equation applies to a plasma with singly charged ions and a 
Maxwell distribution of electron velocities with temperature Te:
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Figure 12.15. Geometry for the calculation of the radial distribution of return
current for a cylindrical pulsed electron beam in a plasma-filled chamber.

(12.107)

(12.108)

The quantity 7 is the plasma parameter: 

The final form on the right-hand side of Eq. (12.108) shows that 7 is proportional to the number
of particles within a spherical volume of radius 8d, the Debye sphere. A group of charged
particles acts like a plasma when there are many particles in a Debye sphere. To illustrate the
application of Eqs. (12.106) and (12.107) suppose we have an ion source plasma with a density
of 1019 m-3 and an electron temperature of kTe = 10 eV. For the Debye length of 7.44 :m, there
are over 5000 particles in a Debye sphere. The plasma parameter is 7 = 10.8, giving a collision
frequency of 5.8 × 106 s-1. Finally the volume resistivity is D = 4.2 × 10-5 S-m. In comparison,
the volume resistivity of pure copper is D = 1.7 × 10-8 S-m.
   Knowing D we can find the variation of plasma return current near a pulsed electron beam.
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(12.110)

(12.111)

Figure 12.15 illustrates the geometry of the calculation. A cylindrical electron beam of radius ro
enters a plasma with 8m n ro. We neglect the effects of plasma electron inertia – the plasma acts
as an ideal resistor with no phase shift between j and E. Also the plasma completely cancels
beam-generated electric fields. Our model treats only variations in in the radial direction – the
following assumptions allow the neglect of axial variations:

     1. The beam traverses a plasma-filled chamber with conducting walls. The chamber has
length L and a large wall radius rw o ro.

     2. The time scale for changes in the plasma current density is much longer than the beam
transit time through the chamber L/$c.

     3. The beam is paraxial and axially uniform.

If the electron beam has a fast rise-time the plasma return current density je(r) initially has the
same spatial variation as that of the beam jb(r). Therefore there is no beam-generated magnetic
field at t = 0. 
   When D is non-zero an axial electric field must be present to maintain the return current:

                                                                    Ez(r) = D je(r).                                                (12.109)

The only possible source of the electric field is a changing magnetic flux because the ends of the
chamber are electrically connected. The magnetic field points in the azimuthal direction. To
calculate the electric field we apply Faraday's law to the loop shown in Figure 12.15. Noting that
Ez(0) = 0, the electric and magnetic fields are related by:

   The magnetic field results from the sum of beam and plasma currents:

The radial derivative of Eq. (12.110) is:

                                           MB2(r)/Mt = MEz(r)/Mr = D(r) Mje(r)/Mr.                                       (12.112)

Taking partial derivatives of Eq. (12.111) with respect to radius and time gives the relationship:
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(12.113)

(12.114)

(12.115)

(12.116)

Combining Eqs. (12.112) and (12.113) leads to an equation that describes the spatial and
temporal variation of plasma current density:

Equation (12.114) has the form of the familiar diffusion equation. The diffusion constant is
D(r,t) = D(r,t)/:o. The given beam current density acts as a source term for the plasma return
current.
   We can solve Eq. (12.114) when the resistivity has a constant value in space and time, D(r,t) =
Do, and the beam current density follows a step function temporal variation. The beam current
density rises instantaneously at t= 0. Because jb(t) is constant for t > 0 we can remove the source
term from Eq. (12.114) – the beam sets the initial condition je(r,0) = - jb(r,0). The equation has
the form:

The symbol L2 represents the Laplace operator appropriate for the geometry of the problem. 
   The diffusion equation is one of the most familiar relationships in collective physics. It
describes a wide array of phenomena, such as the flow of heat in solids and the diffusion of
neutrons. Many analytic solutions to Eq. (12.115) have been tabulated [see, for example, H.S.
Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Second Edition (Clarendon Press,
Oxford, 1959). For example suppose we have a narrow cylindrical beam that enters a plasma
with uniform resistivity Do. The beam current rises instantaneously to Io at time t = 0. If we can
approximate the narrow beam as an on-axis current filament, then the plasma return current
outside the beam has the spatial and temporal variations:

We can verify the validity of Eq. (12.116) by direct substitution into Eq. (12.115). The integral
of je over all radii always equals -Io. If we define the average radius of the plasma current as the
point where je falls to 1/e of its peak value, then Eq. (12.116) implies that:
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Figure 12.16. Numerical solutions to the equation M2J/MX2 = -MJ/MT for an initial
step function variation of J. Symmetry axis at X = 0.0, absorbing wall at X = 1.0.
Spatial mesh: dX = 0.02. Solution time step: dT = 0.0001.

(12.117)

(12.118)

Expansion of the plasma current is proportional to the square-root of time.
   We can also solve Eq. (12.115) numerically. This approach is often necessary if the plasma
conductivity varies with position and time. Defining the current density on a radial mesh with ri
= i )r, the finite difference form of Eq. (12.115) is:

We can apply time-centered methods for partial differential equations (Section 12.4) to solve Eq.
(12.118). Usually, the time step must be in the range )t < )r2/(D/:o) for numerical stability. 
   Figure 12.16 shows results of a numerical solution of the diffusion equation. In the calculation,
a sheet beam with a rapid rise time has uniform current density jb from the axis to x = xo = xw/4.
The beam propagates through a uniform plasma with constant resistivity between plates at x =
±xw. Initially, the plasma current density has the same spatial profile as the beam. Later, the
plasma current spreads over a larger area. 
   The time scale for significant spreading of the plasma current from a cylindrical beam of
radius ro is the current decay time:
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Figure 12.17. The radial distribution of
return current for a pulsed cylindrical
electron beam in a plasma-filled chamber. a)
Immediately after beam injection, the plasma
current has almost the same spatial
distribution as that of the beam. b) Later in 
time, the plasma current density distribution
is diffuse and the wall carries some of the
current. 

                                                                   Jd – :oro
2/Do.                                                    (12.119)

The diffusion of the plasma return current involves the interaction between inductive and
resistive effects. At t = 0 the distribution of return current minimizes the inductance for the
plasma current. Later the plasma current spreads to minimize the resistance. If the plasma
current expands to an area significantly larger than that of the beam, the azimuthal magnetic
field in the beam volume approaches the value without plasma. The quantity Jd also represents
the time scale for the decay of plasma current in the beam volume. For a resistivity of D = 4.2 ×
10-5 S-m and a beam radius of ro = 0.01 m, the current-neutralization decay time is Jd = 3 :s.
   We must be careful analyzing the interactions of intense electron beams (o1 kA) with plasmas.
These beams can deposit energy in the plasma, raising the electron temperature and lowering the
local resistivity [Eq. (12.106)]. The region occupied by the beam may have high conductivity
while the surrounding cold plasma is resistive. Intense electron beams induce strong plasma 
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Figure 12.18. Wake fields generated by a
pulsed electron beam in a chamber filled
with a resistive plasma. Solid line: radial
distribution of beam current density. Dashed
line: radial distribution of plasma current
density. a) Immediately following injection.
b) Late in the beam pulse. c) After the beam
pulse has passed.

currents. If the plasma electron drift velocity exceeds the thermal velocity the electrons may
exchange momentum with the plasma ions through collective instabilities. For example suppose
an electron beam with jb = 1000 × 104 A/m2 enters a plasma with density 1019 m-3 and electron
temperature kTe = 10 eV. If plasma electrons carry a current density -jb they travel with drift
velocity 6.3 × 106 m/s. In comparison, the thermal velocity is only 1.06 × 106 m/s. For these
parameters we expect to observe collective interactions. The resulting anomalous resistivity is
usually much greater than the single particle prediction of Eq. (12.106). 
   Most transport experiments take place inside a conducting pipes with moderate radius. In this
geometry the wall can carry a portion of the return current. Figure 12.17a shows a simplified
geometry for such an experiment. A fast-rising electron pulse enters a pipe filled with uniform-
resistivity plasma. Immediately after injection, the plasma return current flows in the beam
volume (Figure 12.17b). The net current inside the pipe equals zero – there is no changing
magnetic flux to drive axial current along the pipe wall. A beam current probe (that senses B2)
just inside the wall shows no signal. After an interval -Jd the plasma current spreads radially
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outward toward the pipe (Figure 12.17c). The inside wall of the conducting pipe carries a portion
of the return current. The probe senses a net current in the direction of the beam current with
magnitude equal to the wall current. At late time (t o Jd) almost all return current flows through
the pipe rather than through the resistive plasma – the probe signal is close to that of the net
beam current. While the net plasma return current induced by a beam decays inside a conducting
induced by a beam decays inside a conducting chamber, in free space the magnitude of the
plasma current always equals the beam current – only the spatial distribution changes. 
   When an electron beam with a finite pulse length travels through a resistive plasma it may
leave behind a perturbed field distribution. The residual fields may influence electron orbits in
following beam pulses. This process may lead to beam instabilities – a perturbation in a lead
pulse communicates with and grows in following pulses. Electric or magnetic fields that
preserve a memory of a beam pulse are called wake fields. Figure 12.18 illustrates the
mechanism for wake field formation in a resistive plasma. The current of an electron beam with
uniform current density follows a square pulse in time (Figure 12.18a). The pulse length )tb is
comparable to the current decay time td. At time t = 0+ the beam and plasma current densities
have the same spatial profile – there is no magnetic field. At the end of the pulse the plasma
current has expanded to a larger radius, and there is a net magnetic field within the beam (Figure
12.18b). When the beam current ends at t = )tb the net plasma current must drop to zero. The
falling beam current induces a plasma current density equal in magnitude and direction to that of
the beam jb. Fig.\ure 12.18c illustrates the net current density and magnetic field remaining in the
plasma just after the beam passes. The opposing plasma currents ultimately diffuse together,
annihilating the magnetic field. If a second beam pulse enters before field cancellation, the
remaining field may deflect the electrons. The wake field results from the plasma resistivity – in
a perfectly-conducting plasma the currents induced by the rise and fall of the beam current
cancel exactly, leaving no sign that the that beam has passed.

12.7. Limiting current for neutralized electron beams

   The main reason to propagate electron beams through a plasma is to cancel beam-generated
electric fields and to allow the transport of very high currents. Section 12.6 showed that
sometimes the plasma also reduces the beam-generated magnetic field. If the magnetic field is
not completely canceled the beam electrons oscillate in the radial direction. At a certain value of
net current the magnetic field is high enough to reverse the orbits of some beam electrons. This
process sets an upper limit on the net current. The limiting value is the Alfven current, IA. We
have already applied the Alfven current as a scaling factor for relativistic beams (Section 10.5). 
   To calculate the current limit consider a cylindrical relativistic electron beam in a plasma. The
beam pulselength is comparable to or greater than Jd. Although the plasma cancels the electric
field there is a magnetic field inside the beam volume. We shall not pursue a fully self-consistent
model. Instead we postulate a radial variation of beam current density and investigate the
properties of single particle orbits in the resulting magnetic field. The quantity I is the net current
contained within the beam radius ro. The function F(r/ro) specifies the radial variation of current
– it equals the fraction of the net current contained within the radius r. By definition F(1) = 1.
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(12.121)

(12.125)

The toroidal magnetic field is

                                                           B2(r) = :o I F(r/ro)/2Br.                                          (12.120)

The radial equation of motion for an electron with kinetic energy ((o-1)mec2 and zero angular
momentum is

If the magnetic field does not vary in time the kinetic energy of an electron is constant. As a
result, the axial velocity is related to the radial velocity by:

                                                       vz = c ($o
2 - vr

2/c2)1/2.                                                    (12.122)

The quantity $o equals the total velocity divided by c:

                                                            $o = (1-1/(o
2)1/2.                                                      (12.123)

We can simplify Eqs. (12.121) and (12.122) with the dimensionless variables: R = r/ro, VR =
vr/$oc, VZ = vz/$oc and J = t/(ro/vo). Substituting :o = 1/,oc2 the electron equations of motion are:

                                                              dR/dJ = VR,                                                           (12.124)

and

                                                             VZ = (1 - VR
2)1/2.                                                     (12.126)

The bracketed quantity in the denominator of Eq. (12.125) is the Alfven current:

                                                         IA = 4B,omec3$o(o/e.                                                  (12.127)

   A single parameter (I/IA) governs the solutions of Eqs. (12.124), (12.125) and (12.126). Figure
12.19 illustrates numerical solutions for a uniform current density, F(R) = R2. When (I/IA) n 1 the
radial velocity is much smaller than the axial velocity, VR n VZ (Figure 12.19a). In this limit,
particle orbits at all radii are almost harmonic. At higher values of (I/IA), the oscillations of
peripheral electrons are anharmonic (Figure 12.19b). When the net current equals the value I = IA 
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Figure 12.19. Numerical calculations of single electron orbits in the toroidal magnetic field generated by
a uniform current density beam. Beam current: I, Alfven current: IA. a) I/IA = 0.25. b) I/IA = 0.50. c) I/IA =
1.00.

the orbits of the outermost particles bend completely inward, reaching VZ = 0 on the axis (Figure
12.19c). A higher current is impossible because it leads to electrons that travel backward along
the axis. 
   If an electron beam with current Io propagates in an equal density of ions there is no net
electric field but there is a magnetic field because the return current of ions is small. In this
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(12.130)

instance the Alfven current is the limit on the beam current, Io # IA. If the beam propagates in a
dense plasma the net current may be smaller than Io, allowing transport of beam current
substantially above IA. In this case we say that the beam propagates beyond the Alfven limit.
   For electrons we can write the Alfven current in practical units as

                                             IA = (17 × 103) $o(o. (A)    [Electrons]                                  (12.128)

As an example, the limiting current for a 1.5 MeV electron is about 65 kA. The limiting current
for ions is much higher. The Alfven current for an ion with charge state Z and atomic number A
is:

                                           IA = (31 × 106) (A/Z) $o(o. (A)    [Ions]                                  (12.129)

The Alfven current for 2 MeV protons is 2 MA. The limit is an important concern for space-
charge-neutralized light-ion beams leaving magnetically insulated diodes (Section 8.8). These
beams can generated high magnetic fields because the applied fields prevent axial electron
motion. 
   The radial distribution of current density F(r/ro) affects the value of the limiting current. A
beam with an annular cross section can carry higher current than a solid beam. Figure 12.20
illustrates solutions to Eqs. (12.124), (12.125) and (12.126) for an annular beam. The current
density is uniform between ro and ri = 0.667ro.  Note that the beam can carry current higher than
IA without reversal of peripheral electron orbits. Regarding the calculation of an annular beam
equilibrium it is clear than the orbits of Figure 12.20 are not consistent with the assumed annular
profile because they cross the axis. We can resolve the problem by including electrons with non-
zero angular momentum. Electrons with the proper angular momentum oscillate in the region
between ri and ro. 
   The Budker parameter is also used to characterize the effect of beam-generated forces on
transverse dynamics. It is closely related to the Alfven current. Consider a cylindrical electron
beam of radius ro. The electrons have total kinetic energy ((o–1)mec2, average energy ((-1)mec2,
total velocity $oc and average axial velocity $c. The quantity N is the total number of electrons
per unit length in the axial direction, or

The dimensionless Budker parameter (denoted <) is the product of N times the classical radius of
the electron:

                                                                 < = Nre,                                                              (12.131)

where
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Figure 12.20. Numerical calculations of single electron orbits in the toroidal magnetic field
generated by a beam with an annular radial distribution of current density. Dashed line shows
assumed inner radius of annular beam. a) I/IA = 0.50. b) I/IA = 1.00 c) I/IA = 2.50.

                                                         re = e2/4B,omec2.                                                        (12.132)

   If $c is the average axial velocity of electrons in a beam, the beam current equals Io = eN$c.
The Budker parameter is related to the Alfven current by:
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(12.133)

The second factor in brackets on the right-hand side of Eq. (12.133) is close to unity unless the
beam propagates near the Alfven current limit. A beam with high </( carries a current close to
IA. If an unneutralized relativistic electron beam has a value of </( close to unity, the difference
in electrostatic potential between the axis and the beam envelope is comparable to the average
longitudinal kinetic energy:

                                                         </( – e)N/(mec2.                                                      (12.134)

The implication of Eqs. (12.133) and (12.134) is that the electrons in beams with high </( have
substantial transverse energy. Conversely the condition </( n 1 implies that orbits of the beam
electrons are paraxial.

12.8. Bennet equilibrium

   The well-known Bennet model [W.H. Bennet, Phys. Rev. 45, 890 (1934)] describes the self-
consistent transverse equilibrium of an intense electron beam propagating through a dense
plasma background. The model gives an accurate representation of beams observed in
experiments because it incorporates a realistic transverse velocity distribution. The Bennet
equilibrium is a good starting point for studies of beam stability. 
   Suppose a high-energy electron beam travels through a plasma with no externally-applied
forces. If the plasma density is much greater than that of the beam the beam drives out plasma
electrons to achieve almost complete space-charge neutralization. The only radial forces we need
consider are the beam-generated magnetic force and the emittance force from the transverse
velocity spread of the beam particles. We seek conditions for a self-pinched electron beam where
the magnetic and emittance forces balance. To simplify the model, assume that there is no
plasma return current and that the current of the cylindrical beam is much smaller than the
Alfven current, 

                                                                       Io n IA.                                                          (12.135)

The condition of Eq. (12.135) specifies that electron orbits in the beam are paraxial – we can
treat transverse and axial motion independently. If all electrons have about the same kinetic
energy (Te = ((-1)mec2) and longitudinal velocity (vz = $c) we can use non-relativistic equations
with an adjusted electron mass (m = (me) to describe transverse motion.
   In the model the electrons have a Maxwell distribution of transverse velocity with uniform
temperature. The condition of uniform temperature means that the shape of the velocity
distribution is the same at all positions. If the transverse velocity distribution is isotropic, the
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(12.136)

(12.138)

(12.141)

(12.142)

Maxwell distribution has the form [Eq. (2.59)]:

The temperature in Eq. (12.136) is related to the transverse velocity spread of the beam by

                                                 kT = (me<vx
2> = (me<vy

2>.                                               (12.137)

   We seek a variation of beam density n(r) that gives force balance at all radii. From the
discussion of Section 2.11 the force acting on a Maxwell beam distribution determines the
equilibrium density of particles. For a net radial focusing force Fr(r) and a density no on the axis,
Eq. (2.131) implies that the density is:

   The radial force in Eq. (12.138) results from the beam-generated toroidal magnetic field, B2(r).
If all electrons have the same value of $c then the radial magnetic force is:

                                                        Fr(r) = -e$c B2(r).                                                       (12.139)

If we define I(r) as the total axial beam current contained with the radius r, the toroidal magnetic
field is:

                                                        B2(r) = :oI(r)/2Br.                                                      (12.140)

For uniform $c the included current is related to the beam density by:

   We can combine Eqs. (12.138) through (12.141) into a single equation that gives the self-
consistent equilibrium density of a pinched electron beam:
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(12.143)

(12.144)

(12.145)

Figure 12.21. Radial variation of the normalized density and toroidal magnetic field for an electron beam
in a Bennet equilibrium. 

We shall see that Eq. (12.142) holds if the density has the radial variation:

The quantity ro is a scaling radius. Substituting from Eq. (12.143) and defining the quantity P =
r/ro we can rewrite Eq. 12.142 as:

Carrying out the double integral of Eq. (12.144) leads to the relationship:

   Equation (12.145) holds if the first bracketed quantity on the right-hand side equals unity. This
equilibrium constraint is called the Bennet pinch condition. We can write the Bennet condition 



Electron beams in plasmas

585

(12.146)

Figure 12.22. Matched propagation of a magnetically-pinched beam in a plasma. a) The electron
transverse energy spread (kTo) is too low, resulting in over-focusing and envelope oscillations. b)
Matching a beam at the plasma boundary by preliminary focusing.

conveniently in terms of the total beam current:

Evaluating Eq. (12.146) for the density expression of Eq. (12.143) gives
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                                                          Io = (Bro
2) eno$c.                                                       (12.147)

A familiar form of the Bennet pinch condition is:

                                                          kT = Ioe$c:o/8B.                                                       (12.148)

We can substitute the Alfven current to derive an alternative form of Eq. (12.148):

                                                    kT = (Io/IA) [(me($c)2/2].                                                (12.149)

Equation (12.149) implies that the ratio of the transverse beam energy to the longitudinal energy
is roughly equal to the ratio of Io to IA.

   To this point, we have concentrated on the mathematics of the Bennet model. We can
understand the physical meaning of the derivation by verifying that the density of Eq. (12.143)
guarantees a balance between the pressure force and magnetic force at all radii. The moment
equation for momentum balance [Eq. (2.117)] in an equilibrium beam has the form:

                                                    kT [dn(r)/dr] = - e$c n(r) B2(r).                                     (12.150)

The left-hand side is the force density associated with a velocity spread while the right-hand side
is the magnetic force per volume. We find B2 by substituting Eq. (12.143) in Eqs. (12.140) and
(12.141):

                                                   B2(r) = (:oI/2Br) (r/ro)2/[1+(r/ro)2].                                 (12.151)

Using the expressions of Eq. (12.143) and (12.151), the reader can show that Eq. (12.151) holds
at all radii if Io and kT satisfy the Bennet condition. Figure 12.21 plots the normalized density
and magnetic field as a function of (r/ro). The smooth bell-shaped density profile is a good
representation for beams with particles that collide with a background medium.
   We have not yet discussed how to calculate the scaling radius ro. The Bennet equilibrium
condition does not depend on ro. To define the radius we must include information on the
distribution of the injected beam. Figure 12.22a shows a beam entering a plasma with total
current Io, injection radius Ro and an emittance characterized by kTo. If kTo equals kT of Eq.
(12.148) the beam is in equilibrium and propagates with ro = Ro. On the other hand if kTo < kT
the beam experiences a focusing force in the plasma that leads to decreased radius. In turn, the
two-dimensional beam compression leads to increased transverse temperature (Section 3.8). At
some value of reduced radius the pressure force is high enough to reverse the beam compression.
The unbalanced non-linear forces cause envelope oscillations and emittance growth. The best
approach for plasma transport is to compress the beam reversibly so that it enters the plasma
with a matched distribution:

                                                                    kTo = kT.                                                          (12.152)
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Figure 12.23. Guiding a high-current electron beam by laser generation of a low-density plasma column.

Figure 12.22b illustrates matching a beam into a plasma transport channel with a linear lens. The
quantity Ro in Figure 12.22b is the beam radius consistent with Eq. (12.148).

12.9. Propagation in low-density plasmas and weakly-ionized gases
   
   In this section we shall discuss two examples of high-energy electron beam propagation
through a medium. The first topic is laser-guiding of electron beams by selective ionization of a
low-density gas. This propagation mode has potential application to high-current electron
transport in accelerators. The second topic is the propagation of a self-contained electron beam a
long distance through a weakly-ionized gas. This propagation mode is the basis of recurring
proposals for electron beam weapons. Our derivation has an educational purpose – we shall see
how to add collisional effects to the paraxial envelope equation. 
   Figure 12.23 shows the idea of electron beam guiding by a laser. A high-power dye laser tuned
to a resonance of a low-density background gas generates an extended, narrow channel of
plasma. The plasma ion density ni is much smaller than the beam density nb. The space-charge
fields of an entering relativistic electron eject the low-energy plasma electrons leaving a low-
density core of ions. When nb > ni the beam expels all plasma electrons. Without electrons there
is negligible return current in the beam volume. With sufficient ion density the electron beam
can propagate long distances focused by its own magnetic field. We saw in Section 5.5 that the
ion density must be in the range 

                                                              1/(2 < ni/nb < 1.                                                     (12.153)
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for a pinched beam equilibrium. The exact value of density depends on the beam emittance – for
paraxial relativistic beams the required value of ni is low.
   Laser guiding has been applied to high-current beams in induction linear accelerators. The
advantage is that the beam propagates through the accelerator in a tight pinch. The compressed
beam has a high value of angular divergence and is less susceptible to emittance growth. The
beam-generated focusing force varies non-linearly with radius. The resulting spread in the
betatron wavelength of the beam electrons reduces the growth-rate for transverse instabilities
(Section 13.3). On the other hand there are major problems associated with laser guiding in a
high-gradient accelerator. The machine must be filled with a special gas such as benzine. Also
plasma electrons may accelerate with the beam. Laser guiding only works for short pulse beams.
Confinement in a channel depends on localization of the ion density. The beam must pass
through before the plasma ions expand. If the beam creates additional ions there is no preferred
propagation axis and a perturbation may send the beam sideways; therefore, the pulse length
must be shorter than the average time for collisional ionization of the background gas. Electron
beams in plasma channels are also subject to a hose instability – Section 13.6 discusses this
topic.
   We next proceed to electron beam propagation in a weakly-ionized gas. In contrast to the
previous model the plasma for beam neutralization is created by the beam through collisional
ionization. Usually the plasma density is much higher than that of the beam. In the dense plasma,
the electrons have low-temperature and the resistivity is high. Following the discussion of
Section 12.6 the plasma return current spreads over a large cross-section, allowing self-pinched
beam propagation. 
   Our goal is to modify the paraxial envelope equation to include collisions that change the axial
and transverse momentum of electrons. We shall concentrate on the equilibrium properties of
beams – the theory of electron beam stability in a dense gas is a complex and open-ended field.
We shall adopt some simplifying assumptions:

     1) The paraxial beam has cylindrical symmetry. 

     2) We limit attention to an envelope model that describes the root-mean-square beam radius
R(z) without addressing detailed momentum balance over the cross section.

     3) Partial ionization of a background gas provides complete space-charge neutralization of the
beam. 

     4) The magnetic diffusion time is much shorter than the beam pulse length. In the resistive
plasma, only a small fraction of the return current flows within the beam volume. 

     5) There are no applied focusing or acceleration forces.

   A set of differential equations describes the beam trace R(z). Although we shall not derive
detailed numerical solutions, it is informative to list the equations along with their physical
motivation. The first equation defines the envelope angle:
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(12.155)

(12.158)

                                                           dR/dz = R'.                                                              (12.154)

The cylindrical envelope equation [Eq. (9.25)] gives the change in R' with z: 

The quantities ((z) and $(z) are the relativistic parameters of the beam electrons at position z
averaged over radius. The first term on the right-hand side of Eq. (12.155) represents the effect
of deceleration. We include it because the beam loses energy in collisions with the gas atoms.
Because the gas density is almost independent of the beam density we can treat (' as a given
function of z:

                                           d(/dz = [(dE/dz)c + (dE/dz)r]/mec2.                                          (12.156)

Section 10.4 gives expressions for the collisional and radiative stopping powers.
   The second term in Eq. (12.156) is the focusing force of the beam magnetic field. The quantity
Io is the total beam current and IA is the Alfven current [Eq. (12.127)]. With no absorption of
beam electrons Io is almost constant in z. If atomic or nuclear collisions cause the loss of a
significant fraction of the beam we can express the current as a given function of z, Io(z).   
   The third term represents defocusing by emittance. Although the emittance term has the same
form as Eq. (3.42) we recognize that , varies with z. The rate of emittance increase with z
depends on R(z), even though single-particle scattering process are uniform throughout the
homogenous medium. Because the change in , depends on the beam geometry we must develop
a separate differential equation. We can write ,2 in Eq. (12.155) as the product of the mean-
squared radius and the mean-squared divergence angle:

                                                               ,2 = R2<22>.                                                        (12.157)

We define the emittance equation by taking the total derivative of Eq. (12.157), noting that
changes in <22> result from both scattering collisions and beam deceleration.

The second term in brackets represents the variation in <22> from collisions – Eq. (10.62) gives
the derivative. The third term states that normalized emittance is conserved (Section 3.4) if there
are no collisions. 
   We can calculate numerical solutions for the variation of beam envelope by advancing Eqs.
(12.154), (12.155) and (12.158) simultaneously from given initial conditions. An analytic
solution is possible if we neglect collisional energy loss compared to scattering. This assumption
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(12.159)

(12.163)

(12.164)

often holds for moderate-energy electron beams in air or other gases with intermediate to high
atomic number. With constant (, the envelope equation is:

If the beam expansion takes place over a long distance the envelope angle and its derivative are
small – the beam is always close to a radial force equilibrium. The two terms on the right-hand
side of Eq. (12.159) are almost equal. Using Eq. (12.157) the emittance satisfies the following
condition at all values of z:

                                                             <22> – Io/IA.                                                          (12.160)

For constant Io  Eq. (12.160) states that the angular divergence of electrons in the beam is
constant, despite scattering collisions. In response to collisions the beam radius expands to
maintain a constant value of <22>.
   We can describe the expansion of the beam mathematically. Over a differential distance )z
collisions increase the angular divergence of electrons by an amount

                                                    )<22> = (d<22>/dz)c )z.                                               (12.161)

A beam with enhanced angular divergence is not in a radial force equilibrium. The beam must
expand to reduce the divergence by an amount -)<22>. According to Section 3.8 the relationship
between divergence angle and beam radius for a differential expansion is:

                                                      )<22>/<22> = -2 )R/R.                                               (12.162)

Substituting from Eqs. (12.160) and (12.161) we find the following equation for the beam radius:

Integration of Eq. (12.163) gives the Nordsieck equation for expansion of a beam colliding with
a background:

Note that the quantity <22>c in Eq. (12.164) is not the angular divergence of the beam.
According to Eq. (12.160) the beam divergence <22> is constant. Instead <22>c is the mean
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squared divergence angle that single electrons would gain moving a distance z. The mean-
squared divergence angle is a function of z. At z = 0, <22>c = 0 and R = Ro.
   As an application example consider a self-pinched beam with Io = 5 kA and ((-1)mec2 = 50
MeV that moves through air at a pressure of 1 mtorr. Equation (12.127) shows that IA = 1.6 MA.
Electron motion is paraxial – the ratio (Io/IA) equals 3 × 10-3. Following Eq. (10.62) the mean-
squared divergence angle for an equilibrium beam is:   

                                                       (<22>)1/2 = 55 mrad (3°).

Suppose the beam enters the medium with small envelope radius (Ro = 1 mm) and the envelope
radius at the target must be less than 0.1 m. Equation (12.164) implies that the change in single-
particle mean-squared divergence angle is: 

                                               <22>c # 2(I/IA) ln(100) = 2.76 × 10-2.

Inserting the value into Eq. (10.62) with Z = 7 and N = 7.0 × 1022 m-3 gives a propagation length
of 7.5 × 104 m (75 km). Over this length Eqs. (10.52) and (10.55) predict an energy loss of 18
MeV - the assumption of constant electron energy is marginal.
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13
Transverse Instabilities
____________________

   

   In this chapter and the next we shall study instabilities of charged particle beams. An
instability is a change in a system where the outcome does not depend on the magnitude of the
initial perturbation. The changes feed on themselves and therefore exhibit exponential growth. A
familiar example of a system with instabilities is a ball in a region of varying gravitational
potential. Suppose we have a complex topography of hills and valleys and the goal is to confine
the ball in one spot. First we must find positions of equilibrium with no components of
transverse force. One choice is the bottom of a valley, a point of stable equilibrium. Small
perturbations of the position of the ball result in bounded oscillations about the equilibrium
point. The top of a hill is also a position with zero transverse forces, but here the equilibrium is
unstable. The slightest displacement causes acceleration of ball away from the peak. Where the
ball ultimately goes depends on the topography of the region, not on the magnitude of the initial
perturbation. The potential energy of the ball on the hilltop drives the instability. Any
displacement initiates a coupling of the stored potential energy to velocity away from the
equilibrium point.
   Systems with many particles have absolute stability only if there is no free energy that can
change to kinetic energy. A perfectly-stable group of particles has a uniform density with infinite
extent and a Maxwell velocity distribution. We recognize that charged-particle beams are often
as far from this ideal state of thermodynamic equilibrium as possible. The beam quality depends
on how non-isotropic we can make the particle distribution. Beams are tightly confined in the
transverse direction – in RF accelerators particles are also localized in the axial direction. The
distribution is almost mono-energetic with average momentum predominantly in the longitudinal
direction. The creation and transport of charged particles depends on avoiding processes that
drive the beam to a state of thermodynamic equilibrium. In beams the axial motion is a reservoir
of free energy. Coupling even a small part of the beam kinetic energy to transverse motion can
result in beam loss.
   We have already encountered one instability that affects individual particles – the orbital
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instability in a periodic focusing system (Section 1.3). When the lens strength is high the vacuum
phase advance may exceed 180°. The resulting over-focusing couples axial motion to transverse
particle motion with increasing amplitude. The orbital instability is a single-particle process. In
this chapter and the next we shall concentrate on collective instabilities. Here time-varying fields
generated by the beam particles cause coupling of free energy to undesired motions of individual
particles or the entire beam. The growth-rate of collective instabilities is usually proportional to
the current of the beam. 
   We divide collective instabilities into two types: transverse and longitudinal. Transverse
instabilities (the subject of this chapter) involve energy coupling either to beam expansion, to
gross sweeping motions, or to increased emittance. Mild instabilities may interfere with
applications that call for fine beam steering or focusing. Strong instabilities can cause complete
loss of beams to vacuum chamber walls.
   We saw in Chapter 1 that the parameters of beams for applications extend over a broad range.
Within this range there are an almost unlimited number of ways that beams seek to avoid
confinement. In a single chapter we cannot hope to cover the entire field of transverse
instabilities. Instead we shall study a few well-known examples in detail. Section 13.1 describes
the collective version of the orbital instability. We investigate oscillations of a beam with strong
self-fields in a periodic focusing system. The beam exhibits unstable envelope oscillations when
:o = 180°. We shall develop a simple but informative particle simulation to model the instability.
   Sections 13.5 through 13.8 deal with instabilities that cause transverse sweeping of beams,
while Sections 13.2 through 13.4 provide essential background material. Section 13.2
summarizes oscillation modes of a filamentary elastic beam. The approximation applies to thin
beams in linear focusing systems where all particles have the same betatron frequency. A
uniform orbit displacement at an axial position results in a coherent downstream sweeping
motion. Each axial segment of the beam acts as an independent, moving harmonic oscillator.
Individual oscillations combine to create traveling betatron waves on the beam. We divide the
waves into two types, fast waves and slow waves. A clear understanding of slow betatron waves
gives insight into the mechanisms of many transverse instabilities.
   Section 13.3 derives expressions for frictional forces on beams that result from external
structures such as a resistive vacuum chambers or resonant cavities. Although a friction force
damps some transverse oscillations, it can augment the amplitude of some slow betatron waves.
In contrast a spread in the betatron frequencies of beam particles always damps transverse
oscillations. Such a dispersion can follow from a spread in particle energy or from non-linear
focusing forces. It is sometimes possible to avoid a transverse instability by introducing a spread
in betatron frequency.
   Section 13.4 reviews the properties of transverse resonant modes, a class of electromagnetic
oscillations in cavities. These modes play a critical role in the beam breakup instability because
they can extract energy from a sweeping beam. The modes have an oscillating on-axis magnetic
field that causes enhanced beam sweeping. Section 13.5 applies the properties of transverse
modes to describe the beam breakup instability in induction linear accelerators. This instability is
the main limit on beam current in these machines and several other electron accelerators. 
   Section 13.6 describes the transverse resistive wall instability, a source of problems in high
current storage rings. Here frictional forces from vacuum chamber wall resistivity amplify slow



Transverse instabilities Charged Particle Beams

594

(13.1)

betatron waves. We shall see that the theory of the resistive wall instability also describes the
beam-breakup instability when the growth time is much longer than the fill time for transverse
modes.
   Section 13.7 treats the hose instability of an electron beam confined by ion channel. The ion-
confined propagation mode has application to long-distance electron beam propagation in free
space and in accelerators. Hose instabilities occur when a flexible transport system confines a
beam. Here the ion column can move in response to beam-generated forces. The centrifugal
force of a deflected beam causes a growing displacement of the ions. Section 13.8 covers the
resistive hose instability of a self-pinched electron beam in a homogeneous plasma. The plasma
return current can shift sideways in a plasma with non-zero resistivity. The plasma acts like a
flexible confinement system, leading to growth of beam sweeping.
   Finally Section 13.9 describes a transverse instability that does not involve changes in beam
dimensions or position. The filamentation instability causes increased beam emittance. It results
from localized magnetic pinching of a neutralized electron beam. We shall derive growth rates
and stability criteria in resistive plasmas and in foil focusing arrays.

13.1. Instabilities of space-charge-dominated beams in periodic focusing systems

   All high-energy particle accelerators use periodic quadrupole arrays for beam focusing.
Although quadrupoles provide strong focusing, their periodic nature may also induce transverse
beam instabilities. In this section, we shall discuss two instabilities that depend on the space-
charge forces of the beam. The first is the resonance instability, important in circular
accelerators. Although resonance instabilities are a single-particle effect, the space-charge force
determines the onset conditions. The instability sets a limit on the contained current in a storage
ring or synchrotron. The second instability, the envelope instability, is a true collective process.
The periodic focusing forces drive a growing oscillation of the envelope of a high-current beam.
The envelope instability affects both linear and circular accelerators. It sets an upper limit on the
strength of focusing lenses, and hence indirectly determines the transportable current.
   Sections 8.7 and 15.7 of [CPA] discuss the nature of resonance instabilities. As a review
consider a particle confined by a strong focusing system in a circular accelerator. The strength of
the quadrupole lenses determines the wavelengths of betatron oscillations in the horizontal and
vertical directions, 8x and 8y. We represent the lens strength for a FD array with unequal F and D
cells by the parameters:

The quantities l1 and l2 are the lens lengths and 61 and 62 are the lens parameters [Eq. (9.49)].
Assume that Lens 1 focuses in the horizontal direction (x) while Lens 2 focuses in the vertical
direction (y). If C is the circumference of the circular accelerator, the definition of a strong
focusing is that:
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                                                                 8x, 8y < C.                                                              (13.2)

A resonance instability occurs when particles rotating around the machine have an integer
number of betatron oscillations:

                                                8x = C/<x   (<x = 1, 2, 3, . . . .),                                                (13.3)

or

                                                  8y = C/<y   (<y = 1, 2, 3, . . . .).

If either of Eqs. 13.3 holds then errors in the focusing or bending fields of the accelerator always
act at the same phase of a betatron oscillation. As a result the deflections caused by field errors
sum coherently, causing a growth in the oscillation amplitude. 
   The set of quadrupole lenses and bending magnets in a circular accelerator is called a lattice.
The stability properties of a quadrupole lattice are usually represented by a necktie diagram –
Figure 13.1 shows an example. The coordinates are '1

2 and '2
2. The orbital instabilities that we

shall discuss later determine the point of the lenses must lie inside the necktie shaped region. The
diagram also shows curves of integer values of <x and <y. To avoid an integer resonance
instability the operating point must not lie on any of the lines. Figure 13.1 shows an acceptable
operating point. The lens settings that determine the operating point are called the lattice tune.
During the acceleration cycle in a synchrotron the tune must change so that the operating point
always remains within a quadrilateral region on the diagram.
   The features of the necktie diagram are different if the lenses have non-linear components of
focusing force. With non-linear lenses the particles in a beam have a spread in the values of <x
and <y. For example the value of <x is higher for off-axis particles if the lenses have spherical
aberration. We can represent the effect of a spread in betatron wavelength on the orbital
resonance conditions by using lines with non-zero thickness in the necktie diagram. With a
positive coefficient of spherical aberration (Section 4.4) the resonance lines extend upward and
to the left (Figure 13.2a). Non-linear lenses reduce the size of the allowed regions for stable
propagation. 
   Beam-generated forces have two effects on the tune of a focusing lattice. First, the linear
component of the force counteracts the applied focusing force increasing the single-particle
betatron wavelength. Suppose the current trapped in a storage ring rises slowly with time
through slow beam injection. If there is no change in the lens settings space-charge forces shift
the lines of constant <x and <y to the right and downward (Figure 13.2b). To avoid an integer
resonance the lens strength must change to balance the space-charge effect. The accelerator
operator introduces a tune shift in the lattice. In principle a tune shift can compensate the effect
of any value of beam current if the space-charge forces are linear. In reality beams do not have a
uniform density with sharp boundaries. The beam profile is usually Gaussian – the transverse
beam-generated force is inevitably non-linear. Therefore space-charge forces also increase the
thickness of lines of constant < on the necktie diagram. At high beam current the region around
the operating point shrinks to zero and some beam particles are lost. For injection into a storage 
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Figure 13.1. Necktie diagram for beam propagation in a circular accelerator with FD quadrupole
focusing, 24 focusing cells per revolution. '1 is the focusing strength parameter in the x direction, while
'2 describes focusing in the y direction. Interior lines indicate conditions for orbital resonances. The circle
shows a possible operating point at <1 = <2 = 6.4. (From M.S. Livingston and J.P. Blewett, Particle
Accelerators. Used by permission, McGraw-Hill Book Co.)

ring, the trapped current reaches a saturation level even if beam particles enter continuously.
   The single-particle orbital resonance instability determines the boundaries of the necktie
region. Chapter 8 of [CPA] discusses this process. The instability occurs when the phase advance
per focusing cell of a particle is in the range

                                                                      :o $ 180°.                                                         (13.4)

With space-charge forces we might expect that the stability condition changes. We know that a 
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Figure 13.2. Modifications of resonance conditions. Close-up view of the marked portion of the necktie
diagram in Fig. 13.1. Lens nonlinearities – the shaded area shows the region of the necktie diagram
occupied by particles in a finite-width beam. 

linear space-charge force reduces the phase advance per cell of a single particle orbit, : < :o. Is
it possible that space-charge forces could counteract the applied focusing force that causes orbit
over-focusing? If this were true we could use stronger lenses in linear accelerators and contain
beams with very high current. We shall address this topic in the rest of this section. We shall
prove that unfortunately beam-generated forces do not change the limit on lens strength set by
instabilities. For the condition of Eq. (13.4) the periodic focusing forces couple to an unstable
envelope oscillation of a space-charge dominated beam. The limits of the stability region of the
necktie diagram with linear beam-generated forces are the same as those of Figure 13.1.
   To minimize the mathematics of the model, we treat a simple one-dimensional focusing system
consisting of a uniform array of thin lenses with focal length f and drift spaces of length L. The
lenses focus in the x direction. A paraxial beam with uniform density and zero emittance travels
through the array. The symbol X denotes the half-width of the sheet beam. If X n L we can
approximate transverse electric and magnetic fields of the beam by the expressions for an
infinite length beam. 
   As an initial condition we take a laminar beam matched to the focusing array. In a matched
equilibrium X repeats periodically through all focusing cells (Figure 13.3). The quantity Xo is the
width of the matched beam envelope at the waist midway between two lenses – we take the
origin of the z coordinate at a midpoint between lenses. Although the beam density is uniform in
x, it varies with z over a focusing cell. The density is related to the envelope width by
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Figure 13.3. Envelope of a laminar sheet beam with space-charge forces in an
array of linear thin lenses.

                                                          n(z) = no [Xo/X(z)].                                                       (13.5)

   We start by calculating the properties of the matched beam equilibrium and then investigate
the effect of perturbations. The one-dimensional paraxial ray equation (Section 9.1) describes the
change of envelope width between lenses:

                                                                    X" = Kx,                                                              (13.6)

where

                                                        Kx = e2noxo/,omo(
3$2c2.                                                   (13.7)

In a matched beam, the envelope angles at the input and output of a lens are equal in magnitude
but opposite in sign:

                                                        )X'(L/2+) = - )X'(L/2-).                                                  (13.8)

Equation (13.8) is equivalent to

                                                         )X'(L/2-) = X(L/2-)/2f.                                                   (13.9)

   The solution of Eq. (13.6) for a matched beam with a waist at z = 0 is,

                                                  X(z) = Xo + Kxz2/2,   X'(z) = Kxz.                                         (13.10)
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Substitution in Eq. (13.9) leads to the matched beam condition:

                                                          Kx = (Xo/Lf)/(1 - L/8f).                                               (13.11)

Note that a similar condition holds for a cylindrical beam in a lens array. If envelope oscillations
are small, the matched condition is

                                                          K – (2Ro
2/Lf)/(1 - L/4f).

where Ro is the envelope radius and K is the generalized perveance of Eq. (5.88). The maximum
values of X and X' in Eq. (13.11) occur at the entrance to a lens,

                                       Xmax = Xo/(1 - L/8f),   Xmax' = (Xo/2f)/(1 - L/8f).                             (13.12)

We can write the envelope equation for the region between lenses as: 

                                                          X" = *(Xo/Lf)/(1 - L/8f ).                                            (13.13)

The quantity * is a mismatching parameter – for a matched beam * = 1. 
   The plots of Figure 13.4 illustrate the variation of envelope width for mismatched beams in an
infinite lens array. Figure 13.4a shows superimposed envelope trace-space plots for twenty
focusing cells. The plots follow a parabolic variation between lenses connected by a straight line
to represent the discontinuity in envelope angle at the lens. In Figure 13.4a, the lens focal length
is f = L/2.15 (corresponding to a phase advance per cell of :o = 94.3°) and the beam is almost
matched (* = 0.975). Figure 13.4b shows the trace for a strongly mismatched beam (* = 0.75).
Although the envelope width changes considerably between cells, the beam has long-term
stability.
   The space-charge dominated beam is subject to an envelope instability when f < L/4 (:o =
180°). With strong lenses a small mismatch causes the amplitude of the envelope radius to
increase without limit. Figure 13.5 shows envelope trace plots that illustrate this effect. The
solution of Figure 13.5a has a small mismatch (* = 0.98) and is marginally stable (L/f = 3.9, :o =
162°). A small change in the lens focal length (L/f = 4.1) gives the markedly different solution of
Figure 13.5b. The periodic lens force excites the natural transverse oscillationfrequency of the
space-charge-dominated beam. When L/f > 4 the beam waist is at a position z < 0; therefore, the
envelope width at the next lens is larger. This process repeats in the next cell leading to an
envelope oscillation amplitude that grows continuously.
   More complex modes of oscillation are possible in a quadrupole array because of coupling
between x and y motions. Theory predicts an instability for a beam with a KV distribution at :o =
90° [I. Hoffmann, Nucl. Instrum. Methods 187, 281 (1987)]. Excitation of beam oscillations and
coupling between x and y motions results in forces with six-fold symmetry. These forces distort
the distribution resulting in a growth of emittance. Figure 13.6 shows the results of a particle
simulation for a focusing channel with :o = 90° and a matched KV beam with non-zero 
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Figure 13.4. Trace-space plots of the variations of envelope width of a non-relativistic, space-charge-
dominated beam propagating in an array of thin lenses. Lenses of focal length f are separated by a
distance L. Data for 20 lenses with f = L/2.15. Dots show the points of a numerical integration of the
envelope equation between lenses. a) Mismatch factor, * = 0.975. b) Mismatch factor, * = 0.75.

emittance (: = 45°). The emittance increases by a factor of 2.4 during propagation through 42
FD cells. Emittance growth leads to saturation of the instability. The importance of the :o = 90°
instability is questionable – it would not have occurred if the distribution at Cell 42 was used as
the input distribution rather than a KV distribution. In a sense the simulation is a tool to generate
stable matched distributions for a given beam current and lens setting. The stability of space-
charge-dominated beams in quadrupole arrays is a field of active research. Presently, there is
general agreement that beam propagation is stable if:
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Figure 13.5. Trace space plots of the variations in the envelope width of a nonrelativistic, space-charge-
dominated beam propagating in an array of strong thin lenses. a) Stable beam, 20 lenses, f = L/3.9,  * =
0.98. b) Unstable beam, f = L/4.1, * = 0.98.

                                                      :o # 60°    0° #: # 60°.                                                 (13.14)

   The problem of beam propagation in a one-dimensional lens array gives us an opportunity to
study some techniques of particle simulation codes. The calculation of self-consistent beam-
generated forces is particularly simple in the sheet-beam geometry – we can achieve sufficient
accuracy with a small number of computational particles. Table 13.1 lists a simulation program,
SC_PORT. The program has practical as well as educational value – we can use it to study the
emittance growth of space-charge-dominated beams in non-linear lens arrays. The short program
illustrates three essential steps to create an effective particle simulation: 
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Figure 13.6. Particle-in-cell simulation of beam transport in a quadrupole lens array, FODO with 50 per
cent filling. Beam is uniform in z with initial KV distribution. :o = 90°, : = 45°. Rapid sextupole-type
mode in y-vy leads to emittance growth by a factor of 2.4 (Courtesy of I. Hoffmann, Gesselschaft for
Schwerionenforschung, Darmstadt.)

     1. Identify the main physical issues and scaling quantities through analytic studies.

     2. If possible, recast the relevant equations in dimensionless form to identify free parameters.

     3. Choose numerical methods to optimize the accuracy of the results and to minimize the
computational time.

   We have already carried out the first step for the one-dimensional beam in the thin lens array.
We shall again use the approximation that Xo n L. In this limit, the beam is paraxial. The code
follows computational particles in an axial slice of the beam as they moves through the array.
Two quantities characterize a computation particle: the transverse position within the envelope,
x(z), and the angle with respect to the axis, x’(z). We define the following dimensionless
variables:
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TABLE 13.1. Program SC_PORT
(Particle simulation program minus I/O routines)

program SC_PORT (input,output);

  { Propagation of a space-charge dominated sheet beam
    through a periodic thin lens array.
      1. Matched or mismatched beams.
      2. Linear or non-linear lenses.
      3. Two-step integration, PIC calculation of beam force

    Written in PASCAL.
    -S. Humphries, Jr., 06/88 }

{ ---------------------------------------------------------- }

const
  NPartMax = 250;
  NMeshMax = 50;

type
  PartArray = array [1..NPartMax] of real;
  MeshArray = array [0..NMeshMax] of real;

var
  {--- Indices --- }
  k : integer;   {Cell number}
  i : integer;   {Integration step between lenses}

  {--- Particle variables ---}
  x, xtemp   : PartArray; {Transverse position}
  xp, xptemp : PartArray; {Transverse angle}
  NPart : integer; {Number of particles}

  {--- Field variable ---}
  F  : MeshArray; {Normalized transverse force function}
  NMesh : integer; {Number of mesh points}

  {--- Program control ---}
  NStep : integer; {No. integration steps between lenses}
  NCell : integer; {Number of cells}
  NDiag : integer; {Number of cells between diagnostics}
  XMax  : real; {Maximum value of x to terminate program}
  dz    : real; {Differential length element for integration}
  dx    : real; {Mesh scale length}

  {--- Focusing system ---}
  LdivF : real; {L/f}
  Delta : real; {Distribution mismatch factor}
  Epsilon : real; {Lens non-linearity factor}   
  OrbFact : real; {Space charge force of beam}

{ ---------------------------------------------------------- }
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Table 13.1. (Continued)

procedure ReadControlParameters 
             (NStep, NCell, NDiag, NPart, NMesh : integer;
              LdivF, Delta,Epsilon, XMax : real);
begin
  {Read input parameters from disk file, system dependent}
end; {ReadControlParameters}

procedure Initialize;
begin
  dz := 1.0/(1.0*NStep);
  OrbFact := Delta*LdivF/(1.0 + LdivF/8.0);
end;

procedure MakeInitialDistribution (var x,xp : PartArray);
var
  X0, XP0 : real;
  n : integer;
begin
     {Start with distribution matched to linear lens
      with Delta = 1.0}
  X0 := 1.0 - LdivF/8.0;
  XP0 := -LdivF/(1.0 - LdivF/8.0);
  for n := 1 to NPart do
    begin
      x[n] := X0*n/(1.0*NPart);
      xp[n] := XP0*n/(1.0*NPart);
    end;
end; {MakeInitialDistribution}

procedure CalculateF (var x : PartArray; var F : MeshArray);
var
  j : integer;
  n : integer;
begin
  for j := 0 to NMesh do      {Zero function}
     F[j] := 0.0;
  for n := 1 to NPart do      {Assign particles to boxes}
    begin
      j := round(int(x[n]/dx + 1.0));
      F[j] := F[j] + 1.0;
    end;



Transverse instabilities Charged Particle Beams

605

Table 13.1. (Continued)

  for j := 1 to NMesh do      {Integrate}
    F[j] := F[j] + F[j-1];
  for j := 1 to NMesh do      {Normalize}
    F[j] := F[j]/(1.0*NPart);
end; {CalculateF}

procedure AdvanceThroughDrift (var x, xp : PartArray);
var
  n : integer; {Particle Index}
  j : integer; {Mesh Index}
  fact : real; {Interpolation factor}

    procedure CheckX (var x : real);
    begin
      if (x < 0.0) then x := 0.0;
      if (x > XMax) then
        begin
          writeln ('***** Particle out of range, terminating *****');
          halt;
        end;
     end; {CheckX}

begin
           {STEP 1}
  CalculateF (x,F);
  for n := 1 to NPart do
    begin
      xtemp[n] := x[n] + xp[n]*dz/2.0;
      CheckX (xtemp[n]);
      j := round(int(x[n]/dz));
      fact := x[n]/dz - 1.0*j;
      xptemp[n] := xp[n] +
         (F[j]*(1-fact) + F[j+1]*fact)*Orbfact*dz/2.0;
    end;
           {STEP 2}
  CalculateF (xtemp,F);
  for n := 1 to NPart do
    begin
      x[n] := xtemp[n] + xptemp[n]*dz;
      CheckX (x[n]);
      j := round(int(x[n]/dz));
      fact := xtemp[n]/dz - 1.0*j;
      xp[n] := xptemp[n] +
         (F[j]*(1-fact) + F[j+1]*fact)*Orbfact*dz;
    end;
end; {AdvanceThroughDrift}

procedure AdvanceThroughLens (var x,xp : PartArray);
var
  n : integer;
begin
  for n := 1 to NPart do
    xp[n] := xp[n] - x[n]*LdivF*(1 + Epsilon*x[n]*x[n]);
end; {AdvanceThroughLens}
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(13.16)

(13.17)

Table 13.1. (Continued)

procedure MakePlots (x, xp : PartArray; F : MeshArray);
begin
  {System Dependent Plotting Routines}
end; {MakePlots}

{ ---------------------------------------------------------- }
{ *********** The body of the program starts here ********** }

begin
  ReadControlParameters (NStep, NCell, NDiag, NPart, NMesh,
                         LdivF, Delta¬ Epsilon, XMax);
  Initialize;
  MakeInitialDistribution (x,xp);
  for k := 1 to NCell do
    begin
      for i := 1 to NStep do
           AdvanceThroughDrift (x,xp);
      AdvanceThroughLens (x,xp);
      if ((k mod NDiag) = 0) then MakePlots(x,xp,F);
    end;
end. {SC_PORT}
            

                                             P = x/Xo,     P' = x/(Xo/L)  and   . = z/L.                                (13.15)

   In the sheet beam geometry, the electric field at the envelope has a constant value, independent
of X. By Gauss's law the field at a position x inside the envelope is proportional to the number of
particles between the origin and x. The trace equation for a relativistic particle inside the
envelope is therefore 

where Kx is the generalized perveance. In dimensionless form Eq. (13.16) becomes:

where 

                                  F(P) = (Particles inside P)/(Total particles).                                      (13.18)

   We use the particle-in-cell (PIC) method of Section 2.9 to evaluate the self-consistent force of
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Eq. (13.17). We define F(P) at mesh locations separated by )P. At the beginning of each step,
we carry out the summation of Eq. (13.18) to find Fn(n)P). We then assume that F(P) is a
smooth function in a real beam. Therefore we can find the value of F at the position of a particle
by interpolation of Fn(n)P). 
   Table 13.1 lists the main portions of SC_PORT in PASCAL. The first section is a list of
constants and variables. The main routine is at the end of the listing – it consists of only seven
statements. These statements use pre-defined procedures. The program uses the two-step method
to advance the positions and angles of computational particles. Linear interpolation gives the
force function at positions between mesh points. Evaluation of the force function consists of
counting the particles inside each mesh point. Often particle simulations use computational
particles with a non-zero width (the cloud-in-cell method) to smooth statistical noise. This
procedure is unnecessary in this problem because the integral involved in the calculation of F(P)
provides inherent smoothing. The program includes the possibility of beam mismatching and
non-linear lenses with a deflection of the form: 

                                                      )P' = -(P/f)(1 + 0P2).                                                     (13.19)

   Figure 13.7 illustrate results on the stability of beams in periodic focusing systems. The runs
used fifty computational particles, twenty mesh points, and six integration steps between each
lens. Figure 13.7a shows a test calculation of a matched laminar beam propagating in a lens
array with L/f = 1.0 (:o = 90°). The figure includes a trace-space plot of the particle distribution
and a plot of the spatial variation of the normalized force, Fn(n)P). Except for statistical noise
the distribution does not change traveling through fifty cells. The example verifies that a one-
dimensional beam with :o = 90° and : = 0° propagates with little emittance growth. 

   The second example (Figure 13.7b) has similar input parameters – the difference is the
introduction of a non-linear lens factor of 0 = 0.05. The input beam satisfies the conditions of
Eq. 13.12 for a linear lens; therefore, it is initially mismatched to the non-linear array. Following
injection the beam distribution adjusts in the first few cells to seek a matched force balance.
After the adjustment, the beam is stable and has no further emittance growth through fifty cells.
The results imply that one-dimensional beams are stable at : = 0 in both linear and non-linear
focusing systems.
   The final example of Figure 13.8 shows the effects of an envelope instability on the beam
distribution. The focusing system has linear lenses with f = L/4.2. The beam is matched at
injection. The simulation shows rapid local and global distortions of the beam distribution. The
program stops after six cells when the growing envelope oscillation carries particles outside the
computational region (XMax = 1.75).
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Figure 13.7. Results from a one-dimensional particle-in-cell simulation of a laminar beam in an array of
non-linear thin lenses. 50 simulation particles. Variables, P = x/xo, P' = x'f/xo. Lenses impart a deflection of
the form, )P = (L/f)1/2P(1+,P2). Vacuum phase advance for paraxial particles, :o = 57.3°. Graph on left-
hand-side shows particle distributions in trace-space at lens entrances. Graph on right-hand-side shows
the normalized electric field variation with radial position. a) Distribution after propagation through 50
linear lenses, , = 0. b) Distribution after propagation through 50 non-linear lenses, , = 0.05. Note that
beam relaxes into modified matched equilibrium following some emittance growth.
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Figure 13.8. Results from one-dimensional particle-in-cell simulation – envelope instability of a laminar
beam in an array of non-linear thin lenses. f = L/4.2 (f is the lens focal length and L is the distance
between lenses), , = 0. a) Trace-space distribution and electric field variation, beam entering Lens 2. b)
Trace-space distribution and electric field variation, beam entering Lens 6. 
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13.2. Betatron waves on a filamentary beam

   In this section, we shall study transverse motions of thin beams in linear focusing systems. The
model provides a first-order description of beams in most high-energy accelerators. The
harmonic components of the beam displacements are called betatron waves. We shall find that
the waves resolve into two types, fast and slow waves. A clear understanding of slow waves is an
important prerequisite to comprehend a wide variety of transverse beam instabilities. Here, we
develop basic expressions for transverse beam motion that will prove useful in following
sections. 
   We shall specify several simplifying conditions. We address only macroscopic motion,
ignoring details of beam focusing. The inherent assumption is that the focusing forces are strong
enough to maintain a small beam radius. The beam particles are monoenergetic, their motion is
paraxial, and the focusing force is linear. With these conditions all particles have the same
betatron wavelength. Following Section 10.6 we can treat the beam as an elastic filament. For
motion in the x direction we can write the focusing force conveniently in the form: 

                                                              Fx = -(moTb
2 x.                                                      (13.20)

The quantity Tb is the betatron oscillation frequency. Although Eq. (13.20) describes a
continuous force, it also approximates quadrupole and solenoid lens arrays when the betatron
wavelength is much longer than the cell length.
   To visualize betatron waves of nonrelativistic beams, we shall calculate oscillations in the
beam rest frame and then transform the results to the stationary frame. The non-relativistic beam
particles have ( – 1 and move at axial velocity vo n c. In a reference frame moving at vo, the
particles appear to be stationary in z – they move only in the transverse direction. The force in
the rest frame is

                                                              Fx = -moTb
2 x.                                                        (13.21)

We divide the beam into axial segments – let x(z,t) represent the center of the segment at z. The
transverse motion of a segment follows the equation:

                                                             d2x/dt2 = -Tb
2 x.                                                       (13.22)

Equation (13.22) has the solution

                                                   x(z,t) = xo(z) sin[Tb t + N(z)].                                             (13.23)

All axial segments of the beam oscillate at the same frequency Tb. The oscillation of one
segment does not depend on the position of others – the segments act as independent harmonic
oscillators. 
   We can define an infinite set of beam oscillations in the rest beam by choosing different values
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of the amplitude and phase, xo(z) and N(z), for individual segments. We can organize the
possibilities by recognizing that a Fourier series can represent any spatial beam displacement.
Therefore we shall study oscillations with a harmonic variation in z. We take xo as constant and
introduce phase variations of the form N(z) = ±kz. The corresponding beam oscillations are
traveling waves:

                                                      xk(z,t) = xok sin(Tbt ± kz).                                                (13.24)

We used analogous expressions treating plasma waves in Section 12.2. At a given time the
displacement of Eq. (13.24) varies harmonically in space over the wavelength 8 = 2B/k.
Although individual segments of the beam are stationary in the rest frame, the points of
maximum displacement move with a phase velocity ±Tb/k.
   The waves described by Eq. (13.24) have a Doppler shift when viewed in the stationary frame.
Waves that have phase velocity in the same direction as the beam velocity have an increased
transformed oscillation frequency T. In the stationary frame the points of maximum
displacement move with at a velocity equal to the sum of the rest frame phase velocity and vo:

                                                             T/k = Tb/k + vo.                                                       (13.25)

The waves that satisfy Eq. (13.25) are fast waves. Conversely the stationary-frame phase
velocity of a wave with a rest-frame phase velocity in the opposite direction from the beam is:

                                                             T/k = Tb/k - vo.                                                        (13.26)

Eq. (13.26) describes a slow wave. 
   Equation (13.26) shows that there is a class of slow waves with a stationary-frame phase
velocity in the opposite direction from their rest-frame velocity. This velocity reversal occurs
when the beam velocity is higher than the rest frame phase velocity:

                                                                      vo > Tb/k.                                                        (13.27)

For a given Tb we can choose a wavenumber such that the wave travels in the same direction as
the beam in the stationary frame. When the limit of Eq. (13.27) holds the slow wave oscillations
have the interesting property illustrated in Figure 13.9 – the observed transverse motion of the
beam is in the opposite direction from the motion of individual segments. To understand the
process, consider first the transverse oscillations of a fast wave. Figure 13.9a shows a rest frame
view of beam segment oscillations near the phase of zero displacement for a wave traveling in
the +z direction. In the rest frame the motion of individual segments is synonymous with the
motion of the beam – in a region where particles move away from the axis the beam also moves
outward. Figure 13.9b shows the same portion of the beam viewed in the stationary frame.
Although individual segments oscillate with angular frequency Tb, an observer at a location in
the stationary frame sees a higher frequency T. Nonetheless, Figure 13.9b shows that the
observed motion of the beam in the stationary frame is in the same direction as the motion of 
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Figure 13.9. Betatron waves on a filamentary beam in a linear focusing system. Each particle,
represented by a circle, oscillates independently. a) Beam rest-frame view of a transverse wave with
phase velocity in the +z-direction. The arrows represent instantaneous velocity vectors. b) The wave of
part a viewed in the stationary frame for a beam moving in the +z direction (fast wave). Total transverse
velocity results from the oscillation and convection. c) Beam rest frame view of a transverse wave with
phase velocity in the -z-direction. d) Stationary frame view of the wave of part c viewed in the stationary
frame (slow wave). The beam appears to move outward at a position where an individual particle moves
inward.

individual segments. 
   The beam behavior is more interesting when it has a slow wave oscillation with Tb/k < vo.
Figure 13.9c shows the rest frame displacement of segments near the zero-displacement phase of
a slow wave. Again motion of the beam center is synonymous with motion of the individual
segments. Figure 13.9d shows that the view in the stationary frame is markedly different. The
beam carries the wave past an observer at a velocity that exceeds the backward wave phase
velocity. The result is that the beam center appears to move in the opposite direction from the
motion of the individual segments. Figure 13.9d shows that the beam center moves outward at a 
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Figure 13.9. (Continued)

point where individual segments move inward. To summarize this unusual result, there is a class
of betatron oscillations where the displacement of the beam is 180° out of phase with the motion
of individual particles. This type of wave has a growing amplitude in the presence of a
dissipative force. As an example suppose a beam in a chamber is subject to a collective frictional
force in the direction opposite to the velocity of the beam center. Although frictional forces
usually damp oscillatory motion, here they increase the amplitude of a slow wave. The frictional
force is directed so that it accelerates individual beam segments. Energy balance arguments can
explain the result. A careful analysis shows that the total beam kinetic energy in the axial and
transverse directions is lower if the beam carries a slow wave. As a result, friction drives the
beam to a state with reduced axial energy and enhanced transverse oscillations.
   To find relativistic equations for fast and slow waves, it is easier to carry out the calculation
entirely in the stationary frame. The derivation yields equations that are useful for the treatment
of resistive instabilities (Section 13.5) and the hose instability (Sections 13.6 and 13.7). If the
force in the stationary frame follows Eq. (13.20), then individual segments of the beam have
harmonic oscillations at the relativistic betatron frequency, Tb. We shall describe the observed
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(13.28)

motion of the beam at a point z as segments pass. 
   Let x(z,t) represent the displacement of the beam centroid at axial position z and time t. The
variation of x results from two effects:

     1. If there is no axial variation of displacement, the quantity x at position z varies in time
because of the oscillatory motion of individual beam segments under the influence of the
focusing force.

     2. If there is no focusing force x at z changes if the beam has an axial variation of
displacement. An observer sees different displacements as the beam passes.

We combine both effects to give an equation for the total change of beam displacement observed
at a stationary point: 

We shall use harmonic variations of displacement in the stationary frame with the general form:

                                                    x(z,t) = xo exp(jTbt ± kz).                                                  (13.29)

   The notation of Eq. (13.28) has the following meaning. The total derivative on the left-hand
side is the temporal change in x at z from all causes. The first term on right-hand-side is the
change in x resulting from the focusing force. If the displacement of the beam is uniform in z the
entire beam oscillates at frequency Tb. In complex notation, we can write the partial derivative
as:

                                                              Mx/Mt = jTb x.                                                          (13.30)

The second term on the right-hand side represents the axial convection of displacement. Suppose
the beam has harmonic variation of displacement with wavelength 8 = 2B/k. We can write the
second term as:

                                                         -vo Mx/Mz = Ajkvo x.                                                        (13.31)

The variation of the beam displacement at z results from two harmonic processes; therefore, the
net displacement oscillates harmonically. From Eqs. (13.28), (13.30) and (13.31) the observed
frequency is:

                                                             T = Tb ± kvo.                                                           (13.32)

Equation (13.32) is identical to Eqs. (13.25) and (13.26). To apply Eq. (13.32) we must
remember that if Tb and k are measured in the stationary frame.
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(13.33)

(13.34)

   To conclude, we shall derive an expression for the apparent acceleration of the beam center at
a stationary observation point. The result will be useful for the calculation of instability growth
rates in the next section. We want to find the rate-of-change with time of the total derivative,
dx/dt. The observed variation of dx/dt combines effects of the temporal change with no spatial
variation of velocity and the effects of convection. The total time derivative of dx/dt is:

Substitution from Eq. (13.28) gives the following expression:

13.3. Frictional forces and phase mixing

   In this section, we shall study processes that change the amplitude of transverse beam
oscillations. The first part discusses frictional forces that extract energy from a beam. These
forces arise from the resistivity of surrounding structures. Friction stabilizes some beam motions
– other oscillations may be subject to the resistive wall instability (Section 13.4). The second
part of the section describes the effects of a spread in betatron wavelength on the transverse
motion of a beam. Phase-mixing processes always damp transverse oscillations – they play an
important role in stabilizing many transverse instabilities. 
  To begin consider the transverse forces that acts on a beam moving through a cylindrical metal
chamber with resistive walls. In Section 10.6 we discussed the forces that result from induced
charge and current for a perfectly conducting wall. The section showed that for long wavelength
perturbations the wall forces have an amplitude proportional to the local beam displacement. For
perturbations with the form of harmonic betatron waves the wall force is either in phase or 180°
out of phase with the beam displacement, depending on whether the wave is fast or slow
(Section 13.2). The force from a perfectly-conducting wall affects the amplitude and frequency
of transverse oscillations but does not extract energy from the beam. A frictional force
component arises when the wall is resistive. Such a force is 90° out of phase with the beam
displacements.
   Figure 13.10 illustrates beam motion in a resistive cylidrical pipe. The pipe wall has radius rw
and volume resistivity D. We assume that the axial wavelength of transverse oscillations is much
larger than rw. At a given axial location an observer sees the beam center oscillate at frequency
T: 
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Figure 13.10. Beam propagation in a resistive pipe. Response of
the induced wall charge to transverse motion of the beam.

                                                                x(t) = xo sinTt.                                                      (13.35)

We shall calculate the movement of image charge caused by the stationary-frame beam
displacement of Eq. (13.35). When the beam moves to one side of the pipe, the image charge
also accumulates on that side. Therefore a beam oscillation causes an oscillatory flow of wall
charge. The flow of image charge creates a retarding electric field in a resistive wall. Because
the transverse wall current is proportional to the lateral beam velocity the resistive electric field
is 90° out of phase with the beam displacement. As a result the frictional force causes a transfer
of energy from the beam to the wall. We can write the frictional force on each particle as:

                                                       Fx = -" vx = -" xo T cosTt,                                            (13.36)

where " is a constant that depends on the system geometry.
   It is not difficult to calculate the force of Eq. (13.36) in the limit of high wall resistivity. Under
this condition the resistive component of the field generated by the wall is much smaller than the
reactive component. The total electric fields and image charge distribution are close to those of a
tube with infinite conductivity. Therefore we can calculate the flux of image charge for an ideal
conductor to find the approximate transverse currents and then use the expression to find the
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(13.38)

(13.39)

(13.42)

resistive power losses.
   In Section 10.6 we derived the electric fields for a displaced beam inside a cylindrical metal
pipe. Suppose an infinite length beam with a charge per unit length of Io/$c moves a distance x
from the pipe axis. The total electric field inside the pipe equals the sum of the beam field plus
the field from an imaginary line charge -Io/$c located a distance rw

2/x from the tube axis. In order
to calculate resistive wall losses, we must find the distribution of surface charge F(x,y,t) induced
on the inside surface of the tube wall. To calculate F(x,y,t) we note that the surface charge on the
wall equals the electric field normal to the wall multiplied by ,o. We can represent this
relationship conveniently in a cylindrical coordinate system referenced to the pipe (Figure
13.10):

                                                             Er(rw,2) = -F(2)/,o.                                                  (13.37)

We can use the image charge construction to find Er(rw,2). Adding the contributions of the two
line charges at the wall position, we find that:

when x n rw.
   The transverse current of induced chare in a then wall per length, Jz(2,t) A/m, is related to the
surface charge density by the law of conservation of charge:

Substituting from Eqs. (13.37) and (13.38) we find that:

                                          Jz(2,t) = - (IoxoT/B$crw) cos(Tt) sin2.                                       (13.40)

If the wall is resistive the transverse current heats the tube wall. The resistive power loss per
length to wall in an element rwd2 is: 

                                                        dP = Jz2(Drwd2/*).                                                       (13.41)

The quantity in parenthesis on the right-hand side of Eq. (13.41) is the resistance of a wall
section of unit axial length and azimuthal length rwd2. The quantity * is the skin depth:
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The integral of Eq. (13.41) around the wall gives the total power transfer per length:

                                         P(W/m) = [IoxoTcos(Tt)/$c]2  (D/Brw*).                                     (13.43)

   The bracketed quantity in Eq. (13.43) has the dimension of current – it is proportional to the
transverse velocity of the beam at the observation point. Comparison to Eq. (13.35) shows that
quantity equals the total beam current multiplied by the ratio of the velocity in the x direction to
the axial velocity: 

                                                     IoxoTcos(Tt)/$c = Iovx/vz.                                                (13.44)

The transverse component of current is the dipole current:

                                               Idx = Io (vx/vz) = IoxoTcos(Tt)/$c.                                          (13.45)

Equation (13.43) has form

                                                             P = Idx
2 Zz,                                                              (13.46)

where

                                                    Zz = (D/Brw*)  (S/m).                                                      (13.47)

The quantity Zz is the resistive component of the transverse  impedance. We shall find that the
transverse impedance is a useful parameter to characterize forces on a beam from charges and
currents in surrounding structures. (Note that in literature on the beam breakup instability the
transverse impedance is defined in terms of field integrals over the resonant mode with
dimensions S/m2. We shall use the definition in terms of transverse force and the dipole current
for consistency with the longitudinal shunt impedance with dimensions S/m.)
   We can relate the resistive part of Zz to the frictional force acting on individual beam particles.
Using Eq. (13.36) the power loss per particle to friction is:

                                                                  dU/dt = -"vx
2.                                                     (13.48)

Because there are (Io/e$c) particles per length in beam, the beam power loss per length is

                                                           P = - (Io/e$c) ("vx
2).                                                  (13.49)

Comparing Eqs. (13.46) and (13.49) we find that

                                                                  Zz = "$c/eIo.                                                       (13.50)

Combining Eqs. (13.36), (13.47) and (13.50), we find an expression for the transverse frictional
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(13.54)

force per particle from a resistive wall:

                                                        Fz = -(eIoD/B$crw*) vx.                                                 (13.51)

Note that Eq. (13.51) describes a collective force – the force per particle is proportional to the
total beam current.
   We recognize that the familiar impedance of circuit theory has dimensions of voltage divided
by current. Voltage equals the electric force on a particle divided by the product of the particle
charge and a scale length. Accordingly we define the transverse impedance, with dimensions of
S/m, as the transverse force per particle divided by the product of the dipole current and the
particle charge: 

                                                                Zz = Fz/eId.                                                           (13.52)

We can show that Eq. (13.40) is consistent with the general definition of Eq. (13.52).
Multiplying the numerator and denominator of Eq. (13.40) by vx gives: 

                                               Zz = "vx/(eIovx/$c) = "vx/(eId).                                              (13.53)

We can generalize the definition of transverse impedance by allowing Fz in Eq. (13.52) to
represent all transverse forces generated by the structure. The generalized impedance may have
both reactive and resistive components. As an example, we can use Eq. (10.108) to show that
there generalized transverse impedance of a cylindrical pipe is

   We shall see that resistive interactions with external structures damp some types of betatron
oscillations but amplify others. Because most vacuum chamber structures have non-zero
resistivity we might expect that beams are always unstable. Fortunately there is a process that
can stabilize both fast and slow betatron waves. This mechanism is the phase-mix damping of
oscillations that results from a spread of betatron oscillation wavelength or frequency. 
   Figure 13.11 illustrates the effect of phase mixing on transverse beam oscillations. Suppose a
beam enters a focusing system at z = 0 with a displacement xo. If all particles have the same
betatron wavelength 8b = 2B/k the beam has a coherent oscillation of constant amplitude xo.
When the particles have a spread in betatron wave number, the coherent oscillation dissipates as
particles move downstream. Figure 13.11 shows a plot of harmonic orbits with a spread in k. We
can estimate a decay length for coherent oscillations when the collection of particles is
distributed uniformly in k between the limits k - )k/2 and k + )k/2. The beam center at position z
equals the average position of all particles in a segment. Suppose the N particles in a segment
enter at z = 0 with x(0,t) = xo. For a uniform distribution in k the average position of the segment
as a function of z equals



Transverse instabilities Charged Particle Beams

620

Figure 13.11. Phase mixing of harmonic oscillations of the form x(z) = cos(kz) for a beam with a spread
in k. The figure shows orbits with a uniform distribution of k from 1.00 to 1.25 in increments of 0.01 in
the range 0 # z # 10B. In the absence of randomizing processes, the orbits will return to their initial state
at a downstream position.

(13.54)

(13.55)

where

                                                    )k(n) = )k (n-N/2)/N.

Expanding the trigonometric function gives
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(13.56)

(13.57)

   The summation over the second term on the right hand of Eq. (13.55 equals zero); therefore,
we can rewrite the equation in the form

The average beam displacement equals the product of the coherent displacement and a spatial
damping factor from phase mixing. For the uniform beam distribution, the damping factor is 

Figure 13.12 shows a plot of F()k z) for large N. The amplitude of the displacement decreases to
a value 1/e of its initial value at a distance )z = 4.35/)k. The decay length normalized to the
betatron wavelengths is: 

                                                       )z/8b =  (4.35/2B) (k/)k).                                            (13.58)

   Equation (13.58) applies to spatial damping of a steady-state beam injected with a constant
displacement at z = 0. We can apply a similar treatment to find the temporal damping of a beam
oscillation with a specified displacement at t = 0. Suppose a beam has an initial displacement
xocos(kz) at t = 0. With a uniform spread in betatron oscillation frequency )Tb the time for the
displacement amplitude to decrease by a factor 1/e is

                                                                 te = 4.35/)Tb.                                                      (13.59)

The higher the frequency spread, the stronger the damping.
   Spreads in the betatron oscillation wavelength or frequency usually arise from two causes:
dispersion in the axial momentum of the beam particles and non-linear focusing forces. In the
first case we recognize that the focal length of most charged particle lenses depends on the axial
momentum of the particle. For example the focal length of a solenoidal lens varies as 1/pz

2 while
the focal length of a magnetic quadrupole lens is proportional to 1/pz. The betatron wavelength in
a periodic lens array is proportional to the lens focal length. If the lenses exert non-linear forces
the betatron oscillation period also depends on the amplitude of particle oscillations. Although
non-linear forces can lead to some emittance growth, they may help to stabilize transverse
oscillations in linear accelerators. Usually, we can estimate the amount of energy spread or non-
linear force component to stabilize a transverse instability such as beam breakup by a simple
rule-of-thumb. The damping length from Eq. (13.58) should be shorter than the growth length
for the instability. 
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Figure 13.12. Damping factor F()kz) as a function of the betatron wavenumber spread of a group
of particle orbits, )kz.

13.4. Transverse resonant modes

   Induction linacs, coupled-cavity RF linear accelerators, and many other accelerators consist of
a series of vacuum cavities connected by a narrow beam transport tube. The cavities can support
a wide variety of resonant electromagnetic oscillations. Transverse modes pose a particular
threat to beam stability. Because of their field structure, these modes can extract power from the
longitudinal kinetic energy of beams and drive transverse oscillations. We will study the
consequences of this process in Sections 13.5 and 13.6. In this section we shall review the
properties of transverse modes in some simple geometries and define scaling parameters to apply
in following sections. 
   Figure 13.13a shows a pillbox structure that interrupts a cylindrical beam tube. The structure
could represent a cavity of an RF linac, an acceleration gap of an induction linac, or a vacuum
pump port. Figures 13.13b and c illustrate the fields of lowest transverse mode of the pillbox, the
TM110 mode. The designation TM means that magnetic fields are perpendicular to the beam
direction. In a cylindrical cavity the numbers associated with the fundamental mode have the
following interpretation: 
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Figure 13.13. The transverse mode TM110 in a cylindrical cavity. a) Side view of a cavity showing the
distribution of axial electric field and wall currents at an oscillating phase with rising Ez. Solid line:
electric field. Dashed line: Wall current. b) Plot of the spatial distribution of Ez at an oscillation phase of
maximum electric field. Top: three dimensional plot. Bottom: Contour plot of the magnitude of Ez.
(X2+Y2)1/2 = r/R. c) Schematic equivalent circuit model for the TM110 mode.

     Azimuthal number (1): The fields vary in the azimuthal direction as cos(m2), where m = 1

     Radial number (1): The electric field has a simple variation in the radial direction – there is
no field node between the axis and the wall.

      Axial number (0): The fields are uniform over the axial length of the cavity. 

Because the TM110 mode has a z-directed electric field, it can couple energy from the beam if the
beam is not centered on the axis. The electric field magnitude is zero at the cavity axis and has
odd symmetry about the x axis. Near the beam the electric field amplitude varies almost linearly
with y. The beam drives the mode if it has a harmonic displacement along y at the frequency of
the mode T110. Figure 13.13d shows a representation of the mode in terms of a lumped-element 
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Figure 13.13. (Continued)

model. The current generator represents the dipole current of the beam along the y direction. The
displacement currents at the points of maximum electric field are in opposite directions on either
side of the x = 0 line. The conduction of real current through the walls completes the circuit of
the resonant mode. Wall current flows around the outside of the cavity and across the beam axis
to connect the two regions of displacement current. Inspection of the current loops in Figure
13.13b shows that the magnetic field has maximum amplitude at x = 0 and points normal to the
beam. This field can deflect charged particles crossing the cavity. 
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   The structure of an induction linac cavity is much more complex than the geometry of Figure
13.13. Nonetheless transverse modes in all cavities share common properties. We will study
some simple geometries to motivate the definition of scaling parameters to apply all cavities.
The first example is the square cavity illustrated in Figure 13.14a. The structure has axial length
d and equal sides of length a. Transverse magnetic modes in the square cavity have the
designation TMmnp, where m refers to variation along the x axis, n to the y axis and p to the z
axis. We shall limit consideration to modes with uniform axial fields that can interact strongly
with a beam. For p = 0 the general expressions for the fields of transverse TM modes in a square
cavity are: 

                       Ez(x,y) = Eo sin[mB(a/2+x)/a] sin(nB(a/2+y)/a) exp(jTmn0 t),                       (13.60)

                 Bx(x,y) = Eo (nB/Tmn0a) sin[mB(a/2+x)/a] cos[nB(a/2+y)/a] j exp(jTmn0t),         (13.61)

                 By(x,y) = Eo (mB/Tmn0a) cos[mB(a/2+x)/a] sin[nB(a/2+y)/a] j exp(jTmn0t).        (13.62)

where m = 1,2,3,... and n = 1,2,3,.... Equations (13.60) through (13.61) apply in the position
range -a/2 # x # a/2, -a/2 # y # a/2. The resonant frequency of the TMmn0 mode is 

                                                   Tmn0 = (Bc/a) [m2 + n2]1/2.                                                  (13.63) 

   In the square cavity, the lowest-order transverse modes are the TM120 and TM210. Figure 13.14b
and c give three-dimensional plots of field components for the TM120 mode. The following
expressions for the axial electric and transverse magnetic fields of the TM120 mode are valid near
the axis (x,y n a): 

                                        E  =  Ezz – (2BEoy/a) cos(T120t + N) z,                                       (13.64)
 
                                     B  =  Bxx –  - (2BEo/T120a) sin(T120t + N) x.                                  (13.65) 

The electric field varies linearly with distance from the axis while the magnetic field is almost
uniform near the axis. 
   In cylindrical cavities we found that the mode numbers m, n and p refer to variations in polar
coordinates. Transverse modes have m = 1. The electric and magnetic fields of TM1n0 modes in a
cylindrical cavity of radius R are: 

                                           E = Eo J1(x1nr/R) sin2 exp(jT1nt) z,                                          (13.66) 

                                      B = +(jEo/c){ (R/x1nr)J1(x1nr/R) cos2 r -                                        (13.67) 

                                            - [Jo(x1nr/R) - (R/x1nr)J1(x1nr/R)] sin2 2}  j exp(jT1n0t). 
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Figure 13.14. Transverse resonant mode TM120 in a square cavity. a) Plot of the
spatial distribution of Ez at an oscillation phase of maximum electric field. Top:
three dimensional plot. Bottom: Contour plot of the magnitude of Ez. X = x/a, Y =
y/a. b) Plot of the spatial distribution of |B| at an oscillation phase of minimum
electric field. Top: three dimensional plot. Bottom: Contour plot of the
magnitude of |B|. X = x/a, Y = y/a. 

The functions Jo and J1 are Bessel functions. The quantities x1n are the nth zeros of the J1
function: 

                                         x11 = 3.832, x12 = 7.016, x13 = 10.173, ...                                    (13.68) 

The resonant frequencies of transverse modes are 

                                                              T1n0 = c x1n/R.                                                         (13.69) 
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The following approximate forms hold near the axis (r n R): 

                                          E = Ez z – (Eox1n/2R) y cos(T1n0t + N) z,                                   (13.70) 

                                            B = Bx x – - (Eo/2c) sin(T1n0t + N) x.                                      (13.71) 

As with the square cavity, the electric field near the axis is linearly proportional to displacement
from the symmetry axis 
   A transverse mode can absorb energy from a beam through the Ez field and exert a transverse
force through the Bx field. For a steady-state beam we can find a simple expression for the
transverse force in terms of the beam dipole current. By steady-state we mean that the beam
properties are constant over an interval equal to the decay time for electromagnetic energy in the
cavity. We shall define the decay time later in the derivation. We take an electron beam that
moves in the +z direction – the axial current is in the -z direction. Suppose that the beam arrives
at a resonant cavity with a harmonic transverse displacement 

                                                           y(t) ~ cosTzt,                                                            (13.72) 

where the frequency Tz is equal to the resonant frequency of a mode with electric fields of the
form of Eqs. (13.64) and (13.70) that vary linearly with y. The transverse velocity of the beam at
the cavity is: 

                                                             vy(t) ~ - sinTzt.                                                       (13.73) 

As the beam oscillates across the electric field null on the x axis it can transfer energy to support
the transverse mode. The cavity is a driven harmonic oscillator. In the steady-state we know that
the driven cavity oscillation has a phase such that the electric field extracts the maximum energy
from the beam. In other words, the electric field points in the +z direction when the beam is in
the top half of the cavity (y > 0). Comparison to Eq. (13.72) shows that the electric field in the
upper half plane is 

                                                             Ez(t) ~ cosTzt.                                                        (13.74) 

The axial displacement current density that results from the changing electric field is 

                                                    jz(t) ~ (MEz/Mt) ~ - sinTzt.                                                  (13.75) 

If we apply the law of Biot and Savart to the current loop formed by the displacement and wall
currents, the magnetic field in the beam plane is 

                                                            Bx(t) ~ - sinTzt.                                                        (13.76) 

The force on a particle of the beam resulting from the magnetic field, -e(vz × Bx), is proportional
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(13.81)

to 

                                                            Fy(t) ~ sinTzt.                                                          (13.77) 

The force of Eq. (13.77) is in the direction opposite to the transverse velocity – the magnitude of
the force is proportional to that of the velocity: 

                                                             Fy(t) ~ - vy(t).                                                          (13.78) 

Equation (13.78) implies that a driven cavity exerts a frictional force on a steady-state beam if
the beam displacement varies at the resonant frequency of a transverse mode. 
   Following the discussion of Section 13.3, the form of Eq. (13.77) suggests that we can assign a
transverse impedance to a cavity for a beam oscillation at frequency Tz. Suppose a narrow beam
arrives at a cavity with length d and width a. The center of the beam follows the variation y(t) =
yo cosTzt. To apply the arguments to all cavity geometries and transverse modes, we shall not
assign specific interpretations to a and d. Instead we treat them as characteristic lengths and
introduce dimensionless geometric scaling parameters. The idea is to express results in terms of
known dimensions and scaling constants that are close to unity. In this case we can make good
estimates of results before pursuing detailed numerical solutions. Assume the mode of interest
has a peak electric field amplitude of Eo. Inspection of the forms of Eqs. (13.64) and (13.70)
shows that we can represent the electric field near the axis as: 

                                                   Ez(x,y,z,t) – Eo(01y/a) cosTzt.                                          (13.79) 

where 01 is a dimensionless scaling constant. 
   If the transverse position of the narrow beam is almost constant as it transits the cavity, we can
represent the current density in the cavity as: 

                                                 jz(x,y,t) = Io *(y - yo cosTzt) *(x).                                       (13.80) 

Equation (13.80) holds if the transit time for beam particles is much smaller than the oscillation
period for the transverse mode. To find the time-averaged power transfer from the beam to the
transverse mode, we take a spatial integral of the product of beam current density times the
electric field: 

Carrying out the integrals, we find that: 

                                                     Pin – (Io Eo d/2) (01yo/a).                                                 (13.82) 
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   In a steady-state, the balance between the power input from the beam and the power lost to the
cavity walls or output couplers determines the amplitude of the transverse mode. The quality
factor Qz characterizes the time-averaged power loss Pout from the transverse mode to the cavity: 

                                                          Pout = TzUz/Qz.                                                           (13.83) 

In Eq. 13.83, Uz is the stored electromagnetic energy of the transverse mode. If we write the
equation in the form 

                                                     dUz/dt = -TzUz/Qz,                                                         (13.84)
 
we can identify the time for the decay of electromagnetic energy in the cavity as 

                                                          )t = Qz/Tz.                                                                (13.85) 

Equations (13.63) and (13.69) show that we can write T$$ in terms of a dimensionless scaling
factor: 

                                                                   Tz = 02 c/a.                                                       (13.86) 

Similarly, the stored electromagnetic energy is proportional to 

                                                          Uz = 03 (,o Eo
2/2)(a2d).                                              (13.87) 

Using the definitions of Eq. (13.86) and (13.87) we can write the power loss from the mode as 

                                                   Pout = (0203) (,o cEo
2/2)(ad)/Qz.                                       (13.88) 

Equating the input power from the beam to the output power gives an equation for the amplitude
of the steady-state electric field as a function of the beam displacement: 

                                                    Eo = (01/0203) (Io Qz/,oc) (yo/a2).                                     (13.89) 

   We introduce a final dimensionless factor to connect the amplitude of the on-axis magnetic
field of the transverse mode to the characteristic electric field: 

                                                     Bx(0,0,z,t) = - (04Eo/c) sinTzt.                                        (13.90) 

Neglecting transit-time corrections, the transverse force on an electron crossing the cavity is 

                                                     Fy(0,0,z,t) – 04 e$Eo sinTzt.                                          (13.91) 

The dipole current of the beam is 
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(13.93)

                                                      Idy = -Io (yo Tz/$c) sinTzt.                                             (13.92) 

Using Eq. (13.52) we find that the magnitude of the transverse impedance for the cavity is: 

The first bracketed quantity on the right-hand side of Eq. (13.93) contains dimensionless
quantities – its value is close to unity. For reference a square cavity with width a and length d
has the following scaling constants for the TM120 mode: 

                                  01 = 2B,   02 = B(5)1/2,    03 = 1/4,   04 = 2/(5)1/2.                               (13.94)

The second term has the dimension of inverse length. The last term is the familiar free space
impedance equal to 377 S. Therefore Eq. (13.93) has the proper dimensions of S/m. 

   The impedance of Eq. (13.93) applies only to beam oscillations with frequency within the
resonant width of the transverse mode, T ~ Tz (1 ± 1/Qz). For such oscillations the cavity has a
much stronger influence on the transverse beam dynamics than an equivalent length of resistive
wall. Suppose a beam has a betatron oscillation with a stationary-frame frequency of f = T/2B =
500 MHz. Consider first the transverse impedance of a stainless steel transport tube with radius
rw = 0.04 m. The resistivity of stainless steel is about D = 81 × 10-8 S-m. Equation (13.42) gives a
skin depth of 20 :m. Substituting in Eq. (13.47) the resistive component of the transverse
impedance is Zz = 0.3 S/m. For comparison assume that the beam passes through a square cavity
of width a = 0.67 m with T120/2B = 500 MHz. The transverse mode is strongly damped by
selective output couplers so that Q120 = 100. For $ – 1 the dimensionless quantity in Eq. (13.93)
is [0104/02

203] – 0.46, giving a transverse impedance of 26.9 kS/m. Even with strong damping,
the cavity exerts a much stronger transverse force than an extended resistive wall for the same
value of dipole current. For the parameters of the example the power extracted from the beam for
a given dipole current is more than four orders of magnitude higher for resonant interactions. For
this reason it is imperative to avoid irregularities in the vacuum chambers of storage rings that
could support transverse modes. Although the beam current in these devices is low, the storage
time usually must be long. Even a slowly-growing transverse instability can cause beam loss. At
the other end of the scale, transverse resonant instabilities are a source of major problems in
high-current linear induction accelerators. 
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13.5 Beam breakup instability

   The  beam-breakup (BBU) instability, also known as the transverse instability, is the one of the
most damaging collective instabilities in electron accelerators. It limits the transportable current
in a variety of machines, including RF linacs, linear induction accelerators, microtrons and
storage rings. Although the mechanism of the instability is the same for all accelerators, the
theory varies considerably for different geometries. 
   The beam-breakup instability involves the transfer of particle kinetic energy from longitudinal
motion to transverse motion. As a result the beam has a growing transverse oscillation as it
moves through the accelerator. For a weak instability the oscillations cause emittance growth or
aiming errors. A strong beam-breakup instability may result in complete beam loss. The
instability results from two coupled processes: 

     1) Excitation of transverse electromagnetic oscillations in an array of cavities by a beam that
oscillates in the transverse direction. 

     2) Displacement of the beam by the magnetic fields of the resonant modes. 

Suppose that a constant-current electron beam with a harmonic transverse displacement at
frequency Tz enters a cavity that has a transverse mode with resonant frequency Tz. Following
Section 13.4 the beam drives the mode, creating an oscillating magnetic field on the axis. The
magnetic field gives the electrons a harmonic angular deflection that leads to sweeping motion at
downstream locations. In an array of cavities the amplitude of oscillations grows rapidly in space
and time if the magnitude of the beam displacement is higher in cavity n+1 than in cavity n.
   We can identify three classes of beam breakup instability that depend on how cavity
oscillations couple. The term cumulative beam breakup refers to an instability in a linear
accelerator where the cavities do not exchange electromagnetic energy. The coupling between
the oscillations of individual cavities results entirely from perturbations carried on the beam. The
convective beam breakup instability occurs if there is an exchange of transverse mode
electromagnetic energy between cavities. If the coupled modes of a cavity array have a positive
group velocity the energy of cavity excitations can propagate forward in the accelerator. This
effect, similar to the mechanism of a traveling-wave tube, increases the severity of the
instability. The regenerative instability occurs in coupled cavity array with a negative group
velocity for transverse mode excitations. Here electromagnetic energy propagates backward in
the accelerator – the mechanism resembles that of a backward wave oscillator. A beam-coupled
regenerative instability affects circular electron accelerators such as microtrons. In these devices,
electron beams recirculate many times through an RF linac. Transverse beam deflections gained
on one pass through the linac contribute to the grow of transverse modes when the beam re-
enters the accelerator.
   Induction linacs consist of a beam line interrupted by isolated acceleration cavities; therefore,
they are subject to the cumulative beam breakup instability. Because the machines contain high-
current pulsed beams (>1 kA), the instability can grow even if the transverse modes have low
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Qz. Consider a pulsed electron beam with fast-rising current that enters the first cavity slightly
displaced from the symmetry axis. A Laplace transform shows that the dipole current has a
broad frequency spectrum – a harmonic component of the current may overlap the resonance
width of a transverse mode. As the head of the beam moves downstream, it excites a low level of
transverse mode oscillations in all acceleration cavities. The oscillating magnetic field in the first
cavity modulates the transverse direction of electrons behind the beam head. These electrons
arrive at downstream cavities with a sweeping motion at frequency Tz that increases the
amplitude of transverse mode oscillations. In a frame of reference moving with the beam the
mode amplitude increases exponentially moving back from the beam head. In the stationary
frame the amplitude in a particular cavity increases over a beam pulse until the mode reaches
saturation. During the growth of the instability the oscillation amplitude increases moving away
from both the beam head and the injection point. As a result the peak beam displacement lies at a
point between the front of the beam and the injection point. Late in time, when the beam fills the
accelerator, the instability approaches a steady-state where the mode amplitude grows
exponentially with distance from the injection point. 
   The cumulative beam-breakup instability in an RF accelerator with isolated cavities (such as a
side-coupled linac) is qualitatively similar to the process in an induction linac. The difference is
that the RF accelerator beam has a micropulse structure at the frequency of the fundamental
accelerating mode To. We can use a Fourier analysis to express the current as a steady-state
value with harmonic components at integer multiples of To. The longitudinal modulation has
little effect on the growth of transverse instabilities if the harmonics of To do not overlap the
resonance width of a transverse mode. With no degeneracy the instability growth rate depends
mainly on the transverse displacement of the average beam current – we can apply an approach
similar to that used for the induction linac. Beam-breakup is a concern in high-current RF
electron linacs because the accelerating cavities have large Qz values. The problem is
particularly severe in superconducting linacs. 
   Complete time-dependent solutions for the beam-breakup instability in accelerators with
applied focusing forces can be complex. To understand the factors that influence the growth of
the instability we shall develop a simple scaling model. We take a coasting beam in a system of
identical uncoupled cavities. We shall derive a two-cavity instability criterion – a steady-state
beam displacement in one cavity causes an amplified sweeping motion in the next cavity. Figure
13.15 shows the geometry of the calculation. Cavity n has characteristic length d and width a.
The distance to cavity n+1 equals D. A narrow beam with current Io arrives at cavity n with
transverse oscillation y(t) = yn cosTzt, where Tz is the frequency of the transverse mode with the
highest growth rate. We seek the amplitude of beam-sweeping in the next cavity, yn+1. 
   We shall not worry about the phase of the sweeping motion relative to the original
displacement or the effects of transverse focusing lenses. A rough criterion for a strong
instability is: 

                                                                  yn+1 $ yn.                                                             (13.95) 

From Section 13.4, we know that the steady-state amplitude of the transverse magnetic field for
a beam displacement yn is 
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Figure 13.15. Geometry to derive an amplification criterion for the beam-breakup instability in
uncoupled cavities.

(13.96)

The amplitude of the angular displacement of an electron crossing the cavity equals the
transverse impulse divided by the axial momentum, or: 

                                         )2 = (eBo$c)(d/$c)/(me$c = eBod/(me$c.                                  (13.97) 

With no transverse focusing the amplitude of the sweeping motion in cavity n+1 induced by the
transverse mode in cavity n is 

                                                                 yn+1 = )2 D.                                                         (13.98) 

Combining Eqs. (13.96) through (13.98) we find that: 

                                                               yn+1/yn = AQz,                                                        (13.99)
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(13.100)

(13.101)

(13.102)

where

We can rewrite the second factor on the right-hand side of Eq. (13.100) in terms of the Alfven
current: 

All the terms in Eq. (13.101) are dimensionless. The magnitude of the first term on the right-
hand side depends on the geometry of the cavity. The term equals 3.2 for the TM120 mode in a
square cavity. The second term is the ratio of the beam current to the Alfven current – for most
accelerators this term is much smaller than unity. The third term includes geometric parameters
of the cavity array. 
   We expect that the beam-breakup instability is strong if AQz $ 1. Strong damping of transverse
modes reduces the steady-state amplitude of unstable transverse oscillations. For given values of
Io and Qz, small values of d and D reduce the growth of the instability – the accelerating gradient
should be as high as  possible. The quantity A is proportional to 1/(; this is one of the reasons
that injectors for induction linacs operate at high voltage.
   For a given current, energy and accelerator geometry, a low value of Qz can reduce the growth
of beam oscillations. We can use the condition AQz n 1 to give the transverse mode damping
required for small growth of the beam breakup instability: 

As an example, consider an induction accelerator with a 1 kA, 5 MeV electron beam. We
approximate an acceleration gap as a square cavity of width 0.3 m that supports a TM120 mode.
The gaps have length d = 0.05 m with a separation D = 0.3 m. Equation (13.102) gives the
critical value of the mode quality factor as Qz < 27. Because metal cavities usually have values
of Qz that exceed 1000, microwave absorbers must be incorporated in the cavities to avoid a
strong instability. 
    The behavior of the beam breakup instability in a wide variety of linear accelerators can be
represented by two equations [D.G. Colombant and Y.Y. Lau, Appl. Phys. Lett. 53, 2602
(1988)]. These equations treat the effect of transverse modes in an array of cavities in the
spatially-continuous approximation. Although we will not perform a detailed derivation of the
equations, we can understand the underlying physical principles from an inspection. For the
cumulative beam breakup instability, the equations have the form: 
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(13.103)

(13.104)

(13.105)

(13.106)

and

Equation (13.103) describes the spatial and temporal growth of beam oscillations – the quantity
y(z,t) is the transverse beam displacement. The right-hand side of Eq. (13.103) represents the
effect of the transverse resonant modes on the beam. The quantity a(z,t) equals the transverse
force per particle from a cavity oscillations divided by mo, the particle rest mass. The force is
proportional to the magnetic field of the mode. The quantity Tb on the left-hand side of Eq.
(13.103) is the particle betatron frequency which may depend on (. The term (moTb

2y is the
transverse force of a continuous focusing system – the equation holds if all particles have the
same betatron wavelength. If the right-hand side of the equation equals zero, the solution gives
fast and slow betatron waves (Section 13.2). Inclusion of ( in the second factor on the left-hand
side represents the effect of acceleration. 
   Equation (13.104) describes pumping of transverse cavity oscillations by transverse beam
motion. Again  the quantity Tz is the resonant frequency of a transverse resonant mode. With no
beam deflection (y = 0) the right-hand side of Eq. (13.104) equals zero. In this case the equation
has the familiar form of a damped harmonic oscillator. A sweeping beam adds a driving term for
the mode. The dimensionless constant , in Eq. (13.104) characterizes the coupling of the beam
dipole current to the mode. The constant is related to the transverse impedance [Eq. (13.93)] by: 

The quantity Io is the average beam current and IA is the Alfven current. We can rewrite Eq.
(13.105) in terms of the dimensionless transverse mode parameters introduced in Section 13.4: 

   Despite their simple form Eqs. (13.103) and (13.104) describe the cumulative beam breakup
instability in a wide variety of accelerators. As an example we shall review one solution for a
coasting beam with no focusing forces in the limit of a saturated instability. The Qz factor of the
cavities limits the amplitudes of the cavity fields and the beam oscillations. Here we expect a
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steady-state solution with exponential growth in z. The analysis of Lau and Colombant recovers
the familiar growth expression for RF accelerators [R. Helm and G. Loew, Linear Accelerators,
P.M. Lapostolle and A.L. Septier, Eds (North Holland, Amsterdam, 1970), p. 173]:
 
                                                 |x(z)| ~ exp[1.14(Tzz/$c)(Qz,)1/2].                                   (13.107)

Substituting from Eqs. (13.86), (13.101) and (13.106) we can rewrite Eq. (13.107) as 

                                            |x(z)| ~ exp{[1.14(AQz)1/2][$z/(dD)1/2]},                               (13.108)

where A is the parameter we derived from the two-cavity analysis. If AQz $ 1, Eq. (13.108)
shows that there is significant growth of the oscillation amplitude over the distance between two
cavities. The square root in the exponent results from summing the beam deflections over
cavities with a correct accounting of the oscillation phases. 
   To model the time-dependent beam-breakup instability in an induction linac with discrete
cavities we must include several effects: 

     1) The short pulses in ferrite-core induction linacs (~ 30 ns) may be comparable to the fill
time for transverse modes. We must account for the time-dependent excitation of  cavities during
the beam pulse.

     2) High-current induction linacs have strong lenses to contain the beams – in the low-energy
section of the accelerator the betatron wavelength 8b may be comparable to D so that resonant
effects are possible. For example if D = 8b/2 an angular deflection in a cavity results in no
displacement in the next cavity, giving a low growth-rate for the instability.
 
     3) The quantities Tz and Qz may vary between cavities. 

     4) The electrons gain energy through the accelerator reducing the effect of the transverse
mode magnetic fields and changing Tb.

It is easy to include most relevant physical processes in a numerical model. We shall discuss
results from SCAN, a computer program to calculate power output from devices that use the
beam-breakup instability to generate microwave energy. The program represents a specific
transverse cavity mode as a lumped-element LRC circuit. The symmetry of transverse modes
about the axis simplifies the model. The program treats a driven oscillation in the upper half
cavity driven by half of the beam dipole current. Figure 13.16 shows the circuit model for a
cavity. The equations and geometric factors of Section 13.4 lead to expressions for lumped
circuit elements to represent half the cavity:

                           C = 03,oa2/d,   L = :od/02
203   and    R = (L/C)1/2/Qz.                           (13.108)

   The code calculates the self-consistent mode amplitude and beam displacement in a series of 
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Figure 13.16. Lumped-element circuit model used to represent a specified transverse mode in a cavity for
numerical calculations of the beam-breakup instability.

cavities for a given initial harmonic transverse perturbation. The model divides the relativistic
beam into several segments that shift along the accelerator at the speed of light. Three quantities
describe a segment: the transverse displacement [x(z)], the transverse angle [x’(z)] and the
kinetic energy [((z)]. A ray transfer matrix for the focusing system advances the displacement
and angle between acceleration gaps. The transformation depends on the kinetic energy of a
segment. The angle changes within a cavity because of acceleration and the magnetic field of the
transverse mode. Numerical integration of the equations for the circuit of Figure 13.16 gives the
mode amplitude in each cavity. The displaced beam acts as a dipole current source. The program
models variations in cavity properties through a spread in values of Qz and Tz. 
   Figure 13.17 shows results of the program for acceleration of a 1 kA beam in an induction
accelerator from a 1 MeV injector to 10 MeV. The accelerator has 36 gaps with an applied
voltage of 250 kV – the longitudinal gradient is 0.75 MV/m. The isolated acceleration cavities
have identical geometry with length d = 0.05 m and transverse dimension a = 0.3. We assume a
TM210 mode with resonant frequency 1.13 GHz. In the run shown Qz = 10 for all cavities. A
solenoid magnetic field of magnitude 0.05 tesla focuses the beam. 
   Figure 13.17a shows the maximum amplitude of beam displacement as a function of the
acceleration gap number at a time 20 ns after the injection of the beam head. At this time, the
beam head is halfway through the accelerator. Maximum displacement occurs about four gaps
behind the head. At points well behind the head the displacements have reached their steady-
state values – the fill time for the transverse mode is only about Q/f – 7 ns. Figure 13.17b shows
the saturated instability at t = 100 ns. The strong variations of displacement amplitude near the
injection point result from the focusing forces. At downstream locations the betatron wavelength
is much larger than D; therefore, the growth in amplitude is almost exponential. The 2.1 cm
displacement at the end of the accelerator is large. The beam gives up 54 MW to transverse
resonant modes in the saturated state of the instability, about 0.5 per cent of the output beam 
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Figure 13.17. Computer simulation of the beam-breakup instability in an induction linear accelerator –
results from the SCAN code. Electron beam current: 1 kA. Injection energy: 1 MeV. Output energy: 10
MeV. Number of gaps: 36. Voltage per gap: 0.25 MV. Beam injected with harmonic displacement of 0.5
mm at 1.13 GHz. Qz = 10. Bo = 0.05 tesla. a) 20 ns after injection of the beam head. b) 100 ns after
injection of the beam head.

power. Other runs of the program show that the maximum beam displacement in saturation
depends strongly on Qz. The displacement at the accelerator exit drops to 0.7 cm if Qz = 7.5. 
   There are several possible methods to reduce the severity of the beam-breakup instability in
induction accelerators and RF linacs:

     1. The most common technique in induction linacs is to reduce values of Qz for all resonant
modes in the acceleration cavities. Damping ferrites in the cavities absorb microwave radiation.
The design of the cavity geometry allows transport of most of the electromagnetic energy
generated by the beam to the ferrites. 
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Figure 13.18. A composite cavity to reduce the growth of the beam-breakup instability in a
superconducting linear accelerator.

     2. The amplitude of beam sweeping at the accelerator exit is proportional to the beam
displacement at the entrance. The electron source of a high-current accelerator should be     
well-aligned with the accelerator axis and should generate a symmetric beam.

     3. In high-current induction linacs with a strong focusing system, tuning the lenses can reduce
the growth of the instability. The growth is smallest if there a half-integral number of betatron
wavelengths between cavities.

     4. In both induction and RF linacs variation of the geometry of accelerating cavities reduces
instability growth. Inserts in RF accelerator cavities can modify the resonant frequency of
transverse modes while leaving the accelerating mode unchanged.

     5. Coupling loops in RF accelerator cavities can transfer the energy of resonant modes to a
load absorber. With bandpass filters to reject the accelerating mode, the system gives a low value
of Q for transverse modes with little reduction in the longitudinal shunt impedance of the
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accelerator. 

     6. In systems where some emittance growth is tolerable, non-linear lenses can be used for
beam focusing. A large spread in the betatron oscillation of electrons can prevent the      beam-
breakup instability.

     7. Unconventional cavity designs can give high Q for the accelerating mode but a low value
for transverse modes. Figure 13.18 shows an example for a high-current superconducting     
linac. The cavity consists of sections of superconducting material separated by resistive layers.
The sectioned construction has little effect of the TM010 mode because the wall current flows
only in the radial and axial directions. On the other hand the wall current of transverse modes
must cross the absorbing layers, leading to strong attenuation. 

13.6. Transverse resistive wall instability

   Section 13.2 discussed betatron oscillations of a filamentary beam in a linear focusing system.
In this section we will show how the amplitude of slow betatron waves can grow in the presence
of resistive forces. We shall treat the transverse resistive wall instability by solving equations of
motion for the center of the beam. If the beam is monoenergetic and the focusing forces are
linear, the beam acts like an elastic body. We consider transverse displacements in the x
direction with a frictional force of the form:

                                                                Fx = - k (Mx/Mt).                                                   (13.110)

The quantity Mx/Mt is the change in the displacement of the beam at a given point z in the
stationary frame of reference. The focusing force on the beam is 

                                                                Fx = - (moTb
2 x,                                                  (13.111)

where Tb is the single-particle betatron frequency.
   The frictional force results from the interaction between the beam and external structures.
From the discussion of Section 13.3 we know that induced charges in the wall of a vacuum
chamber with non-zero resistivity create a resistive force. Furthermore resonant structures may
sometimes exert strong frictional transverse forces on beams (Section 13.3). In this section, we
shall first study the theory of the resistive wall instability for a homogeneous resistive wall. Then
we shall derive an expression for the growth rate of the instability resulting from interactions
with transverse modes in an array of resonant structures.
   The model describes a thin beam observed in the stationary frame of reference. The
displacement of the center of the beam is x(z,t). The linear focusing force of Eq. (13.111) and the
friction force of Eq. (13.110) govern the transverse beam motion. Particle orbits are paraxial and
all particles have the same value of ( and axial velocity vz = $c. The friction force is weak – we
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(13.112)

(13.113)

shall look for harmonic beam oscillations with long-term damping.
   The equations we shall derive for the motion of the beam center are deceptively simple. The
derivation provides a model for a wide range of transverse instabilities – the reader should
carefully note the definitions of quantities and the logic of the equations. We denote the rate of
change of x at a constant position z as Mx/Mt. As we saw in Section 13.2, changes in x observed at
a point result from two processes:

     1. The beam particles at point z may have a transverse velocity vx. 

     2. The beam particles near z may have a gradient in displacement Mx/Mz. The beam appears to
move sideways at  velocity -$c Mx/Mz as new particles move to position z. 

The total time rate of change of x at z and t is:

The quantity Mx/Mz is the variation of displacement with position at a constant time.
   Similarly, we can write an equation for the change in vx with time at constant position z, Mvx/Mt.
Changes in the velocity at z are caused by 1) acceleration of beam particles at z by forces, and 2)
replacement by particles with different velocity. The change in vx is:

The first term on the right-hand side of Eq. (13.113) is the change in vx from particle convection.
The second term is acceleration from the focusing force, proportional to the local displacement
of particles. The third term, the friction force, incorporates the constant:

                                                                6 = k/(mo.                                                           (13.114)

Note that Mx/Mt in Eq. (13.113) is the total change of x at a given point, equal to the expression of
Eq. (13.112). The solutions of Eqs. (13.112) and (13.113) lead to a variety of beam oscillations,
some of which are unstable. We shall proceed to the complete solution in stages.

   First, consider a beam uniformly displaced in the axial direction at t = 0. We set all spatial
derivatives in Eqs. (13.112) and (13.113) equal to zero. With no friction (6 = 0) the beam
oscillates harmonically at the betatron frequency:

                                                               x(t) = xo exp(jTbt).                                              (13.115)

Next we add friction and assume a solution of the form:
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                                                          x(t), vx(t) ~ exp(+jSt),                                              (13.116)

where S can have real and imaginary parts. Substituting Eq. (13.116) into Eqs. (13.112) and
(13.113) gives:

                                                                S2 = Tb
2 + j S 6.                                                (13.117)

Equation (13.117) has the solution:

                                                S = [j6 + (4Tb
2 - 62)1/2]/2 – Tb + j6/2.                               (13.118)

The last form of Eq. (13.118) holds for a weak friction force, 6 n Tb. The corresponding beam
displacement is

                                                      x(t) = xo exp(jTbt) exp(-6t/2).                                      (13.119)

Oscillations of an axially-uniform beam always damp. Solutions with growing amplitude occur
only when there are spatial variations of displacement.
   We now add harmonic spatial variations. Suppose that perturbations of the beam have the
form:

                                                          x(z,t) = xo exp[j (kz - St)].                                        (13.120)

where k is real and S may have an imaginary part. The displacement of Eq. (13.120) has a
uniform spatial variation that grows or damps with time. This representation is a good
approximation for instabilities with low growth rate in circular accelerators.
   First we shall review the solution without friction. Substituting the form of Eq. (13.120) in
Eqs. (13.112) and (13.113) gives the relationship:

                                                               (S - k$c)2 = Tb
2.                                                  (13.121)

Equation (13.121) has the solutions:

                                                               S/k = $c + Tb/k,                                                  (13.122)

                                                                S/k = $c - Tb/k.                                                  (13.123)

Equation (13.122) represents a fast betatron wave and Eq. (13.123) represents a slow wave. For
the slow wave Section (13.2) showed that the motions of individual particles are 180° out of
phase with the motion of the beam center at a point when

                                                                     $c > Tb/k.                                                      (13.124)
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   We can now address the full solution of Eqs. (13.112) and (13.113). With the beam
displacement of Eq. (13.120) we find the following relationship for the complex frequency:

                                                            (S - k$c)2 = Tb
2 - j6S.                                           (13.125)

We take the complex square root of both sides of Eq. (13.125). In the limit that 6 n Tb the
solutions are:

                                                           S – k$c + Tb - j6S/2Tb,                                         (13.126)

                                                           S – k$c - Tb + j6S/2Tb.

If the friction force is small we can replace the values of S on the right-hand sides of Eqs.
(13.126) with the real values from Eqs. (13.122) and (13.123). The result is
   
                                                       S – k$c + Tb - j6(k$c+Tb)/2Tb,                                 (13.127)

                                                        S – k$c - Tb + j6(k$c-Tb)/2Tb.                                 (13.128)

   The fast-wave solution of Eq. (13.127) damps for all values of k when friction is present. The
slow-wave solution of Eq. (13.128) gives the following expression for the beam displacement at
a point:

                                       x(z,t) = xo exp[j(k$c - Tb)t]  exp [6(k$c-Tb)t/2Tb].                    (13.129)

The beam center oscillates at the Doppler shifted frequency (k$c-Tb). For the slow wave the
friction force results in a growth of the amplitude of oscillations if k$c > Tb. There is a simple
interpretation for the instability. When the condition of Eq. (13.124) holds the motion of
individual beam particles are opposed to the macroscopic motion of the beam center observed at
a point in the stationary frame. Therefore the friction force is in a direction to accelerate
particles, enhancing their transverse oscillations. The e-folding time for instability growth is: 

                                                                )te = 2Tb/6(k$c-Tb).                                          (13.130)

The model is valid when 8 o rw and ro n rw. As with other transverse collective instabilities, an
axial momentum spread or a non-linear focusing force may prevent the resistive wall instability.
The instability cannot grow if phase mixing of transverse oscillations (Section 13.3) is effective
on a time scale less than )te.
   As an example of a specific frictional force suppose a beam moves through a circular pipe of
radius rw with non-zero wall resistivity D. Comparison to Eq. (13.51) of Section 13.3 gives the
friction constant:
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(13.131)

(13.133)

The quantity * is the skin depth [Eq. (13.42)] which depends on the frequency of
electromagnetic field variations at the wall in the stationary frame:

                                                  * = [2D/:o(k$c - Tb)]1/2.                                                    (13.132)

The growth time is

Equation (13.133) shows that the resistive wall instability is a collective effect – the growth time
is shorter for high beam current. We can also write the friction constant in terms of the
transverse impedance of the structure (Section 13.3):

                                                          6 = eIoZz/(mo$c,                                                      (13.134)

where

                                                             Zz = D/Brw*.

   As a numerical example, consider a high-current electron beam in a betatron with a stainless
steel vacuum chamber (D = 8.1 × 10-7 S-m). We take Io = 100 A, ( = 10, and rw = 0.08 m. The
growth time scales as (k$c - Tb)3/2. We take a betatron wavelength of 1.5 m, or Tb = 1.3 × 109 s-1.
We expect to observe growing waves at the highest allowed value of k. From the model validity
condition 8 o rw we take kmax – 1/rw and (k$c - Tb) ~ c/rw - Tb – 2.5 × 109 s-1. The frequency of
the transverse beam oscillation in the stationary frame is f = 400 MHz. At this frequency, the
skin depth in stainless steel is * = 2.2 × 10-5 m. The friction constant is 6 – 8.6 × 102 s-1 and the
growth time is about )te = 1.2 ms. The long growth time follows from the low value of
transverse impedance of the resistive wall, Zz = 0.15 S/m. For the parameters of the example the
resistive walls have little effect on the transverse motion of the beam. The period of a betatron
oscillation is about a nanosecond – even a small variation in the betatron oscillation frequency of
particle orbits results in phase mixing over a time much shorter than 1 ms. In contrast we shall
see that interruptions in the vacuum chamber of the accelerator that support resonant oscillations
may have a much shorter growth time.
   Metal structures in accelerators have low resistivity while beams usually have high energy and
low current. In other words the driving beam has high impedance while the surrounding walls
have low impedance – the direct transfer of energy to the walls is ineffective because of the
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(13.135)

mismatch. Power transfer to resonant cavities is a more complex process. For a continuous beam
we shall see  in Section 15.2 that resonant structures can act as impedance transformers. Some
electromagnetic modes have axial electric fields that can extract power from a beam. The beam
drives the resonant mode, creating large circulating currents that couple energy to the low
resistance of the cavity walls. As a result the power transfer per length from a beam to resonant
structures may be orders of magnitude higher than power to a simple wall resistance. 
    The resistive wall instability with resonant structures is the limiting case of the saturated beam
breakup instability. Section 13.3 showed that the force from a transverse mode on a steady-state
beam oscillating at the resonant frequency of the mode has amplitude proportional to the
transverse beam velocity and opposite direction. In other words the transverse impedance of the
structure is resistive. If the spacing between resonant structures is much smaller than the beam
betatron wavelength we can represent the interactions with cavities by an axially averaged
transverse impedance (Section 13.3):

The quantity f is the fraction of the beamline occupied by cavities. We can substitute the
transverse impedance into Eqs. (13.130) and (13.134) to estimate the growth rate of the
instability for a beam perturbation with wavenumber k = (Tz + Tb)/k$, where Tz is the resonant
frequency of the transverse mode.
   As an example consider a series of square cavities that fills ten per cent of a beamline. For a
relativistic beam the factor in brackets on the right-hand side of Eq. (13.135) equals 0.46. If a =
0.2 m and Qz has a relatively low value of 500, the transverse impedance is 43 kS/m. With such
high values of transverse impedance the transverse resistive wall instability can be a major
problem in storage rings, even though the beam energy is high and the average current is low.
The beams in these devices usually have a small spread in momentum and remain for long times.
Extreme care must be exercised to shield vacuum ports and other interruptions of the vacuum
chamber that could support transverse resonant modes. 

13.7. Hose instability of an ion-focused electron beam

   Experiments have shown that it is possible to guide a high-energy electron beam long distances
with a pre-formed low-density ion column. Section 12.9 discussed the ion focused regime (IFR)
of electron beam transport. The ion columns are created by forming a low-density plasma in a
tenuous medium, either with an electron discharge or with a tuned laser beam. IFR transport is
an option for the exo-atmospheric propagation of high-energy electron beams. The idea is to
generate an ion column kilometers in length in the upper atmosphere with a laser – the ion
column guides a high-power electron beam to a target. For this application the transverse 
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Figure 13.19. Mechanism of the simple firehose instability – a flexible transport system contains a
moving fluid.

(13.138)

stability of the beam-column system is a major concern. 
   In this section, we shall first review general properties of hose instabilities and then study
electron beam instabilities in an ion channel. Hose instabilities are possible whenever a flexible
transport system confines a particle flow. The simplest example of a flexible confinement system
is the firehose illustrated in Figure 13.19. The firehose provides radial confinement of a stream
of water. In a distorted hose the stream of water exerts a centrifugal force at the points of
maximum curvature. If the flow of water is strong enough the centrifugal force exceeds restoring
forces from the tension of the elastic hose and the amplitude of the perturbation grows. 
   Neglecting tension forces in the hose we can calculate the growth rate of the perturbation
amplitude by balancing the centrifugal force against the inertia of the hose and water. Assume
the water has a mass per length of M w and an axial velocity V, while the hose has a mass per
length of Mh. If we take a perturbation of the form y(z,t) = yo(t) sin(kz), then the centrifugal force
per length is

                                                        Fc = Mw (kV)2 yo(t) sin(kz).                                         (13.136)

Balancing the force against the inertia, the amplitude of the perturbation grows according to:

                                                  (Mw + Mh) d2yo/dt2 = Mw (kV)2 yo.                                     (13.137)

The perturbation grows exponentially as yo(t) ~ exp("t) with growth rate:

The growth rate is proportional to the water velocity and inversely proportional to the
wavelength of the perturbation. In a real firehose the restoring force of hose tension increases at
short wavelength so there is an intermediate wavelength that gives the highest instability growth 
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Figure 13.20. Hose instability of an ion-focused electron beam. a) An electron beam confined by an ion
column. The quantity y is the displacement of the electron beam from a symmetry axis while * is the
displacement of the ion column. b) End view of a displacement between the electron beam and the ion
column.

rate. 
   For water flowing in a hose or charged particles in a beam the kinetic energy in the axial
direction is much greater than the transverse kinetic energy. A flexible confinement system
provides a mechanism to couple axial energy into transverse motion. Because of hose
instabilities a confined beam can acquire more transverse kinetic energy than a freely-expanding
beam. If we direct a stream of water into free space it expands at a rate given by its initial
angular divergence. In contrast, although a flexible confinement system maintains a uniform eam
radius macroscopic motions of the beam can grow rapidly.

  We shall study the special case of a relativistic electron beam confined by an ion channel.
Again we seek a simplified model to minimize the mathematics. Figure 13.20a shows a
cylindrical electron beam passing through a stationary ion column. The beam and column have
uniform densities and equal radii ro. The column consists of bare singly-charged ions with mass
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(13.141)

(13.143)

mi. The paraxial electron beam has kinetic energy ((-1)mec2 and axial velocity $c. 
   We denote the electron beam density as no. The ion channel density is 

                                                                 nc = fno.                                                             (13.139)

The neutralization fraction f is less than unity. We assume that f has a value that guarantees the
radial equilibrium of beam electrons. If electrons have laminar orbits then f = 1/(2. The
neutralization fraction must be higher if the beam has non-zero emittance. We assume that the
hose instability results in displacements of both the beam and ion channel from the symmetry
axis in the y direction. The quantity *(z,t) denotes the center of the flexible ion channel while
y(z,t) is the beam center. The channel is initially centered while the beam enters at z = 0 with a
specified displacement, y(0,t).
   First consider the force on the ion channel if it is not colinear with the electron beam (Figure
13.20b). Section 12.3 discussed the electric fields of displaced charge cylinders. In the limit of
small displacement [(*-y) n ro] the electric field in the area region occupied by the cylinders is
uniform with a magnitude linearly proportional to the displacement. The ion space-charge cannot
exert an average force on itself. Therefore the force on the ion column results from the space-
charge of the electron beam. Following Eq. (12.50) the force exerted by the beam on a displaced
ion channel is: 

                                           Fy(z,t) = - (e2no/,o) [*(z,t) - y(z,t)].                                          (13.140)

The variation of * at an axial location in the stationary frame follows the equation:

The quantity Tc in Eq. (13.141) is the plasma frequency of the channel ions:

                                                        Tc = (e2nc/mi,o)1/2.                                                      (13.142)

   To complete the solution, we need an equation similar to Eq. (13.141) for the beam transverse
acceleration. As in Section 13.6 we must include all contributions to beam motion in the
stationary frame. Besides the forces between the beam and ion column, the beam position can
also change by convection. The net change in the transverse velocity of the beam is

   Equation (13.143) has following interpretation. The partial derivative on the left-hand side is
the change of vy with time at a constant position. The partial derivative on right-hand side is the
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(13.146)

(13.149)

axial variation of vy at a given time. The last term on the right hand side is the acceleration of the
beam resulting from charge separation. We can also write Eq. (13.143) in terms of the
convective derivative (Section 13.2): 

                                    Dvy/Dt = [M/Mt + $c M/Mz] vy = (f Tb
2) (* - y).                                 (13.144)

Equation (13.144) incorporates the beam plasma frequency,

                                                         Tb = (e2no/(me,o)1/2.                                                  (13.145)
    
   We can follow similar logic to derive an expression for the change in y at a point:

 or

                                                           Dy/Dt = vy.                                                              (13.147)

Combining Eqs. (13.144) and (13.147) gives a symbolic expression for changes in the beam
displacement:

                                                  D2y/Dt2 =  (f Tb
2) (* - y).                                                  (13.148)

Expanding the convective derivatives gives the following partial differential equation:

   Equations (13.141) and (13.149) predict the spatial and temporal variations of the centers of
the beam and the channel when displacements are small. Before reviewing numerical solutions,
we shall investigate the ion hose instability in some limiting cases. To begin suppose a beam
enters an undisturbed channel [*(z,0) = 0] that consists of infinitely massive ions. If the electron
beam enters with a displacement it oscillates harmonically about the rigid ion channel as it
moves downstream. For a continuous beam we calculate a steady-state solution by setting time
derivatives in Eq. (13.149) equal to zero:

                                                          d2y/dz2 = - f (Tb/$c)2 y.                                             (13.150)

Equation (13.150) has the solution:

                                                                y = yo cos(kz),                                                     (13.151)
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where 

   Next we relax the condition of infinite channel mass. The electric force on the ions is
proportional to the electron displacement. We expect that if the electron beam has the
displacement of Eq. (13.151), then after a time the ion channel displacement is:

                                                                * = *o cos(kz).                                                    (13.152)

In turn, the periodic ion channel displacement affects the trajectory of the electron beam. To
estimate the effect, consider a frozen ion channel displacement – we substitute the expression of
Eq. (13.152) into Eq. (13.149). Again we seek a steady-state beam solution with spatial
variations. The beam displacement equation is:

                                                    d2y/dz2 = - k2y + *ok2cos(kz).                                         (13.153)

   Equation (13.153) describes a harmonic oscillator with a resonant drive term. The amplitude of
oscillations grows as the electron beam moves downstream. In the limit that the change of the
channel displacement amplitude is small over a distance 1/k, Eq. (13.153) has the approximate
solution:

                            y – yo [1 + (f1/2 Tb/2$c)z] cos(kz) = yo [1 + kz/2] cos(kz).                      (13.154)

when *o = yo. For a uniform channel displacement the beam displacement grows linearly with
distance from the injection point.
   We can now construct a qualitative explanation of the ion hose instability for small
displacements. Suppose a displaced beam enters an initially-straight ion channel. The beam has
constant amplitude betatron oscillations as it moves downstream. The electric fields from charge
separation cause a harmonic displacement of the ion channel at wavelength 8b. The distorted ion
channel results in a beam oscillation amplitude that grows with distance from the injection point.
In turn, the enhanced electron motion causes increased channel displacement. The displacements
grow in space and time.
   To complete the description, we shall estimate the growth time for the channel displacement at
a point. Suppose that the charge-separation electric fields are strong – the beam and the channel
have about the same displacement, *(z,t) – y(z,t). A centrifugal force acts on the electron beam at
the points of highest inflection. The force couples to the ion channel through the space-charge
forces. We can estimate the growth rate for channel displacement by balancing the beam
centrifugal force against the channel inertia:

                                       (mi ncBro
2) d2*/dt2 – ((menoBro

2) (k$c)2 *.                                 (13.155)
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(13.159)

(13.160)

Equation (13.155) implies that the channel displacement at a point grows exponentially:

                                                            * ~ exp[(Tc/f1/2)t].                                                 (13.156)

The following example illustrates the growth rate of the ion hose instability. A 10 MeV electron
beam (( = 20.6) propagates through a channel composed of He+ ions. The beam has current Io =
1 kA, radius ro = 0.01 m and density no = 2.1 × 1017 m-3. The neutralization fraction must exceed
1/(2, or 0.002. We shall take f = 0.1. The plasma frequencies are Tb = 5.7 × 109 s-1 and Tc = 9.6 ×
107 s-1. The length scale for the growth of beam oscillations from Eq. (13.151) is about 2/k = 0.1
m. Equation (13.156) gives the time scale for channel distortion as f1/2/Tc = 3.3 ns. 
   The spatial and temporal growth of the ion hose instability for small displacements is rapid for
parameters of practical interest. To gauge the significance of the instability we must study
mechanisms that limit the amplitude of oscillations. The main process that leads to saturation of
the hose instability is the non-linear variation of the force between the beam and channel at large
values of displacement, |y-*| > ro. With a non-linear force the wavelength of transverse beam
oscillations depends on the amplitude. As a result the driving term in Eq. (13.153) may not be at
resonance with the oscillation of the beam. We can estimate the average force between a beam
and channel as a function of their separation by treating two limiting cases. We have already
derived an expression for the force of the channel on the beam for small displacements:
   
                                              Fy – (fe2no/,o) (* - y),   [(*-y) n ro].                                    (13.157)

At large displacement the beam does not overlap the channel. Here the average force on the
beam equals the electric force from a line charge with linear density fnoBro

2 displaced a distance
(*-y):

                                          Fy = [fe2no/2,o] [ro
2/(*-y)],    [(*-y) o ro].                                 (13.158)

The following form approximates the average force on the beam for both small and large
displacements:

   The equations that describe the motions of the beam and channel centers with non-linear forces
are:

and
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(13.161)

Figure 13.21 illustrates numerical solutions to Eqs. (13.160) and (13.161). In the calculation the
electron beam has current 1 kA and kinetic energy 3.6 MeV. It propagates through a column of
He+ ions with radius ro = 0.02 m and with f = 1. The beam enters with a displacement of 2 mm.
Note that the plots of Figure 13.21 show displacements of the beam and channel following a
particular segment of the beam. The top trace shows the displacement of the segment as it
propagates away from the injection point. The lower trace shows the channel displacement
observed in a frame moving with the beam segment as a function of distance from the injector. 
   Figure 13.21a shows displacements referenced to a segment that leaves the injection point 4.7
ns after the start of the beam. For this segment, the quantity (*-y)/ro is much smaller than unity.
The oscillation amplitude of the segment grows linearly with distance from the source. The
channel displacement seen by an observer that moves with the segment is almost uniform with
distance traveled. Note that a plot of the channel displacement as a function of z at a particular
time shows an amplitude that grows with distance from the injection point. 
   Figure 13.21b shows displacements referenced to a segment that enters 7.1 ns after the beam
head. The non-linear force has a significant effect. Although the channel displacement amplitude
is larger than that of Figure 13.21a, the beam displacement does not grow proportionally.
Because of the shift of the beam betatron wavelength the channel oscillation does not drive the
beam at resonance. Fig. 13.21c shows the displacement history of a segment entering 21 ns after
the beam head. The beam oscillation amplitude saturates at a level about twice the channel
radius. Solutions at late time or long distance show almost a constant beam oscillation
amplitude.
   Other mechanisms limit the effect of the ion hose instability. The non-linear force between the
beam and channel not only shifts the average betatron wavelength for beam oscillations but also
introduces a spread in the wavelength for individual particles. Section 13.3 discussed the
stabilizing effect of a spread in betatron wavelength. A rough criterion for stability is that the
damping time scale from phase mixing is shorter than the growth time for the instability. 
   Experiments on the long-distance transport of electron beams through ion channels show that
the beam is subject to an instability immediately after injection that causes a growth of
emittance. The beam expands to a radius larger than that of the channel. After the beam reaches
an equilibrium in the non-linear force, it can propagate a long distance with little additional
emittance degradation. The main limiting process for the propagation length in an IFR channel is
radial expansion of the unconfined ions. We can estimate the expansion rate by balancing the
transverse pressure force of the high-emittance electron beam against the inertia of the ion
column.
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Figure 13.21. Numerical solutions of the instability of an electron beam confined by an ion column.
Electron beam current: 1 kA. Electron beam energy: 3.6 MeV. Column of He+ ions with radius ro = 0.02
m and f = 1. Initial beam displacement: 2 mm. a) Top: displacement of a beam segment that enters the
plasma 4.7 ns after the beam head as a function of distance from the injection point. Bottom:
Displacement of the ion column at the position of the beam segment. b) Displacement of the beam and
ion column for a segment that enters the plasma 7.1 ns after the beam head. c) Displacement of the beam
and ion column for a segment that enters the plasma 21 ns after the beam head. (Courtesy, K. O'Brien,
Sandia National Laboratories).   
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Figure 13.21. (Continued)
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Figure 13.21. (Continued)
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13.8. Resistive hose instability

   The propagation of intense electron beams through gaseous media has been an active research
area for over two decades. The motivation for this work has been the potential application of
electron beams for the defense of ships and other large installations. As envisioned, a pulsed
high-current electron beam is injected into air to create a region of dense plasma. In principle,
following pulses can propagate through the plasma in a self-pinched equilibrium. The goal is to
transport beams many kilometers. In present experiments hose instabilities limit the propagation
length to a few meters. The collective forces of the beam interact with the plasma background to
cause severe deflections of the beam.
   In this section we shall not attempt a detailed study of electron beam propagation in dense
gases. The coupled processes of gas ionization, plasma responses, and beam confinement
represent one of the most complex collective problems in beam physics. We shall instead
concentrate on the basic mechanisms of hose instabilities in a plasma. There are two main types.
The simple hose instability occurs when a beam travels through a localized plasma column. The
resistive hose instability is a much more subtle phenomenon. It affects self-pinched electron
beams in pre-formed plasmas that extend over a large transverse width. 
   The simple firehose instability often occurs when an intense electron beam from a pulsed diode
enters a neutral gas. The discharge creates a dense plasma column surrounded by neutral gas.
The beam propagates through the resistive plasma in a self-pinched equilibrium. The plasma
column is a flexible confinement system. The centrifugal force of the beam enhances transverse
displacements. Often the instability deflects the beam and plasma column through 90° within a
few meters of the injection point. The points of maximum beam curvature have approximately
constant axial positions as the instability grows in time. In time-integrated photographs, beams
injected into the atmosphere follow a sinuous trajectory.
   The resistive hose instability occurs when a beam propagates through a uniform plasma. The
width of the plasma region is much larger than the beam dimension. For this condition, the
plasma does not act as a guiding channel as in the ion hose or simple firehose instabilities.
Before the onset of instability the beam propagates in a self-pinched equilibrium in a direction
determined by the injection conditions. To describe the instability we adopt some simplifying
assumptions. The electron beam is cylindrical with a uniform current density from the axis to
radius ro. Electrons in the beam are monoenergetic and have paraxial orbits; therefore, their axial
velocity $c is uniform. The background plasma is uniform, isotropic and of infinite extent. There
are no applied magnetic or electric fields. We assume that the plasma density is high enough to
neutralize the beam space-charge electric fields and to ensure a small magnetic skin depth, c/Tpe
n ro [Eq. (12.94)]. Finally, the plasma has a scalar resistivity, D. 

   To help understand the instability we shall review some properties of electron beam equilibria
in a resistive plasma. Suppose a pulsed beam of current Io enters a uniform plasma – the beam
has transverse displacement X from a symmetry axis. To preserve charge neutrality the plasma
carries a return current -Io. At the head of the beam the return current density has the same
transverse distribution as the beam current density. Section 12.6 showed that plasma resistivity 
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Figure 13.22. Resistive hose instability in a homogeneous plasma. a) Geometry – the calculation uses the
variable J, the time at which a beam segment passes the injection point (z = 0). b) Properties of the beam
equilibrium. Radial distribution of beam current density, plasma current density and toroidal magnetic
field at a point well back from the beam head.

spreads the return current over larger cross-section in latter parts of the beam. Therefore the
distribution of the return current varies as a function of position in the beam pulse. 
   The most convenient way to describe the interactions of an electron beam and a resistive
plasma is to follow individual axial segments of the beam (Figure 13.22a). The treatment differs
from those in previous sections of this chapter where we observed displacements of many
segments as they passed a constant axial location. To construct equations referenced to the beam
we define a variable J equal to the time a beam segment enters the system at z = 0. The beam
head enters at t = 0 and has J = 0. Each following segment has a characteristic value of J. If z is
the axial position at time t of an axial element parametrized by J, then: 
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Figure 13.23. Mechanism of the resistive hose instability in a homogeneous plasma. a) Distribution of
the beam, plasma and total current densities in equilibrium at a point well back from the beam head. b)
Changes in current-density distributions immediately following a sudden beam displacement. c) Effect of
resistive diffusion of the current density distributions following a displacement. The position of the center
of the plasma return current is shifted.

                                                                       z = v(t - J).                                                  (13.162)

   Even without an instability the behavior of the beam head is complex. At the head there is no 
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Figure 13.23. (Continued)

net magnetic field in the beam volume. Therefore electrons at the head are not focused – their
orbits expand radially. For simplicity, we shall concentrate on beam segments far behind the
head where the plasma current has expanded enough to allow a self-pinched equilibrium. From
the discussion of Section 12.6, we know that the beam-generated magnetic field has almost its
full magnitude in a segment if:

                                                                         J o Jd.                                                        (13.163)

The quantity Jd in Eq. (13.163) is the magnetic diffusion time,

                                                                    Jd = :o ro
2/D.                                                    (13.164)

When the limit of Eq. (13.163) holds, the distributions of beam and plasma current resemble
those of Figure 13.22b. 
   We shall neglect the fraction of plasma return current within the beam volume. Figure 13.22b
shows the variation of the beam-generated toroidal magnetic field as a function of x. With a
uniform current density the field variation is linear. The electrons follow harmonic betatron
oscillations with wave number kb. Following Section 12.7 we can express the wavenumber in
terms of the beam current, the Alfven current [Eq. (12.127)] and the beam radius: 

                                                                    kb = (2I/Ia)1/2/ro.                                               (13.165)
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(13.166)

(13.167)

   We now have enough information about the equilibrium to explain the response of the plasma
to transverse displacements of of the beam. Suppose a segment at position z suddenly moves
sideways along the x axis (Figure 13.23a). We denote the center of the displaced segment with
parameter J at z as X(z,J). The quantity D(z,J) is the average transverse position of the plasma
return current at position z before the beam displacement. After the displacement X(z,J) may no
longer coincide with D(z,J). To the plasma it appears that there is an instantaneous rise of the
beam current density in the direction of the displacement and a drop on the trailing edge.
Inductively driven return currents in the highly conducting plasma flow to cancel the change in
the beam current density distribution. Figure 13.23a shows the result – the spatial distribution of
total current is the same before and after the beam displacement. The quantity D does not change
immediately after a rapid change in X. 
   We next consider how X varies after the displacement. To begin suppose the plasma is a
perfect conductor, D = 0. Here the plasma provides perfect cancellation of any change in the
current density distribution. Therefore the magnetic axis D remains at its initial value
independent of the position of the beam – the focusing system is rigid in the transverse direction.
For small displacements (X-D n ro) all electrons follow coherent betatron oscillations and the
beam center oscillates harmonically about D with wave number kb and amplitude (X-D). We can
represent the position of the beam center by the trace equation: 

The partial derivative symbol on the left-hand side emphasizes that Eq. (13.166) describes the
axial variation of displacement for a particular beam element with constant J. Equation (13.166)
gives a harmonic solution with wavenumber kb.
   The position of the magnetic axis is not stationary if the plasma has nonzero resistivity. To
complete the solution we must construct an equation that describes the variation of D. Figure
13.23a showed that sudden beam displacements from D induce positive and negative-going
plasma currents on opposite sides of beam. The magnetic diffusion equation [Eq. (12.115)]
implies that resistivity spreads these regions of plasma current density in space after the initial
perturbation (Figure 13.23b). Ultimately the positive and negative plasma current components
overlap and cancel each other. The cancellation leads to a shift in the magnetic axis to the new
position of the beam center (Figure 13.23c). 
   In principle we could compute the translation rate for the magnetic axis exactly from Eq.
(12.115) and the initial distribution of current. The following simple equation gives a good
approximation for the motion of the magnetic axis relative to the beam position:

We can justify Eq. (13.167) by noting that the time for the plasma current component to spread
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(13.168)

(13.174)

over an area comparable to that of the beam is roughly Jd. Furthermore, the magnetic axis must
approach the beam center at long times, D – X for t oJd. We can rewrite Eq. (13.167) using the
chain rule of partial derivatives:

The quantity D(z,J) in Eq. (13.168) is the transverse position of the magnetic axis at a given
value of z seen by the beam segment with parameter J.
   Equations (13.166) and (13.168) describe the history of translation of a beam segment in a
homogenous resistive medium. The equations have several solutions, depending on the initial
conditions. We choose a simple form of the solution that represents experiments on the resistive
hose instability. Suppose that a continuous electron beam enters at z = 0. At the injection point,
the transverse position of the beam varies at frequency T, 

                                                       X(0,J) = Xo cos(TJ).                                                    (13.169)

The position modulation may result from a beam-breakup instability in the accelerator that
generates the beam. We seek solutions with a transverse displacement that varies harmonically
with time and may grow with distance from the injection point:

                                                D(z,J) = D exp[j('z - TJ)],                                                (13.170)

                                                 Y(z,J) = Y exp[j('z - TJ)].

The quantity T is real while ' may have an imaginary part to represent spatial growth. 
   Substitution of Eqs. (13.170) in Eqs. (13.166) and (13.168) gives:

                                                        D = Y/(1 - jTJd).                                                         (13.171)

                                                        Y = D/(1 - '2/kb
2).                                                       (13.172)

Eliminating D and Y gives the following equation for ':

There are two governing parameters in Eq. (13.173), the unperturbed betatron oscillation
wavenumber kb and the quantity TJd. The second expression equals the ratio of the magnetic
diffusion time to the time scale for transverse beam motion. We shall find that the growth of the 
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Figure 13.24. Steady-state solution for the resistive hose instability in a homogeneous
plasma. Real and imaginary parts of the wavenumber, 'r and 'i.

(13.175)

(13.176)

instability is slow when TJd o 1. In this case the plasma is almost a perfect conductor. The
instability growth is also slow when TJd n 1. In this limit plasma current components annihilate
rapidly so that the magnetic axis is always colinear with the beam axis. Because the plasma
provides little restoring force there is no transverse instability.
   To solve Eq. (13.173) assume ' has real and imaginary parts:

                                                                    ' = 'r + 'i.                                                      (13.174)

We substitute Eq. (13.174) in Eq. (13.173) and set real and imaginary parts separately equal. The
resulting equations are:

and
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(13.177)

Figure 13.25. Transverse position of the beam and plasma return current at an instant of time 
for TJd = 0.577.

Eliminating 'r from Eqs. (13.175) and (13.176) and solving the resulting quadratic equation
gives the following expression for 'i:

   Figure (13.24) plots 'i and 'r as functions of (TJd). The instability growth rate approaches zero
when TJd Í 0. For low plasma resistivity ( TJd  Í 4) the growth rate approaches zero and 'r
approaches kb. These conditions represent a stable harmonic oscillation at the single particle
betatron wavelength. The following conditions hold at the maximum value of 'i:

               TJb = (1/3)1/2 = 0.577,   'i/kb = (1/8)1/2 = 0.354,   'r/kb = (3/8)1/2 = 0.612.           (13.178)

Under conditions for maximum growth the displacement amplitude grows significantly over a
distance equal to one betatron wavelength. Figure 13.25 shows the transverse motion of beam
element J and the magnetic axis as the element propagates for TJd = 0.577. Note that the
magnetic axis lags behind the beam to provide a net restoring force. As an applications example
consider propagation of a 10 MeV beam with Io = 10 kA, ro = 0.01 m and kb = 24 m-1. Previous
beam pulses have created a plasma channel in air with a density np = 7 × 1022 m-3 and
temperature Te = 10 eV. We take the input beam sweeping frequency at a high value typical of
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accelerator instabilities, T = 2.5 x 109 s-1. To calculate the resistivity for a the nitrogen plasma,
we multiply Eq. (12.107) by a factor Z2 = 49. The predicted resistivity is about D = 1.5 × 10-3 S-
m. The field diffusion time in the plasma is Jd = 90 ns (or TJd = 225). In the limit of high TJd,
Eq. (13.177) shows that the growth length for the instability is 1/'i – 2TJd/kb = 20 m. 
   The full implications of the resistive hose instability for long distance propagation are still the
subject of active research and debate. A spread in betatron wavelength reduces the growth of the
instability by damping the coherent transverse oscillations of the beam. Such a spread can arise
from a distribution of electron energy or from non-linear focusing forces. In an accurate
calculation of the resistive hose instability we must include effects of the non-uniform transverse
variation of beam current density and the non-linear force between the beam and the plasma
magnetic field for displacements comparable to ro.

13.9. Filamentation instability of neutralized electron beams

   Space-charge-neutralized relativistic electron beams are often unstable to filamentation. When
no electric field is present, perturbations of the beam-generated magnetic fields can cause local
pinching. The magnetic force in regions of enhanced axial current attracts more electrons,
thereby amplifying the current. Ultimately the beam divides into current filaments. The
filamentation instability causes no change in the average position of the beam – its main effect is
to increase the beam emittance. The magnetic fields couple longitudinal kinetic energy to
transverse motion. The instability saturates when the transverse velocity spread is high enough to
resist the pinching force.
   Filamentation instabilities occur when intense relativistic beams propagate through a
neutralizing plasma. We shall see that filamentation also affects beams focused by a transverse
foil array in high vacuum (Section 10.5). In this section we shall construct models for both cases.
The models use the linearized moment equations to predict the onset of an instability. Although
they do not describe the saturation state of the instability, we can apply physical insights to
estimate the outcome. 
   To begin we shall study propagation of an infinite-width beam in a homogeneous plasma.
Here, the term infinite means large compared with the length scale of filaments. The equilibrium
state is simple to describe. The plasma provides both space-charge and current neutralization –
there are no steady-state electric or magnetic fields. The beam has a uniform density no that is
much smaller than the plasma density. Furthermore the beam is paraxial – all electrons have
about the same kinetic energy ((-1)mec2 and axial velocity $c. We include the possibility of a
non-zero beam emittance, represented by the transverse velocity dispersion <*vx

2>. 
   Suppose the beam has a density perturbation in the x direction equal to:

                                                            n(x) = nx cos(kx).                                                    (13.179)

In a linear analysis the density perturbation is small, nx/no n 1. We shall see that the growth time
of the magnetic instability is much longer than 1/Tpe, where Tpe is the plasma frequency. 
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Figure 13.26. Mechanism for the filamentation instability in a resistive plasma. View along the axis -
transverse distribution of beam current density and plasma return current density. a) Immediately
following application of a transverse density perturbation to the beam. b) Resistive diffusion causes decay
of plasma return current perturbations. Magnetic pinch forces act on the beam particles. c) Growth of
beam current-density perturbation.
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(13.184)

Therefore the rapid flow of plasma electrons ensures that electric fields are always small. In the
linear regime the change in the transverse velocity of electrons has little effect on their axial
velocity. With this condition the axial current density of the beam is proportional to n(x):

                                                       jbz(x) = -enx $c cos(kx).                                               (13.180)

   If the beam current density varies in space and time the return current density of a perfectly
conducting plasma adjusts to seek zero net magnetic field. Field cancellation is effective if the
magnetic skin depth (Section 12.5) is much smaller than the wavelength of the perturbation: 

                                                                      k nTpe/c.                                                       (13.181)

When the condition of Eq. (13.181) holds the return current of a perfectly-conducting plasma is

                                                         jpx(x) = + enx $c cos(kx).                                            (13.182)

If there is no net magnetic field there is no driving force for the instability. In this case a small
transverse beam velocity spread is sufficient to damp density perturbations. 
   The filamentation instability can occur in a plasma with non-zero resistivity. Figure 13.26
illustrates the sequence of events. Suppose we perturb the beam density instantaneously, as in
Figure 13.26a. In response the plasma generates return current components that flow in the
opposite direction to the modified beam current. Because of resistive diffusion the return current
density decays to a uniform distribution in a time roughly equal to:

                                                                     Jd = :o/k2D.                                                    (13.183)

After a magnetic diffusion time the beam-plasma system approaches the state of Figure 13.26b.
The beam-generated magnetic fields cause pinching and enhancement of the density
perturbations (Figure 13.26c). The combination of the beam inertia, the magnetic pinch force
and the plasma magnetic diffusion time control the growth of beam filaments.
   We can use linearized moment equations for a mathematical description of filamentation.
Figure 13.27 shows the coordinate system of the analysis. The perturbed quantities are the beam
density nx, the directed beam transverse velocity vx, the magnetic field By and the axial plasma
return current density jp. The plasma electrons carry the return current – we assume plasma ions
are immobile. Because pinching is a slow process we can use the static form of Ampere's law:

The beam continuity equation is
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(13.185)

(13.186)

(13.187)

Figure 13.27. Coordinate system to analyze magnetic pinching of an electron beam in a resistive plasma.
Figure also shows a schematic view of the variation of beam current density for the assumed
perturbations.

The beam momentum equation has the form

The quantity <*vx
2> is the mean-squared beam transverse velocity spread. The diffusion

equation for beam current density from Section 12.6 completes the set of equations. We modify
Eq. (12.114) to include the possibility of continuous changes in beam current density: 



Transverse instabilities Charged Particle Beams

668

Figure 13.28. Normalized growth rate for the pinching instability of an electron beam with no
transverse velocity spread in a resistive plasma.

(13.188)

   First order variables are proportional to exp(jkz)exp("t) – the quantity " is the anticipated
instability growth rate. Substitution in Eqs. (13.184) through (13.187) gives a set of algebraic
equations in four unknowns. Elimination of variables leads to an equation for " as a function of k
and the characteristics of the equilibrium beam-plasma system: 

The quantity Tb in Eq. (13.188) is the beam plasma frequency

                                                          Tb = (e2no/(me,o)1/2,                                                  (13.189)

while $Tb is a characteristic magnetic oscillation frequency. A positive value of "2 gives
growing perturbations. Equation (13.188) shows that a transverse velocity spread has a
stabilizing effect while the beam-generated magnetic force contributes to an instability. Note that
the magnetic force contribution drops to zero when D = 0. There is no filamentation instability in
a perfectly conducting plasma. 
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(13.190)

   If we neglect the velocity spread term, Eq. (13.188) gives the following expression for the
growth rate:

Figure13.28 shows a plot of ("/$Tb) as a function of (k2D/:o$Tb). When k2D/:o$Tb n 1 magnetic
field diffusion in the plasma controls the instability growth rate. When k2D/:o$Tb > 1 the
interaction between the beam inertia and magnetic force determines ". In this limit, the growth
rate approaches its maximum value:

                                                                       "/$Tb – 1.                                                   (13.191)

For relativistic beams, the assumption of good space-charge neutralization is valid because " #
$Tb n Tpe. The filamentation instability does not occur if there is a sufficient transverse velocity
spread. We can estimate the stability requirement by setting " equal to zero in Eq. (13.188). A
beam does not break into filaments if:

                                                                <*vx
2> $ ($Tb/k)2.                                              (13.192)

   The following example illustrates some implications of the results. A 5 MeV, 5 kA electron of
radius 0.02 m propagates in a hydrogen plasma with electron temperature kTe = 10 eV. The beam
density is 8.3 × 1016 m-3 and the beam plasma frequency is Tb = 5 × 109 s-1. If the plasma density
is 103 times the beam density the plasma frequency is Tpe = 5 × 1011 m-3. Following Section 12.6
the plasma resistivity is D = 4.6 × 10-5 S-m. To estimate the maximum growth rate we must find
a reasonable value of perturbation wavenumber. Our model holds only if the quantity 1/k
exceeds the collisionless skin depth. For the assumed plasma parameters c/Tpe = 6 × 10-4 m;
therefore, we shall take k = 1/(2 × 10-3 m) = 500 m-1. This wavenumber corresponds to a
perturbation wavelength of 0.013 m, small enough to justify use of the infinite beam model.
Combining all quantities, we find that: 

                                                          k2D/:o$Tb – 1.8 × 10-3.                                            (13.193)

The low value in Eq. (13.193) shows that magnetic diffusion in the plasma governs the
filamentation growth rate. Figure 13.28 shows that: 

                                                      " = ($Tb) (0.121) = 6 × 108.                                        (13.194)

The growth time is 1.7 ns. During this time the beam travels 0.5 m in the axial direction. The
instability causes enhancement of the beam emittance. We expect that the instability saturates
when the transverse velocity spread satisfies Eq. (13.192) or:
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Figure 13.29. Sheet beam geometry to analyze the filamentation of an electron beam in a foil focusing
system.

                                                    (<vx
2>)1/2/$c = (Tb/ck) = 0.033.                                     (13.195)

An angular divergence of 2° stabilizes the beam against further filamentation. 
   Filamentation instabilities also act on beams that propagate in high vacuum through a foil array
(Section 10.5). The transverse foils neutralize the space-charge electric fields of the beam;
therefore, it is not surprising that magnetic filamentation may occur. An exact analysis of
magnetic filamentation of a cylindrical beam in a foil array is a difficult problem – the fields and
beam density vary in three-dimensions. Instead we shall construct a simple model for the sheet
beam geometry of Figure 13.29. The continuous beam moves in the z direction. It has a narrow
width in the y direction and extends infinitely in x. In equilibrium the beam density is uniform in
the x direction – we shall find conditions where perturbations along x lead to magnetic pinching.
In a foil transport system the sheet beam travels through closely-spaced transverse meshes that
reduce electric fields but have little effect on magnetic fields. This geometry, with variations in y
and z, is difficult to describe with an analytic model. As an alternative we shall use the simplified
model of Figure 13.29. The beam moves between symmetric planar boundaries. To represent the
effect of partial space-charge neutralization we locate the induced charge boundary closer to the
sheet beam than the induced current current boundary. The charge boundary at positions ±ye is a
surface of constant electrostatic potential with Ex = 0. The return current boundary at positions
±ym is a surface of constant vector potential with By = 0. 
   If electrons in the sheet beam have paraxial orbits we can use nonrelativistic equations of
motion with an adjusted mass (me. Focusing forces confine the beam in the y direction –
electrons move only in the x direction. In equilibrium the beam has a uniform charge density Do
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over a half-thickness )y. A thin sheet beam satisfies the condition )y n ye, ym. We take
perturbations in the x-direction with a wavelength much longer than the beam thickness:

                                                                        k # 1/)y.                                                    (13.196)

Finally, we compute electric and magnetic fields from static equations – the static approximation
is valid if the instability growth times are much longer than 1/kc. 
   In equilibrium, the electric and magnetic fields have the 

                                          Eyo(±)y) = ±Do)y/,o,    Bxo(±)y) = ±:oDo)y$c.                      (13.197)

We take a charge density perturbation of the form:

                                                              D(x) = Do + )Dcos(kx).                                        (13.198)

For the density variation of Eq. (13.198) the beam current density varies as:

                                                         jz(x) = Do$c + )D$c cos(kx).                                     (13.199)

   First, we shall calculate the electrostatic potential variations caused by the perturbed density.
The solution to the Laplace equation outside the beam that satisfies the boundary condition at the
induced charge boundary is:

                           )N(x,y) = )Nk cos(kx) [exp(ky)exp(-kye) - exp(-ky)exp(kye)].               (13.200)

We apply a matching condition for the electric field at the beam boundary. When k)y n 1, the
normal component of electric field approaches the value:

                                       )Ey(0+) – -M)N(x,0)/My =  )D)ycos(kx)/,o.                               (13.201)

Equation (13.201) states that the change in the perturbed normal electric field across the sheet
beam almost equals the net beam charge per area divided by ,o. Equation (13.201) implies that:

                                                     )Nk = -()D)y/4,o) cosh(kye).                                      (13.202)

The electric field component )Ex affects the growth of filamentation instabilities. Taking 
)Ex = -M)N(x,y)/Mx we find the following expression:

                                            )Ex(x,y) = ()D)y/2,o) tanh(kye) sin(kx).                              (13.203)

   We can apply a similar treatment to calculate the perturbed magnetic field. Solving for the
perturbed vector potential leads to the expression:
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(13.206)

(13.207)

(13.210)

                                         )By(x,y) = ()D)y$/2,oc) tanh(kym) sin(kx).                            (13.204)

The net force in the x direction resulting from the fields of the beam is:

                                   Fx = (e)D)y/2,o) sin(kx) [tanh(kye) - $2 tanh(kym)].                       (13.205)

   The linearized moment equations for beam motion in the x direction are:

and

The quantity )vx is the directed transverse velocity while <*vx
2> is a random velocity spread in

the x direction. If perturbed quantities vary as exp("t) sin(kx). Eqs. (13.206) and (13.207) lead to
an expression for the linear instability growth rate:

   "2 = -k2 <*vx
2> - (eJz/2(mo$c,o) k tanh(kye) + $2 (eJz/2(mo$c,o) k tanh(kym).               (13.208)

The quantity Jz is the net current of the equilibrium beam per unit length along x:

                                                           Jz = eno )y $c.                                                         (13.209)

   The transverse velocity spread and the space-charge electric force inhibit filamentation, while
the beam-generated magnetic force drives the instability. The beam is stable if ye = ym. In this
case the repulsive electric forces are stronger than the magnetic force. Taking ye < ym simulates
the effect of transverse focusing foils – the proximity of the induced charge boundary reduces
the electric field in the x direction. Filamentation raises the beam emittance. Ultimately the
velocity spread grows to a level sufficient for stability. Equation (13.208) implies that the root-
mean-squared beam angular divergence for stability equals:

  We can use Eq. (13.208) to predict a beam propagation length for the growth of filaments: 

                                                                   Lg ~ $c/".                                                        (13.211)
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To estimate Lg, assume that the foils almost completely cancel space-charge electric fields. This
condition implies that tanh(kye) – 0 in Eq. (13.208). Furthermore the distance from the beam to
the return current surface is much larger than 1/k, or tanh(kym) – 1.  With these approximations
and the assumption of small initial emittance, the filamentation propagation length is:

                                                         Lg $ (2(mo$c3,o/eJzk)1/2.                                           (13.212)

As an example consider a 2 kA, 500 kV sheet electron beam of width )y = 0.005 m and length
0.1. The linear current density is J = 2 × 104 A/m. The fastest instability growth corresponds to
the maximum value of k. Our model holds when k < 1/)y. If we take k = 2/)y = 200 m-1, Eq.
(13.212) predicts a growth length of only Lg = 0.034 m. The high growth rate is consistent with
observations of strong filamentation of beams from relativistic electron guns with anode grids.
The best approach to propagation in a foil transport array is to compress the electron beams to an
emittance dominated equilibrium before injection into the focusing system.
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14
Longitudinal Instabilities

______________________

  A longitudinal instability causes randomization of the axial velocity distribution of a beam.
Energy from the directed axial motion couples to a longitudinal velocity spread. Longitudinal
instabilities involve acceleration and deceleration of particles – they are driven by axial electric
fields generated by beam perturbations. In this chapter, we shall concentrate on a few examples
of longitudinal instabilities to illustrate techniques of analysis. 
   A beam in field-free vacuum or in an infinitely-long, uniform pipe is always stable. In this case
we can transform to the beam rest-frame without changing the nature of boundaries. In this
frame the beam consists of particles at rest with no free energy. The kinetic energy of the beam
can couple to instabilities only if there is a reference in the stationary frame to facilitate energy
transfer. For example longitudinal instabilities may occur when a beam moves through a
stationary plasma. Other references include pipes with resistive force components that depend on
the absolute beam velocity and nonuniform vacuum chambers where the moving beam excites
electromagnetic oscillations.
   Section 14.1 reviews the two-stream instability for a beam in a plasma. We limit attention to
infinitely-wide electron beams – the approximation is useful for many applications where the
unstable wavelengths are much smaller than the beam width. A two-stream instability involves
coupling to plasma electrons. Beam perturbations drive growing plasma wave that transfer
energy to the background electrons and increase the beam energy spread. Two-stream
instabilities may also indirectly affect electron beam propagation in a plasma. Momentum
coupling between drifting plasma electrons and stationary ions results in a resistivity for return
current flow that is much higher than the collisional prediction (Section 12.6).
   We shall study two other instabilities of finite-width beams in structures. For reference,
Section 14.2 derives general expressions for axial electric fields in a perturbed cylindrical beam.
The results are applied in Section 14.3 to derive equations for the negative-mass instability. This
process affects beams with strong space-charge fields in circular accelerators. The term negative
mass refers to an unusual property of highly relativistic particles in circular machines. Particles
with increased energy take longer to circulate around machine because of their larger radius. An
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accelerating force reduces the average circulation velocity as though the particle had a negative
value of mass. For this inverse response the repulsive axial space-charge forces in a region of
enhanced beam density cause growth of the perturbation.
   Section 14.4 describes the longitudinal resistive wall instability. The process may occur in
storage rings and has application in the resistive-wall microwave amplifier. Frictional forces
from the wall amplify longitudinal slow waves. Wave growth or damping rates are sensitive to
details of the beam axial velocity distribution. Here, we cannot use simple moment equation
models. The resistive wall instability provides an opportunity to follow an analysis based on a
direct solution of the Vlasov equation. 

14.1. Two-stream instability

  Two-stream instabilities may occur when beams of particles with different velocities flow
through each other. Free energy is available to cause axial bunching of the beam particles – the
space-charge fields of the bunched beams convert part of the directed kinetic energy to an axial
velocity dispersion. A mild two-stream instability causes longitudinal emittance growth – a
strong instability leads to destruction of the beam. Two-stream instabilities are a major concern
when beams propagate through plasmas. Examples include long-distance propagation of high-
energy electron beams, transport of low-energy ion beams emerging from high-current injectors,
and the propagation of heavy ion beams in an inertial fusion reaction chamber. The two-stream
instability may be desirable in applications such as plasma heating by intense electron beams. 
   In this section, we shall use simple models to understand the mechanism of the two-stream
instability. We take beams and plasmas with infinite extent and apply perturbations in a single
direction. We treat the plasma as a collection of cold ions and electrons and model beams with a
small velocity spread. For these conditions, we can apply moment equation models to find
expressions for instability growth rates. A Vlasov equation model is necessary to include the
effects of plasma temperature and beam velocity dispersion – we will develop such a model
when we study the longitudinal resistive wall instability in Section 14.4.
   As an introduction consider the simplest geometry for a two-stream instability: two equal and
opposite electron streams flow through an immobile background of ions. Figure 14.1 illustrates
the geometry and velocity distribution. Although symmetric streams seldom appear in
applications, we shall study this model because it leads to perturbations that are stationary in the
ion rest frame. This feature clarifies the instability mechanism. The ions have uniform density no.
Initially, the two streams of non-relativistic electrons have velocities vz = +vo z and vz = -vo z.
The density of both electron streams is no/2. The total electron and ion densities are equal – there
is no equilibrium electric field. We shall investigate perturbations that grow in time with a
uniform rate at all positions. Often beams in experiments enter a region at a given point over an
extended period of time. In this case perturbations grow both in time and with distance from the
injection point. The analysis to describe the convective growth of the two-stream instability is
more involved, although the mechanism is the same. 
   To understand the principle of the two-stream instability imagine a small local enhancement of 
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Figure 14.1. Instability of symmetric, infinite-width streams of electrons in an ion background. a)
Geometry of calculation. b) Initial axial velocity distributions of the streams.

electron density in the beams of Figure 14.1. The excess of negative charge could result from a
local depression of the ion density. The electrostatic potential in the region is negative. Electrons
would be driven from the region of negative potential to restore charge balance. The response is
different for electrons with a directed velocity. They can travel across the negative potential
region. By conservation of energy the electrons move more slowly when the potential is
negative. If the electron motion is one-dimensional the condition of flux conservation (Section
2.10) implies that the density of the flowing electrons is higher in the negative-potential region.
Electrons that follow sense an enhanced negative potential and move through the region even
more slowly. For certain conditions the amplitude of the potential grows. Ultimately the space-
charge electric field may reach a level that severely distorts the electron velocity distribution.
   We shall describe electron bunching with moment equations. Each stream satisfies equations
of continuity and momentum conservation. By symmetry there is no net current at any position,
so there are no beam-generated magnetic fields. We assume that the electron current density is
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(14.1)

(14.2)

(14.3)

much higher than the displacement current density that results from the growing electric field.
With this condition we can calculate the electric field in the static approximation. The one-
dimensional Poisson equation relates the electric field to the perturbed particle density. Let N+

represent the density of electrons moving in +z direction and V+ denote their directed velocity.
The equation of continuity for the electrons is:

The momentum equation is:

Similar equations hold for the density and velocity of electrons traveling in the opposite
direction, N- and V-. With the electric-field divergence equation, 

we have a set of five equations in five unknowns.
   Moment equations hold only during the initial stages of the instability before randomization of
the axial velocity. Therefore we can simplify the mathematics by recasting equations in terms of
small perturbations about the equilibrium. We define the following variational quantities:

                                               n+ = N+ - nio/2,    v+ = V+ - vo,                                                  (14.4)

                                               n- = N- - nio/2,     v- = V- + vo.

The quantity Ez is a small quantity because there is no equilibrium electric field. To reduce the
equations we substitute Eqs. (14.4) in Eqs. (14.1) through (14.3) and eliminate terms that involve
the product of variational quantities. The result is:
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(14.5)

(14.6)

(14.7)

(14.9)

Equations (14.5) through (14.7) are called linearized moment equations – all terms are linearly
proportional to perturbation quantities or their derivatives. 
   We can convert the differential equations to algebraic equations by taking harmonic variations
in space and time. Assume all first order quantities are proportional to exp[j(kz-Tt)]. With the
restriction that perturbations grow in time throughout space, k is a real number while T may
have both real and imaginary parts. The moment equations take the form:

                          -jT n+ = -jkvo n+ - j(knio/2) n+,    -jTv+ = -jkvo v+ - eEz/me,                             (14.8)

                          -jT n- = +jkvo n- - j(knio/2) n-,    -jT v- = +jkvo v- - eEz/me,

                                                       jkEz = -(e/,o) [n+ + n-].

We can eliminate variables from Eqs. (14.8) to derive a single equation with all terms are
linearly proportional to one variable such as Ez. Canceling Ez gives an equation that relates the
frequency T to the wavenumber k:

Equation 14.9 incorporates the electron plasma frequency:

                                                           Tpe = (e2no/,ome)1/2.                                                    (14.10)

   Rearranging Eq. (14.9) gives a quadratic equation in T:

                                    T2 = (Tpe
2/2) {1 + 2(kvo/Tpe) ± [1 + 8(kvo/Tpe)2]1/2}.                        (14.11)

The solution with the plus sign in Eq. (14.11) always gives a real value of T. On the other hand
the solution of T with a minus-sign may be imaginary. The right-hand side of Eq. (14.11) is
negative if:
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Figure 14.2. Two-stream instability growth rate – symmetric, infinite-width
streams of electrons in an ion background.

                                                                       kvo < Tpe.                                                        (14.12)

When the condition of Eq. (14.12) holds T is purely imaginary – the magnitude of T gives the
growth rate for the two-stream instability. Figure 14.2 shows a plot of jT as a function of kvo/Tpe.
The maximum growth rate (jT = Tpe/23/2) occurs at a wave number of (kvo/Tpe) – (3/8)1/2.
   The physical meaning of Eq. (14.12) is clear if we square both sides and multiply by me/2:

                                                          mevo
2/2 < e2 nio (8/2B)2/,o.                                          (14.13)

The left-hand side of Eq. (14.13) is the kinetic energy of electrons in equilibrium. The right-hand
side equals an electrostatic potential energy eNmax. The quantity Nmax is the electrostatic potential
that would occurs if there were no electrons in a region of width (2)1/2/k, roughly equal to one-
fourth the perturbation wavelength:

                                                            Nmax ~ enio (8/2B)2/,o.                                               (14.14)

Electron bunching depends on how much the space-charge electric fields decelerate electrons.
Equation (14.14) states that an instability grows for a perturbation wavelength where the
resulting space-charge imbalance significantly changes the electron velocity. The growth time
for the instability is very short – for most laboratory plasmas the plasma frequency is high.
   We must turn to computer simulations to get information about the advanced stages and
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(14.15)

saturation of the two-stream instability. Figure 14.3 shows results from a one-dimensional
simulation of the equal stream problem. The program applies periodic boundary conditions in
space over a distance zo. The run of Figure 14.3 uses the parameters no = 1 × 1017 m-3 and vo = 4.2
× 107 m/s (5 keV electrons). The plasma frequency is Tpe = 1.8 \t1010 s-1. From the previous
analysis we expect a maximum growth rate of about Im(T) ~ 6.4 × 109 s-1 or a growth time of
0.08 ns. The perturbation wavelength for maximum growth is 0.025 m. With a computational
region of width zo = 0.059 m we expect to observe about two wavelengths of the perturbation. To
start the run the program randomly distributes two thousand computation particles over a thirty
cell mesh. The instability grows from the initial statistical noise.
   Figure 14.3 shows the electron phase-space distribution at five times after initiation: 0.00 ns,
0.56 ns, 1.12 ns, 1.68 ns, and 2.24 ns. The distribution at 0.56 ns is a good representation of the
linear instability regime. The growth of electron clumps results in harmonic distortions of the
velocity distribution at the expected wavelength. At 1.12 ns the instability has progressed past
the linear regime and the distortion of the velocity distribution is highly anharmonic. At 1.68 ns
the electrostatic potential is strong enough to turn electrons. Positive and negative going streams
mix in phase-space. At 2.24 ns the electron distribution is almost completely thermalized. With
saturation of the instability the electric field amplitude decreases. At late time the streams are
stable although with a considerable loss of beam quality. 
   Next we consider an example that better represents experiments, propagation of a low-density
electron beam through a plasma. Again we limit perturbations to a single dimension. We shall
use nonrelativistic equations to describe motion of the beam electrons and add relativistic
corrections later. There are no applied or beam-generated magnetic fields. In equilibrium the
beam has density nbo and velocity vo. The stationary cold plasma has electron density neo and a
density of immobile ions nio. In equilibrium there is no electric field so nio = neo + nbo. Finally, the
beam density is low, nbo n neo.
   We shall first derive mathematical results from the linearized moment equations and then
discuss their physical implications. There are continuity and momentum equations for both the
beam and plasma electrons. If perturbed quantities have variation exp[j(kz-Tt)] solution of the
linearized moment equations gives: 

where Tpb = (e2nbo/,ome)1/2 and Tpe = (e2neo/,ome)1/2. 
   The two-stream instability results in a transfer of the stored kinetic energy of the beam to the
plasma electrons. In limit of low beam density Section 12.2 implies that excitation of the plasma
creates a wave with frequency near the plasma frequency:

                                                                   T – Tpe.                                                              (14.16)

The beam couples energy to a wave strongly only if the wave phase velocity is close to vo, or 
T/k – vo. We shall look for solutions where:
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Figure 14.3. Particle-in-cell simulation of the non-linear evolution of the two-stream instability.
Symmetric, infinite-width streams of electrons in an ion background. nio = 1017 m-3. vo = 4.2 x 107 m/s.
Length of region shown: 0.059 m. 2000 particles, 30 cell mesh. a) 0.56 ns. b) 1.12. c) 1.68 ns. d) 2.24 ns.
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(14.18)

(14.20)

(14.21)

(14.22)

(14.23)

                                                             T/k = vo + */k.                                                          (14.17)

The quantity * is a small frequency difference, |*| n Tpe. Substituting Eqs. (14.16) and (14.17)
into Eq. (14.15) gives

   We shall solve for * as a function of the wave number k. A detailed analysis of Eq. (14.18)
shows that the imaginary component of * has its maximum value for wave number k = Tpe/vo.
With this conditions the equation assumes the simple form,

                                                               *3 = Tpb
2Tpe/2.                                                       (14.19)

Equation (14.19) is a cubic equation with three solutions:

The first solution has only a real part – it represents a stable oscillation. The second has negative
imaginary part giving a damped oscillation.
   The third solution corresponds to the two-stream instability. Note that the real part of the
frequency shift is negative. This means that the frequency is less than Tpe and that the phase
velocity of the disturbance, [Tpe+Re(*)]/k, is less than the beam velocity. The imaginary part of
the frequency shift is the instability growth rate:

The growth rate is proportional to nbo
1/3. The rate is high even for low beam density. For
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example, Im(T) = 0.1Tpe, when nbo/neo = 0.001.  
   The mechanism for a two-stream instability of a beam in a dense plasma is easy to understand
if we review the dielectric properties of a plasma. Remember that the relative dielectric constant
of a linear and homogeneous medium (,/,o) has the following definition. For an applied electric
field Ea, the total electric field within the medium is:

                                                             E = Ea/(,/,o).                                                           (14.24)

In a plasma the total electric field is the sum of external fields and the contribution from the
plasma or E = Ea + Ep. Suppose we apply a small z-directed electric field,

                                                          Ea exp[j(kz-Tt)],                                                          (14.25)

to an infinite plasma with immobile ions. The linearized moment equations that describe the
plasma response are

                                                            -jTne + ikneo ve = 0,                                                    (14.26)

                                                                  -jTve = -eE,                                                         (14.27)

                                                           jkE = (e/,o) (jkEa - ne).                                               (14.28)

Equation (14.28) is the divergence equation with electric field contributions from the applied
field and the plasma electrons. Combining Eqs. (14.26) through (14.28) gives the following
relationship between the applied field and the field inside the plasma:

                                                             E = Ea/(1 - Tpe
2/T2).                                                 (14.29)

Comparing Eqs. (14.24) and (14.29) we see that the plasma has a frequency-dependent dielectric
constant:

                                                              (,/,o) = 1 - Tpe
2/T2.                                                 (14.30)

At high frequency (T > Tpe
2) the total electric field points in the same direction as the applied

field. In contrast to ordinary solids or liquids the high-frequency dielectric constant of a plasma
is less than unity. Plasmas exhibit very unusual behavior at low frequency (T < Tpe). The total
field within the plasma points in the opposite direction from the applied field. This effect arises
because of overshoot by the oscillating plasma electrons. It is the negative dielectric constant of
a plasma that leads to the two-stream instability.
   Consider a beam with high energy and low density propagating through a plasma. Suppose the
beam has a given density perturbation with wave number k. The variation of beam density
creates an applied electric field in the plasma that oscillates at frequency T = kvo. If 
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                                                                    T = kvo < Tpe,                                                    (14.31)

then the total electric field in the plasma is in the opposite direction from the electric field
created by the beam. As a result the electric force on a beam acts to enhance the bunching,
leading to the growth of density perturbations. Equation (14.31) is the criterion for the growth of
a two-stream instability of a low-density beam in a plasma. 
   Applications of the two-stream instability to plasma heating involve high-power-density
relativistic beams. We have found that the growth of the two-stream instability depends on
changes in the axial velocity of beam particles. Because a relativistic beam travels near the speed
of light variations of kinetic energy cause only small changes of axial velocity. Therefore,
bunching takes place slowly for a relativistic beam. To describe such beams, we must correct the
moment equations to account for this effect. 
   The beam continuity equation expresses conservation of flux independent of the relationship
between force and velocity. Therefore the continuity equation does not change for a relativistic
beam. We must modify the equation of momentum conservation. To begin we shall ignore
changes in momentum density resulting from convection. The relativistic momentum equation
is:

                                                         dpz/dt = d((me$c)/dt = eEz.                                          (14.32)

Expanding the expression in parenthesis gives,

                                            d((me$c)/dt = (mec) [((d$/dt) + $(d(/dt)].                              (14.33)

Using the expression ( = 1/(1-$2)1/2 we can rewrite the bracketed term in Eq. (14.33) as
[(3(d$/dt)]. The modified momentum equation is

                                                             dvz/dt = eEz/((3me).                                                  (14.34)

For small perturbations we can take ( in Eq. (14.34) as approximately constant. In this case the
equation looks like a nonrelativistic equation with the rest mass replaced by the quantity (3me.
The adjusted mass for small perturbations is called the longitudinal mass. In the linear limit we
can apply Eq. (14.15) to a relativistic beam, taking the beam plasma frequency as:

                                                         Tpb = (e2nbo/,o(
3me)1/2.                                                 (14.35)

   As an example consider a 1 kA, 5 MeV electron beam of radius 0.025 m that travels through a
plasma of density neo = 1020 m-3. The beam has ( = 10.8, $ = 0.996 and nbo = 1.1 × 1016 m-3. The
plasma frequency is Tpe = 5.6 × 1011 s-1 while the beam plasma frequency with corrected
longitudinal mass is Tpb = 1.7 × 108 s-1. The wavelength corresponding to the fastest growth rate
is 8 = B$c/Tpe = 1.1 x 10-2 m. Note that the short wavelength justifies the use of the infinite beam
model. The growth rate for the two-stream instability is Im(T) = 108 s- 1. We expect a significant
beam disturbance after a propagation distance of -1.6 m. Experimentally observed instabilities of 
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Figure 14.4. Velocity distributions for a low-density electron beam in a plasma. a)
Velocity distributions for the plasma and a cold beam. b) Velocity distributions for
the plasma and a hot beam - the wave phase velocity is at the point of the maximum
beam distribution slope.

that disorder highly relativistic electron beams usually have a growth more rapid than the
prediction of our simple model. Because of the high longitudinal mass, waves that propagate at
an angle with respect to the beam direction have a higher growth rate. The primary instability of
a relativistic beam involves an electromagnetic wave that causes both longitudinal and transverse
bunching. A general treatment gives the two-stream and filamentation instabilities (Section 13.9)
as limiting cases.
   Mechanisms that reduce the growth-rate of the two-stream instability are important for
applications. Stabilizing effects can help beam propagation or hinder plasma heating. One
quantity that affects the growth-rate is the longitudinal temperature of the beam. For two equal
streams of electrons we found that the velocity spread for stability is large, comparable to the
directed velocity. On the other hand the stabilizing velocity spread for a low-density beam in a
plasma can be much smaller than vo. Figure 14.4 illustrates a velocity space map for a low-
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(14.38)

(14.40)

density beam and plasma electrons. The beam has a non-zero velocity spread ub. 
   For the two-stream instability the growing plasma wave has a phase velocity less than the
beam velocity, T/k < vo. If the velocity difference between the wave and beam is much larger
than ub (Figure 14.4a), then we can apply results that we already derived for a cold beam. The
validity criterion for the cold beam expressions is:

                                                                  |T/k - vo |o ub.                                                      (14.36)

We can explain the result of Eq. (14.36) with the following argument. If the growth time of the
instability is shorter than the time for particles with a velocity spread to disperse over distance
1/k the cold beam results are adequate. The mathematical expression of this condition is:

                                                              1/Im(T) n 1/kub.                                                    (14.37)

We can see that Eq. (14.37) is equivalent to Eq. (14.36) if we remember from Eq. (14.22) that
that Im(T) -~ | T - kvo |. Substituting for the growth rate from Eq. (14.23), the cold beam
expressions hold when: 

   A high beam velocity spread reduces the growth-rate of the two-stream instability. When 
ub/vo o (nbo/neo)1/3 only a fraction of the beam electrons with velocity close to T/k transfer energy
to the wave. Beam electrons that move slower than T/k extract energy from the wave while fast
moving particles contribute to wave growth. As a result, the phase velocity of a growing wave
shifts to a location in velocity space that corresponds to the maximum positive slope of the beam
distribution function (Figure 14.4b). A detailed calculation of the hot beam growth-rate involves
plasma kinetic theory beyond the scope of this section. Instead, we shall quote the main results
of the theory. For a beam with a displaced Maxwell distribution, the wave number for maximum
growth is

                                                               k = T(vo-ub).                                                          (14.39)

The instability growth-rate for a hot beam is:

In Eq. (14.40) the first bracketed term is the cold beam growth rate, while the second term is a
beam temperature correction. The growth rate decreases with beam temperature as Im(T) - 1/ub

2.
   A nonzero beam temperature reduces the growth rate of the two-stream instability but does not
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(14.41)

provide complete stability in a lossless plasma. The instability may be inhibited in a collisional
plasma if the momentum exchange rate for plasma electrons <c satisfies the condition:

   As we add more effects the description of the interactions between a beam and a plasma
rapidly becomes more complex. For example theory shows that the inclusion of a collisional
term to the plasma dielectric response can reduce the two-stream instability growth rate, even for
a cold beam. On the other hand a resistive plasma can support growing slow waves. In this case
the beam may be unstable to the distributed equivalent of the resistive wall instability (Section
14.4). We can also add effects of the plasma electron temperature. Although the plasma
temperature has little effect on the growth rate of relativistic electron beam instabilities, it is
important in calculating two-stream interactions of ions passing through a neutralizing plasma.
The velocity of the high-energy ions may fall within the velocity spread of the plasma electrons.
The analysis is considerably more involved than the moment equation models we have studied.
An accurate description must included interactions between beam and plasma ions and Landau
damping of unstable waves by the plasma electrons. Additional complications arise if we add
effects of finite beam width and applied magnetic fields.  

14.2. Beam-generated axial electric fields

   In most accelerators a narrow beam propagates in a metal vacuum chamber. In the following
three sections, we shall study longitudinal instabilities of beams in surrounding structures. To
describe longitudinal dynamics we must find the axial electric field of finite-width beams in the
presence of induced wall charges. In this section we shall derive expressions for the axial electric
field of narrow beams in uniform cylindrical pipes. Figure 14.5 shows the geometry of the
models. A beam of radius ro moves along the axis of a metal cylinder with radius rw. We shall
limit the treatment to beam density variations in the axial direction, neglecting transverse beam
displacements or changes in width. The magnetic field of a beam with cylindrical symmetry
equals zero on the axis; therefore, changes in the axial velocity of particles result solely from
axial electric fields. 
   In equilibrium a beam with current Io and average axial velocity vo has a uniform line charge
density:

                                                         Qo = Io/vo  (Coulombs/m).                                           (14.42)

The uniform density does not contribute to axial electric fields. Instabilities cause axial
variations of the line charge. In turn, the density perturbations lead to axial electric field 
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Figure 14.5. Narrow cylindrical beam in a pipe with a line charge that varies in space and time,
Q(z,t).

components that can further modify particle dynamics. In the following discussions we shall
concentrate on harmonic components of line charge density with the form

                                                         Qk(z,t) = Qk exp[j(kz-Tt)].                                           (14.43)

We can describe any function Q(z) by a Fourier synthesis of harmonic components. Equation
(14.43) describes a charge-density variation in the stationary frame of reference. In this frame
the disturbance has wavelength 8 = 2B/k and moves at a phase velocity of T/k. 

   We shall study two analytic calculations that give field expressions useful for stability
analyses. The first model describes a narrow nonrelativistic beam. Here we can apply an
electrostatic model because of the low beam velocity. The results have application to bunching
instabilities of heavy ions in linear induction accelerators (Section 14.5). The line charge density
of bunched beams often has a broad range of harmonic components. For this reason we shall
derive field expressions that hold both for short wavelengths (8 # rw) and long wavelengths (8 o
rw). The second model is appropriate for relativistic beams. We shall calculate the complete
electromagnetic fields including the effect of wall resistance. We shall apply the results to the
negative mass instability (Section 14.3) and the resistive wall instability (Section 14.4). The
model treats only long wavelength perturbations (8 o rw).
   First we shall derive the axial electric fields of a perturbed nonrelativistic beam in a perfectly-
conducting pipe. The beam is narrow:

                                                                            ro n rw.                                                      (14.44)

with a velocity much smaller than the speed of light:
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(14.50)

 
                                                                            vo n c.                                                        (14.45)

We shall see that the phase velocity of the charge perturbation is also small, T/k n c. The
condition of Eq. (14.45) justifies the neglect of beam-generated magnetic forces. Also the charge
density and axial electric fields measured in the stationary frame are almost equal to those in the
rest frame of the perturbation. As a result we can carry out an electrostatic field calculation in the
perturbation rest frame and then use the axial electric field values in the stationary frame.
   In the perturbation rest frame moving at velocity T/k the line charge density equals:

                                                                Qk(z)  =  Qk cos(kz).                                              (14.46)

To find the axial electric field resulting from the line charge of Eq. (14.46) we shall solve the
Poisson equation to find Nk(r,z) and calculate MNk/Mz near the axis. The effects of charge in the
vacuum chamber wall enter through the boundary condition:

                                                                       Nk(rw,z) = 0.                                                   (14.47)
  
For a narrow beam we apply the condition:

                                                                           kro n 1.                                                       (14.48)

When the limit of Eq. (14.48) holds the radial electric field on the beam envelope is close to the
value for an infinite length beam:

                                                             Erk(ro,z) – Qk(z)/2B,oro.                                           (14.49)

To simplify the calculation, we compute the electrostatic potential only in the vacuum region
between ro and rw. The effect of the beam space-charge enters through the boundary condition
near the axis:

   Using the method of separation of variables, we seek a solution to the cylindrical Poisson
equation with the form:

                                                    Nk(r,z) = Nk Rk(r) cos(kz).                                                 (14.51)

Substitution in the Poisson equation leads to the following expression for the radial function
Rk(r):
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(14.52)

(14.55)

(14.57)

Equation (14.52) has the general solution,

                                                  Rk(r) = Ak Ko(kr) + Bk Io(kr),                                               (14.53)

where Ko and Io are zero-order modified Bessel functions [see, for instance, M. Abramowitz and
I.A. Stegun, Eds., Handbook of Mathematical Functions (Dover, New York, 1970), Chapter
9]. The functions have the following asymptotic forms near the axis (kr n 1):

                                                  Ko(kr) – -ln(kr/2) - 0.5772,                                                 (14.54)

                                                               Io(kr) – 1.

The boundary conditions of Eqs. (14.47) and (14.50) give values for the constants Ak and Bk. We
can find the derivatives of the potential near the axis from the asymptotic forms of Eq. (14.54).
The resulting expression for electrostatic potential is

   In the narrow beam limit the radial electric field changes considerably over the beam cross
section while the axial field remains almost constant. Therefore the average axial electric field
within the beam is almost equal to the derivative of the potential at the envelope:

                                                           Ez(0,z) – –MN(ro,z)/Mz.                                               (14.56)

Inserting Eq. (14.55) into Eq. (14.56) gives the expression:

   We can check the validity of the model by writing Eqs. (14.55) and (14.57) in the long
wavelength limit. Using the asymptotic forms for the modified Bessel functions, we find:

                                               Nk(ro,z) – (Qk/2B,o) ln(rw/ro) cos(kz),                                    (14.58)
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Figure 14.6. Deviation of the electrostatic potential and axial electric field of a beam
with a harmonic line charge perturbation from the long wavelength predictions.

(14.61)

and

                                              Ezk(ro,z) – (Qk/2B,o) ln(rw/ro) k sin(kz).                                  (14.59)

when kr n 1. Comparison of Eq. (14.58) with Eq. (5.68) shows that Nk(ro,z) approaches the value
of potential on the edge of an infinite-length beam with line charge density Qkcos(kz). The
electric field is simply the axial derivative of Eq. (14.58). We can write Eq. (14.59) in a useful
form that describes the axial electric field for arbitrary charge perturbation Q(z):

                                                  Ez(ro,z) – -dQ/dz [ln(rw/ro)/2B,o].                                      (14.60)

Equation (14.60) is valid if all components in the Fourier decomposition of Q(z) satisfy the
condition krw n 1. 
   Figure 14.6 shows the ratio of Nk(ro,z) and Ek(ro,z) for the complete model [Eqs. (14.55) and
(14.57)] divided by the values for an infinite-length beam [Eqs. (14.58) and (14.59)]. The figure
plots the quantity: 
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(14.62)

(14.63)

(14.64)

as a function of krw for rw/ro = 5. The error in the infinite beam model exceeds 10% when 8 #
7rw.
   As an applications example we shall use Eq. (14.60) to find the properties of axial space-
charge waves on a narrow beam. These waves are similar to the plasma waves discussed in
Sections 12.2 and 14.1. The main difference is that the flow of particles extends over a finite
cross section. We shall calculate the wave properties in the beam rest frame and then make a
transformation to the stationary frame. We assume that perturbed quantities are small and use
linearized equations. In the rest frame the charge continuity equation is:

The quantities Q(z,t) and v(z,t) are small changes in the line charge density and average axial
velocity. Following Eq. (14.42) Io/vo is the equilibrium line charge density. For long wavelength
perturbations Eq. (14.60) leads to the following momentum equation for a cold beam:

The quantities q and mo are the charge and rest mass of beam particles. 
   With perturbed quantities that vary as Q, v ~ exp[j(kz ±  Tt] Eqs. (14.62) and (14.63) give the
dispersion relationship:

The quantity K is the generalized perveance of the nonrelativistic beam,

                                                          K = qIo/2B,omovo
3.                                                      (14.65)

Equation (14.64) shows that the phase velocity of a wave with 8 o rw is independent of the
wavelength. In this respect, the waves differ from space-charge waves in an infinite width beam
(Section 12.2). Figure 14.7 illustrates the nature of axial space-charge waves on a filamentary
beam in a pipe for arbitrary values of 8. The plot shows the dimensionless frequency, Tro/voK1/2

as a function of kro. A small value of kro means that the wavelength is much larger than the beam
radius. Figure 14.7 shows that waves with 8 o ro have a frequency independent phase velocity – 
following the dispersion relationship of Eq. (14.64). For kro $ 1 the perturbation wavelength is
comparable to or less than the beam radius. In this limit the effect of induced wall charge is
small and the waves behave like those in an infinite-width beam. The angular frequency
approaches the constant value Tb, the beam plasma frequency of Section 12.3. 



Longitudinal instabilities Charged Particle Beams

693

(14.66)

Figure 14.7. Dispersion relationship for axial space-charge waves on a beam. 

   The Doppler-shifted phase velocity of long-wavelength space-charge waves in the accelerator
frame is 

Equation (14.66) shows that there are fast and slow space-charge waves. For most beams the
generalized perveance is much smaller than unity, K n 1. Therefore the phase velocities of the
waves are close to the beam velocity. The slow wave is a negative-energy wave – the
longitudinal energy of the beam decreases as wave amplitude increases. Therefore dissipative
forces cause growth of the slow wave amplitude. Section 14.4 describes this effect.
   To complete the section we will derive expressions for the axial electric field of relativistic
beams. The approach is different from the preceding electrostatic calculation. We must include
the full set of Maxwell equations to represent the effects of time-variation of the beam magnetic
field. To prepare for the treatment of resistive wall interactions in Section 14.4 we include a low
resistivity in the vacuum chamber wall.
   Again, consider a narrow beam with equilibrium line charge density Io/$c. In the stationary
frame, the perturbed line charge density equals:

                                                       Qk(r,z,t) = Qk exp[j(kz-Tt)].                                          (14.67)
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In the stationary frame there are significant values of both the beam-generated electric and
magnetic fields. The perturbed beam generates a toroidal magnetic field B2 and electric fields Er
and Ez. The magnetic field contributes an inductive component to the on-axis electric field Ez. 
   We limit perturbations to long wavelength and use field expressions for an infinite-length
beam. For relativistic beams we must be careful when we define the long-wavelength limit. In
the perturbation rest frame where there are only beam-generated electric fields the infinite beam
approximation holds if the axial electric field is much smaller than the radial field. In other
words the perturbation wavelength in the rest frame is much larger than the wall radius, 

                                                                      8' o rw.                                                            (14.68)

We apply a Lorentz transformation to express the condition of Eq. (14.68) in terms of stationary
frame quantities:

                                                                8 = 8'/( o rw/(.                                                     (14.69)

   When the condition of Eq. (14.69) holds the radial component of electric field outside the
beam (r > ro) is

                                              Er(r,z,t) – (Qk/2B,or) exp[j(kz-Tt)] .                                      (14.70)

The toroidal magnetic field results from the beam current and the displacement current of
changing electric fields. The relevant Maxwell equation is

                                                       L × B = (1/c2) ME/Mt + :oj.                                             (14.71)

The radial component of Eq. (14.71) is:

                                                           - MB2/Mz = (1/c2) MEr/Mt.                                             (14.72)

If all quantities vary as exp[j(kz-Tt)] the toroidal magnetic field is related to the radial electric
field by:

                                                                    B2 = TEr/kc2.                                                     (14.73)

   The boundary condition for the axial electric field at the vacuum chamber is Ez = 0 if the wall
is a perfect conductor. With resistivity the flow of return current creates an axial voltage along
the wall. Because the wall excludes high-frequency magnetic fields, the surface current is
proportional to B2(rw,z,t). The boundary condition on electric field at a resistive wall is given in
most introductory texts on electromagnetism [see, for instance, D.K. Cheng, Field and Wave
Electromagnetics (Addison-Wesley, Reading, 1989), p. 369]. The relationship in MKS units for
a wall with volume resistivity D is:
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(14.76)

Figure 14.8. Path of the circuital integral to derive Eq. (4.76) 

                                               Ez(rw,z,t) = - (*T/2) (j - 1) B2(rw,z,t).                                    (14.74)

The quantity * in Eq. (14.74) is the skin depth for penetration of magnetic fields into the
conductor,

                                                                   * = (2D/:oT)1/2.                                                  (14.75)

   We can combine Eqs. (14.73) and (14.74) with Faraday's law to yield the axial electric field at
the edge of a thin beam. We carry out a circuital integral of electric field around the path of
Figure 14.8 and equate the result to the rate of change of included toroidal magnetic field flux.
The path consists of a radial segment from the wall to the beam at z, an axial segment of
length)z along the envelope of the beam, a radial segment out to the wall, and then a return to
the starting point along the wall. The mathematical expression of Faraday's law is

The third term on the left-hand side is the quantity we seek. The wall integral of the fourth term
uses Eq. (14.74). Equation (14.73) was applied to rewrite B2 in terms of Er in the fourth term and
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(14.77)

(14.78)

(14.780

in the expression on the right-hand side. If we divide all terms of Eq. (14.76) by )z and take the
limit where )z approaches zero, the first two terms on the left-hand side reduce to

   Performing the integrals we find the following approximate expression for Ez on the beam
envelope:

The quantity $w is the ratio of the phase velocity of the perturbation to the speed of light,

                                                                  $w = T/kc.                                                           (14.79)

Most vacuum chambers for beam transport have low resistivity; therefore, the second term in
brackets of Eq. (14.78) is much smaller than the first. Dropping the imaginary part of the second
term, the electric field expression has the simple form: 

   Equation (14.80) has a straightforward physical interpretation. The first term on the right-hand
side is the electric field that arises from the combined effects of space-charge and wall charge in
a perfectly conducting chamber. The expression is the same as Eq. (14.60) except for the
relativistic factor (1-$w

2) = 1/(w
2. The origin of the relativistic correction is evident if we

consider a coordinate transformation between the rest frame of the perturbation and the
stationary frame. A perturbation with charge density Q(z) and wave number k in the stationary
frame has charge density Q(z)/(w and wave number k/(w when observed in a frame moving at
velocity $wc. If we write the rest-frame expression for electric field in Eq. (14.60) in terms of the
stationary frame quantities, we must include a factor of 1/(w

2. In transforming the fields back to
the stationary frame the magnitude of the axial electric field does not change [Eq. (1.51)].
   The second term on the right-hand side of Eq. (14.80) represents the contribution of wall
resistivity to Ez. We can derive this term directly from physical arguments. The condition that
there is no beam-generated magnetic field outside the vacuum chamber means that the
magnitude of the wall return current equals that of the beam current in the long wavelength limit.
The return current associated with a line charge perturbation is



Longitudinal instabilities Charged Particle Beams

697

Figure 14.9. Mechanism of the negative-mass instability. 

                                                                 Ii =  -Q(z,t)$wc.                                                    (14.81)

We can write the resistive component of the axial field in Eq. (14.80) as 

                                                           Ez(ro,z) – Ii (*T/4B,oc2).                                           (14.82)

An alternative form for the quantity in parentheses on the right-hand side of Eq. (14.82) is

                                                             *T/4B,oc2 = D/2Brw*.                                             (14.83)

We recognize that the right-hand side of Eq. (14.83) equals the resistance per unit axial length of
the cylindrical chamber. Therefore, the resistive electric field component equals the wall current
multiplied by the wall resistance per unit length.

           

14.3. Negative mass instability

   The negative mass instability is a major concern for high-current electron beams contained in
recirculating accelerators. Figure 14.9 illustrates the physical mechanism of the instability.
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(14.85)

Electrons follow closed orbits defined by a bending magnetic field and focusing forces. The
presence of the negative mass instability depends on the time J for electrons to circulate around
the machine. The value of J depends on the electron momentum p. For nonrelativistic electrons,
higher momentum corresponds to increased velocity and a lower value of J. In contrast the
velocity of relativistic electrons varies little with momentum. For these particles the change in
rotation period with momentum results mainly from the change in the average orbit radius in the
bending magnetic field. Relativistic electrons with higher momentum follow a longer path and
therefore have a higher value of J. 
   Suppose the beam density in a circular accelerator is higher at one azimuthal location. The
perturbed space-charge produces electric fields along the beam axis that accelerate electrons on
the forward side of the bunch and decelerate them on the trailing side. The circulation time of
relativistic electrons on the leading edge increases; therefore, these electrons move backward in
the beam. The space-charge fields cause an increase in the amplitude of the density perturbation
as the beam circulates. We apply the term negative mass because the electrons appear to move in
the opposite direction from the force. The instability breaks the beam into azimuthal clumps
resulting in emittance growth or loss of particles. 
   To develop a mathematical model for the negative mass instability, we must review some
properties of particle orbits in circular accelerators [CPA, Chap. 15]. Suppose the beam consists
of relativistic particles with charge q, average energy ((-1)moc2, average momentum p and
average velocity $c. The particles move in closed orbits around an accelerator or storage ring.
For simplicity we treat circular orbits with average radius R and neglect particle acceleration
over the growth time of the instability. Momentum is related to the orbit radius by 

                                                        R = (mo$c/eBo = p/eBo.                                                (14.84)

The quantity Bo is the vertical bending field that defines the circular orbits.
   A variation of momentum *p about p causes a change in the orbit radius *R. To represent this
change we shall introduce the parameter (t, the transition gamma. It equals the square root of the
ratio of the relative momentum charge to the relative change in gyration radius:

The physical meaning of the transition gamma will become apparent later in the derivation. The
value of (t depends on the properties of the focusing system. For example a uniform vertical
magnetic field focuses particles in the horizontal direction. From Eqs. (14.84) and (14.85) we
can see that (t = 1. 
   As another example suppose the beam moves through a strong focusing system, such as a
quadrupole lens array. The forces of the lenses point toward the main beam axis. If *R is the
horizontal distance from the axis, we can represent a general linear focusing force in the
horizontal direction as:

                                                           Fr = -(moTr
2 *R.                                                        (14.86)
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where Tr is the betatron oscillation frequency in the lens array. Making a balance between the
force of Eq. (14.86), the force of the bending field and the centrifugal force, we find the
following expression for the change of average orbit radius with a change of momentum:

                                                  *R/R = (*p/p) (1 + Tr
2/To

2).                                               (14.87)

The quantity To is the circulation frequency in the accelerator, 

                                                                 To = $c/R.                                                           (14.88)

From Eq. (14.87) we can identify (t for a strong focusing system as 

                                                    (t = 1 + (Tr/Tg)2 = 1 + <r
2.                                                (14.89)

The quantity <r is the number of betatron oscillations in the focusing system per revolution. The
condition, 

                                                                    <r > 1,                                                               (14.90)

defines strong focusing. The opposite limit holds for weak focusing. We can carry out a similar
derivation to show that the transition gamma for a betatron type field [CPA, Chapter 7] with
field gradient n is:

                                                                   (t = 1 - n.                                                           (14.91)

   To describe the negative mass instability, we must find an expression that gives the transit time
around the accelerator as a function of the momentum. The circulation time equals:

                                                                  J = 2BR/$c.                                                         (14.92)

The differential of Eq. (14.92) is:

                                                           *J/J = *R/R - *$/$.                                                   (14.93)

The momentum equals

                                                                   p = ($ moc.                                                        (14.94)

The differential of Eq. (14.94) is:

                                        *p/p = *(/( + *$/$ = *$/$(1-$2) = (2 (*$/$).                             (14.95)

Combining Eqs. (14.85), (14.93) and (14.95) we find that:
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(14.96)

(14.99)

Equation (14.96) illustrates the physical meaning of (t. When ( < (t the main result of an
increased momentum is an increased velocity – the particle takes less time to complete a circuit.
A positive value of *p gives a negative value of *J. Above transition, (( > (t) particles with
higher momentum take longer to complete a revolution because their orbit radius is larger.
Relativistic beams with kinetic energy above the transition energy ((t-1)moc2, are subject to the
negative mass instability..
   We can develop a moment equation model that describes the linear regime of the negative
mass instability with some limiting assumptions:

     1. A beam of radius ro propagates in a toroidal vacuum chamber with minor radius rw. The
beam is thin (ro n rw) and the vacuum chamber has small curvature (R o rw).
     2. The wavelength of density clumps along the propagation direction is much larger than rw,
or krw n 1.
     3. The beam displacement *R is much smaller than rw.
     4. The growth time for the instability is much longer than the circulation time. We can
characterize the relative velocity of an axial segment by taking an average over many transits.

   The model describes the line density and average velocity of the beam observed at a point in
accelerator frame of reference. In this frame the beam has line density No m-1 in equilibrium. We
take small perturbations about this value:

                                                             n(z,t) = N(z,t) - No,                                                  (14.97)

where n n No. The z axis lies along the direction of beam propagation. The velocity V(z,t) refers
to the relative motion of a segment within the beam averaged over many transits. It varies about
the equilibrium value $c:

                                                            v(z,t) = V(z,t) - $c.                                                    (14.98)

The linearized one-dimensional continuity equation is:

    The equation for changes in axial velocity involves contributions from convection,
longitudinal velocity dispersion and space-charge electric fields. We are familiar with the first
two effects. To derive the equation we must relate changes in the time-averaged velocity in the
circular accelerator to the axial electric field. Following Section 14.2 the electric field along the
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(14.103)

(14.105)

(14.106)

direction of propagation is proportional to the derivative of the line density. With the conditions
that 1) krw n 1, 2) the perturbation moves at same velocity as the beam and 3) the wall is highly
conductive, we can adopt Eq. (14.80):
 
                                            Ez – - (q/2B,o) [ln(rw/ro)/(2] Mn/dz.                                        (14.100)

   The average circulation velocity around the accelerator depends on changes in both the actual
velocity and the orbit radius. Suppose that we mark a particular segment of the beam that passes
the observation point at t = 0. Then we note the time that elapses for one revolution around the
machine, J+*J. The average circulation velocity is

                                                       V + *v = 2BR/(J+*J).                                                  (14.101)

If *J positive the segment moves backward compared with the rest of the beam. The differential
change in circulation velocity is

                                                          *v = -$c (*J/J).                                                         (14.102)

From Eqs. (14.96) and (14.102) we can relate the change in circulation velocity to momentum
changes. Dividing both sides by a small interval leads to the equation:

With a space-charge electric field the momentum of a relativistic particle changes according to

                                                             dp/dt = qEz.                                                            (14.104)

Incorporating Eq. (14.104) we find the following equation for the time rate of change of average
beam velocity observed at a point:

   Following the usual procedure of linear analysis we take variations of n, v and Ez of the form
exp[j(kz-Tt)]. Combining Eqs. (14.99), (14.100) and (14.103) gives the following dispersion
relationship:
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(14.108)

(14.109)

We can simplify Eq. (14.106) by introducing the Budker parameter (Section 12.7), < =
e2No/4B,omoc2 and limiting k to values that give an integral number of wavelengths around the
machine circumference: 

                                                                      k = M/R.                                                        (14.107)

The quantity M is an integer.
   For a laminar beam (<*v2> = 0), the negative mass dispersion relationship is:

In recirculating accelerators perturbations grow in time rather than space. Therefore we assume
that k is a real number and seek imaginary components of T. The solution of Eq. (14.108) for <
n 1 is:

Equation (14.109) has the following interpretation. The first term on the right-hand side is the
real part of the frequency. Density perturbations pass a stationary observation point at frequency
MTo. The second term has an imaginary value when the beam kinetic energy exceeds the
transition energy, ( > (t. The imaginary solution with a negative sign corresponds to a growing
perturbation.
   To illustrate the result consider the growth rate for the negative mass instability in a high-
current betatron experiment. To contain intense electron beams these devices use strong focusing
lenses. Suppose the properties of the focusing system give a transition energy of 5 MeV ((t =
10.8). We shall calculate the instability growth-rate for 6 MeV beam (( = 12.7) at a current of 1
kA. The line density is No = 2.1 × 1013 m-1, giving a value of the Budker parameter < = 0.059. We
take R = 1 m, rw = 0.05 m and ro = 0.01 m. The fastest growth occurs at the maximum value of
M. The long wavelength model holds only if k < 1/rw. Therefore, a good guess for the maximum
value of azimuthal mode number is

                                                             M ~ R/2rw = 10. 

Substituting values in Eq. (14.109) gives Ti = 1.4 × 106 s-1. The linear growth time is 710 ns,
equal to thirty-four beam revolution of 21 ns each. 
   The example illustrates that the negative mass instability can grow rapidly. It results in
increased emittance in both the longitudinal and transverse directions. For high-current beams,
the spreads of momentum and radius can be large, leading to beam loss on the walls. The success
of high-current circular electron accelerators hinges on suppressing the instability. One 



Longitudinal instabilities Charged Particle Beams

703

Figure 14.10. Particle-in-cell computer simulation of the negative-mass instability in a high-
current betatron with alternating-polarity solenoidal lenses. Calculation for the M = 20 mode for a
ring with 20 lenses. Initial beam radius, 2 cm. Figures show particle distributions late in time
when the beam is stabilized by axial velocity spread. Instability causes an enhanced energy
spread and an increased RMS beam radius. a) Drifting beam, ( = 7. b) Drifting beanm, ( = 12.
(Courtesy, T. Hughes, Mission Research Corporation.)

(14.110)

stabilizing effect is a longitudinal velocity spread. Eq. (14.106) shows that the growth rate is
zero when

For relativistic beams with velocity close to the speed of light it is more useful to write a
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(14.112)

criterion in terms of the momentum spread rather than the velocity spread. Applying Eq. (14.95)
we find that

                                                     <*v2> = <*p2>/((3mo)2.                                                 (14.111)

Substituting in Eq. (14.110) the momentum spread for stability is

For the parameters of the example the fractional momentum spread is *p/p = 0.076,
corresponding to a kinetic energy spread of about 0.45 MeV. Although the value is high Eq.
(14.87) shows that the beam could be contained within an acceptable horizontal width by a
strong focusing system. An alternative method to suppress the negative mass instability is to
neutralize the beam with a plasma. As described in Section 12.4, the plasma electrons move
rapidly to cancel electric fields that result from the nonuniform beam density. Plasma
stabilization has been observed in experiments on high-current electron rings.
   For a comprehensive treatment of the negative mass instability we must turn to computer
simulations. Figure 14.10 shows a calculation for a betatron with a strong focusing system
consisting of an array of solenoid lenses (Section 10.9). Additional stabilizing effects include the
a spread in the gyration period from non-linear focusing forces and the finite beam width. The
simulation includes the three-dimensional variation of transverse focusing forces in the toroidal
geometry. The accelerator has twenty lenses around a ring with major radius of R = 1 m. The
initial radius of the 10 kA beam is 0.02 m. The simulation follows the fastest growing mode with
M = 20. The figure shows the nonlinear growth and saturation of the instability for a beam
segment occupying one-twentieth of the circumference. The instability saturates when the
longitudinal momentum spread reaches a value consistent with Eq. (14.112).

14.4 Longitudinal resistive wall instability

   We saw in Section 14.2 that filamentary beams in a pipe may carry slow space-charge waves.
In the presence of resistive dissipation these negative-energy waves grow in amplitude. In this
section we shall study longitudinal instabilities of a beam in a resistive pipe or a cavity array
with a resistive component of impedance. We shall develop two models: 1) a moment equation
description for nonrelativistic beams that illustrates the mechanism of the instability and 2) a
complete solution of the Vlasov equation for relativistic beams. The second model includes
contributions of the beam velocity distribution. It yields practical information and also gives us
an introduction to advanced methods of beam theory.
   To develop the moment equation model we shall adopt several simplifying assumptions. The 
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Figure 14.11. Geometry to describe the resistive wall instability of a cylindrical, non-relativistic beam in
a linear pipe.

beam consists of nonrelativistic particles that initially have the same axial momentum. We shall
neglect the effects of axial velocity spread and space-charge forces. These conditions apply to
electron beams in resistive-wall microwave amplifiers and to ions in induction linear
accelerators. In both cases resistive loading by the structure is high. The space-charge electric
fields in the beam are much smaller than the electric fields generated by the flow of return
current in the wall. 

   Figure 14.11 shows the geometry of the calculation. A narrow cylindrical beam of radius ro
propagates in a pipe of radius rw. In equilibrium the beam has current Io and all particles move at
axial velocity vo. The particle line density is:

                                                                  No = Io/qvo.                                                        (14.113)

We shall concentrate on long wavelength perturbations, 8 o rw. For long 8 the distribution of
return current in the wall has equal magnitude but opposite direction to that of the beam. If we
allow axial variations of beam current I(z) then the wall current is approximately -I(z). The
resistance per length of a pipe with volume resistivity D, is:

                                                             R = D/2Brw*(T).                                                    (14.114)

The quantity * is the skin depth of Eq. (13.42), a function of frequency. Note that T is the
frequency of current variations observed in the stationary frame of reference. Equation (14.114)
holds if the wall thickness is larger than *. The flow of return current through the wall creates an
axial electric field. In the long wavelength limit the axial electric field is almost uniform over the
cross-section of pipe:

                                                             Ez(r,z) – -I(z)R.                                                     (14.115)
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(14.118)

(14.119)

(14.123)

   We shall use linear equations, valid for small amplitude oscillations. Consider small variations
of line density n and axial velocity v, where n n No and v n vo. The beam current varies as

                                                              I(z) = Io + i(z),                                                      (14.116)

where i n io. For a stability analysis we need to find only the time-varying portion of the axial
electric field: 

                                                                 ez = - i(z)R.                                                        (14.117)

The linear equations of continuity and momentum conservation for the cold beam are:

and

A complete set of equations requires an expression for i in terms of n and v. The total current is: 

                                                 Io + i(z) = q [no + n(z)][vo + v(z)].                                     (14.120)

Because n and v are small quantities. the expanded form of Eq. (14.120) is: 

                                                        i(z) – qnov(z) + qvon(z).                                              (14.121)

   We shall find a solution of Eqs. (14.118), (14.119) and (14.121) for a linear transport system
with a steady-state beam. The solution, appropriate for a resistive wall amplifier, oscillates
harmonically in time but may grow with distance from the injection point. All first order
quantities vary as 

                                                          n,v,i ~ exp[j('z-Tt)].                                                (14.122)

In Eq. (14.122) T is a real number while ' may be complex. Substitution in Eqs. (14.118) and
(14.121) gives an expression for the perturbed current:
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(14.125)

(14.127)

(14.128)

(14.129)

(14.131)

Equation (14.123) incorporates the scaling wavenumber ko:

                                                              T/ko = vo.                                                              (14.124)

A perturbation with wavenumber ko and frequency T moves at the same velocity as the beam.
   Combining Eqs. (14.117), (14.119) and (14.123) we find the following dispersion relationship:

Reviewing the derivations of previous sections, we expect that the phase velocity of the
perturbation is close to the beam velocity. We shall define a small quantity . to represent the
deviation in wave number: 

                                                      . = ' - ko,  ( |.| n ko ).                                                  (14.126)

The quantity . may have real or imaginary parts. The real part represents a difference between
the beam velocity and the perturbation phase velocity, corresponding to fast or slow waves. The
imaginary part determines whether the waves damp or grow in space.
   Substituting from Eq. (14.126), Eq. (14.125) reduces to

The complex square root gives two solutions for Eq. (14.127):

The quantity C is the growth constant, 

                                                      C = (qIokoR/movo
2)1/2.                                                     (14.130)

Substituting the first solution for . in Eq. (14.122) gives a wave that grows in space. The waves
have phase velocity:

The velocity of Eq. (14.131) is less than vo; therefore, the growing solution is a slow wave. The



Longitudinal instabilities Charged Particle Beams

708

(14.133)

growth length is:

                                                            8g = (2)1/2/C.                                                           (14.132)

   The growth constant has a straightforward physical interpretation. We can rewrite C/ko as

The quantity qIoR/ko is the average kinetic energy lost by the beam to the wall resistance over a
distance 1/ko. In a practical microwave amplifier the energy loss must be small compared with
the total kinetic energy of beam, movo

2/2. The implication is that C/ko n 1. Equation (14.131)
shows that the phase velocity of the slow wave is close to the beam velocity for a small value of
C/ko.
   The results of the cold beam model are valid if the beam has a small axial velocity spread:

                                                           )vz/vo n C/ko.                                                           (14.134)

The limit of Eq. (14.134) usually holds for beams from electrostatic injectors. We can also find
conditions where it is possible to neglect space-charge forces. In the long wavelength limit, the
axial electric field resulting from a current perturbation i is [Eq. (14.59)]:

                                                        ez – (koi/2B,ovo) ln(rw/ro).                                          (14.135)

The electric field component from wall resistance is

                                                                   ez = - iR.                                                           (14.136)

Space-charge forces are small when the expression of Eq. (14.135) is much smaller than that of
Eq. (14.136):
 
                                                      R o (ko/2B,ovo) ln(rw/ro).                                               (14.137)

   As an example suppose a 10 A, 10 MeV carbon beam accelerates in an induction linear
accelerator. Equation 14.137 implies that the contribution from space-charge fields is small if R
> 20 kS/m. A typical acceleration gap has a voltage of 100 kV and an AC shunt impedance to
ground of 5 to 10 kS. Depending on the number of gaps per meter, the neglect of space-charge
effects is marginally valid.
   We need a more detailed model to treat resistive wall instabilities of high-energy beams in
storage rings. We must include relativistic effects in calculations of the particle dynamics and
electromagnetic fields. Furthermore the resistance per unit length is low; therefore, space-charge
forces play a dominant role. Finally we must include a detailed description of the longitudinal 
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Figure 14.12. Coordinate system to analyze the resistive wall instability for a relativistic beam in a
circular accelerator.

velocity distribution. The resistive wall instability is different from instabilities that we have
already studied. The instability depends on the growth of a space-charge wave with a phase
velocity less than the beam velocity. Growth or damping of the wave depends sensitively on the
axial velocity distribution of particles near the phase velocity. This effect is called Landau
damping. To address the process we must carry out a direct solution of the Vlasov equation.
   Before beginning a study of the resistive wall instability it is useful to review why we did not
need information about the axial velocity distribution in previous sections. For transverse
instabilities such as the hose instability of Sections 13.7 and 13.8 the spread in axial momentum
had little effect on the transport of kinetic energy from the axial to the transverse direction – the
stabilizing effect was indirect through phase-mix damping of betatron oscillations (Section 13.3).
As a result the growth rate of transverse instabilities depends on the mean-square momentum
spread with only a weak dependence on the shape of the axial momentum distribution. In the
negative mass instability (Section 14.3) the perturbation of the line-charge density moved at the
same velocity as the beam. In a velocity-space map, the phase velocity was centered in the beam
distribution. The perturbations of the negative mass instability were not slow waves with a
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(14.142)

growth rate dependent on local variations of the velocity distribution. For this reason, the axial
velocity spread enters only as a global pressure force that resists bunching.
   To understand stabilization of the resistive wall instability, we shall follow the theory of Neil
and Sessler [V.K.Neil and A. Sessler, Rev. Sci. Instrum. 36, 429 (1965)]. The model applies to a
continuous beam in a storage ring. Figure 14.12 shows a polar coordinate system for a generic
circular accelerator. The toroidal transport tube has a major radius R and a wall radius rw. The
vacuum chamber has a low wall resistivity and small curvature:

                                                                      R/rw o 1.                                                       (14.138)

In the limit of Eq. (14.138) we can adopt the field expressions for a beam in a straight pipe
(Section 14.2):
   If the instability growth time is much longer than the particle circulation time we can take
perturbations that have a uniform harmonic variation in position but grow in time. All perturbed
quantities are proportional to 

                                                                exp[j(kR2 - St),                                                 (14.139)

where S can have both real and imaginary parts. The allowed beam perturbations in a circular
machine are periodic over angle 2B. The periodic condition limits the possible values of k:

                                                      2B/k = 2BR/M,     M = 1,2,3,...                                     (14.140)

Variations of the beam line charge have the form

                                                         Q(2,t) = Q1 exp[j(M2-St)].                                       (14.141)

From Eq. (14.80) the amplitude of the azimuthal electric field on the axis of the vacuum
chamber resulting from the line charge variation of Eq. (14.141) is: 

The quantity $w is the phase velocity of the perturbation, equal to the ratio of the real part of the
frequency to the wavenumber. Note that Eq. (14.142) holds only for long wavelength
perturbations in systems with small curvature. We assume that horizontal displacements of
particles from the pipe axis are small; therefore, Eq. (14.142) gives an approximation for the
axial field acting on all particles in the beam cross section.
   We will combine (Eq. 14.142) with the Vlasov equation to find a dispersion relationship that
gives the complex frequency S as a function of the mode number M and the properties of the
beam and accelerator. In the one-dimensional analysis we characterize particle orbits by their
angle 2 and momentum in the azimuthal direction. We must choose variables for the Vlasov
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(14.144)

(14.146)

equation carefully. Remember that the derivation of the equation followed from the principle of
phase area conservation for a collisionless distribution. The principle holds only if the phase
space coordinates are canonical variables [see, for instance, H. Goldstein, Classical Mechanics
(Addison-Wesley, Reading, 1965), Section 2.6]. For example x and px are canonical variables in
a Cartesian coordinate system. 
   In we use polar coordinates with position variable 2, then the canonical momentum is the
canonical angular momentum, P2, defined by:

                                                            P2 = (morv2 + qrA2.                                               (14.143)

The first term on the right-hand side of Eq. (14.143) is the product of the orbit radius and the
ordinary momentum in the azimuthal direction, p2 = (mov2. If displacements in the storage ring
are much smaller than the major radius, then r – R. The second term on the right-hand side
involves the azimuthal vector potential A2. We can write the vector potential in terms of the flux
of vertical field contained within the particle orbit:

In Eq. (14.144) Bz arises mainly from the vertical magnetic that bends particles in a circular
orbit. Changes of magnetic flux cause betatron acceleration – this process has a negligible effect
in high-energy storage rings.
   We shall study distributions with small variations of particle canonical angular momentum
about a mean value Po. The variable W represents deviations from the mean:

                                                            W = 2B(P2 - Po).                                                     (14.145)

Equation (14.145) includes a factor of 2B for compatibility with the notation of the Neil and
Sessler model. The beam distribution function, f(2,W,t), depends on the azimuth, the error in
canonical angular momentum and the time. The Vlasov equation for azimuthal motion is

Equation (14.146) has the following meaning: the value of f remains constant along the orbit of a
particle in (2,W) space defined by (d2/dt) and (dW/dt).
   We shall solve the Vlasov equation in the limit that the distribution function has small
variations about an equilibrium. We divide the function into parts representing the equilibrium
and a perturbed part, f = fo + f1 where |f1| n |fo|. In equilibrium the beam is uniform in azimuth.
With no instability applied forces do not depend on 2, and W is a constant of particle motion. We
know that any function of W is a valid equilibrium distribution. Combining this fact with the
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(14.149)

(14.151)

assumed form for beam perturbations [Eq. (14.139)], we can write the distribution function as: 

                                      f(2,W,t) = fo(W) + f1(W) exp[j(M2 - St)].                                     (14.147)

Substituting Eq. (14.147) in Eq. (14.146) gives:

                                     [jSf1(W) - jM(d2/dt)f1(W)] exp[j(M2-St)]                                    (14.148)

                             = (dW/dt)[Mfo(W)/MW] + [Mf1(W)/MW] exp[j(M2-St)].

Dropping the small second term in braces on the right-hand side of Eq. (14.148), the linearized
Vlasov equation takes the form:

Note that the quantity d2/dt in the denominator depends on W – the circulation time for a particle
is a function of its canonical angular momentum.
   For a self-consistent solution we must relate dW/dt to the azimuthal electric field created by the
perturbed particle distribution. Taking the time derivative of Eq. (14.145) and substituting from
Eq. (14.143) we find

                       dW/dt = 2BR (dp2/dt + q dA2/dt) = 2BqRE2 + 2BRq (dA2/dt).                   (14.150)

Changes in the ordinary momentum p2 result from the azimuthal electric force eE2. The second
term on the right-hand side represents betatron acceleration from a changing magnetic flux. We
assume that the applied magnetic field is constant during the growth of the instability. Also we
note that the vertical field created by the circulating beam current is much smaller than the local
fields created by perturbation. As a result we drop the second term on the right-hand-side of Eq.
(14.150).
   We integrate the Vlasov equation over W to obtain a dispersion relationship. Following the
normalization convention introduced in Section 2.5, the integral of fo over W gives the total
number of particles in the accelerator. If the equilibrium line density is No, then

To simplify the form of results we define a normalized equilibrium distribution function go(W)
that has an integral of unity:

                                                    go(W) = fo(W)/2BRNo.                                                     (14.152)
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(14.153)

(14.154)

(14.156)

We can express the perturbed line charge density as an integral over the perturbed part of the
distribution function:

Integrating both sides of Eq. (14.149) over W and substituting from Eqs. (14.152) and (14.153),
we find the following expression for the linearized Vlasov equation:

Substitution of Eq. (14.142) for the electric field leads to the dispersion relationship:

                                                           -1 = (U - jV) I,                                                         (14.155)

where

                                                U = q2NoM (1-$w
2) ln(rw/ro)/,o,                                           (14.157)

and

                                                     V = q2 RNo *S$w/2c,orw.                                                (14.158)

   Equation (14.155) holds for any uniform transport tube. We can calculate the functions U and
V for alternative wall geometries such as a rectangular vacuum chamber. The functions have
positive values for any geometry. For low wall resistivity we will find that the phase velocity of
perturbations is almost equal to that of the beam, $w – $. Therefore the real part of the
perturbation frequency observed in the stationary frame is Re(S) – MTo, where To is the
circulation frequency of the beam To = $c/R. Another implication of low resistivity is that the
real part of the frequency is much larger than the imaginary part. As a result we can approximate
the functions U and V as constants: 

                                                U – q2NoM(1-$2) ln(rw/ro)/,o,                                             (14.159)

                                             V – q2RNo *(MTo) (MTo)$/2c,orw.                                        (14.160)

The symbol *(MTo) denotes the wall skin depth evaluated at a frequency of MTo. In the limit of
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(14.164)

(14.167)

small D, |U| o |V|. 
   As a final modification we shall write the term (d2/dt) of the function I in terms of W and the
properties of the machine. The angular frequency for motion around the ring depends on the
particle kinetic energy E = ((-1)moc2. Increasing the energy of nonrelativistic particles causes
them to circulate faster because of their increased velocity. In contrast, relativistic particles
circulate slower because the have larger orbit radii. The dividing line between the types of
behavior is the transition energy ((t-1)moc2. If f is the particle circulation frequency in the ring,
we can write a Taylor series expansion about the mean beam energy Eo:

                                                        f(E) – fo(Eo) + (Mf/ME) )E,                                          (14.161)

where )E = E - Eo. The time variation of 2 averaged over many transits is:

                               d2/dt – To + 2B (Mf/ME) )E = To  + 2Bf (Mf/ME) W.                            (14.162)

The final form in Eq. (14.162) comes from the relationship

                                            )E = qE2$c)t = 2B )P2 ($c/2BR) = W f,                              (14.163)

where f is the circulation frequency of particles with canonical angular momentum Po + 2BW.
Substitution from Eq. (14.162) gives a modified expression for I:

where 

                                                          6o = 2Bf (Mf/ME).                                                        (14.165)

Above transition, particles with increased energy take longer to circulate around machine so that 
6o < 0.
   We can now investigate the implications of Eq. (14.155) for different equilibrium distributions.
The simplest choice is a cold beam where all particles have the same value of canonical angular
momentum in equilibrium:

                                                             go(W) = *(W).                                                        (14.166)

The expression for I becomes:
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(14.168)

(14.172)

(14.173)

To evaluate Eq. (14.167) we can use the following property of the delta function,

The result is

                                                            I = M6o/(S - MTo)2.                                                (14.169)

Substitution in Eq. (14.155) gives the dispersion relationship:

                                                         (S - MTo)2 = M6o(U - jV ).                                         (14.170)

   Despite its simplicity Eq. (14.170) has several interesting implications. First consider a case
where the wall has no resistivity (V = 0). Below transition (6o > 0) Eq. (14.170) implies that S is
real – the beam is stable. Above transition S has an imaginary part and the beam may be
unstable. The solution with 6o < 0 is: 

                                                              S = MTo ± j (M6o U)1/2.                                        (14.171)

The instability represented by Eq. (14.171) is the negative mass instability of Section 14.3. Note
that there is no shift in the real part of the frequency – the perturbation phase velocity equals the
beam velocity, consistent with the results of the moment equation model of Section 14.3.
   We can show that the content of Eq. (14.171) is identical to that of Eq. (14.109) – both models
predict the same growth rate. In the relativistic limit Eq. (14.96) implies that 

Comparing Eqs. (14.165) and (14.172) we find that

With substitution for U and 6o in Eq. (14.171) from Eqs. (14.159) and (14.173 and some algebra
we find that Eqs. (14.171) and (14.109) are identical. 
   Next consider solutions with V > 0. Above transition the growth rate of the negative mass
instability is much higher than that of the resistive wall instability; therefore, the resistive
contribution is of little concern. . Solutions below transition (6o > 0) are important because the
resistive wall effect is the only source of instability. If we take 6o as a positive number equal to
the magnitude of 2Bf (Mf/ME), the dispersion relationship is:
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(14.177)

(14.178)

                                    (S - MTo)2 = M6o (U-jV) = M6oU (1 - jV/U).                                 (14.174)

The second term in parenthesis is much smaller than unity – we can use the binomial theorem to
find the square root:

                                                  S – MTo ± (M6oU)1/2 (1 - jV/2U).                                    (14.175)

The positive sign in Eq. (14.175) corresponds to a fast wave with phse velocity greater than the
beam velocity. The wall resistivity damps this wave. The minus sign gives a slow wave with a
growth time of

                                                            Jr = (2/V)(U/M6o)1/2.                                               (14.176)

   Although Eq. (14.175) gives us a mathematical answer the physical implications are not
obvious. We can rewrite the equation in a form that displays scaling relationships more clearly.
Substituting from Eqs. (14.157), (14.158) and (14.173), introducing the Budker parameter [Eq.
(12.131)] and carrying out extensive algebra, we find the resistive wall instability growth time is: 

Note that major radius R does not appear in Eq. (14.177). Although R influences the growth rate
for the negative mass instability, it has no effect on the growth rate of resistive wall instabilities.
This result follows from our use of the the straight pipe expression for the axial electric field.
The only constraint introduced by the circular geometry is that the wavenumber has a discrete set
of values, k = M/R. As in Eq. (14.133) the instability growth is inversely proportional to the
square root of the beam current. The growth time is long for a low-current, high-energy beam in
a metal chamber. As with transverse instabilities, resonant structures in the beam line can present
a greatly-enhanced impedance. If the perturbation frequency MTo overlaps the resonance width
for a TM0n0 mode, a cavity array has a high value of resistance per length. This fact follows from
the properties of resonant cavities as impedance transformers.
   The main reason to pursue the Vlasov equation solution is to investigate the stabilizing effects
of an axial momentum spread.  We shall use a Gaussian distribution in W to represent a spread
in canonical angular momentum:

To incorporate the distribution of Eq. (14.178), we need a modified form for the dispersion
relationship. Removing a factor of M6o and multiplying  both sides of Eq. (14.155) by (U+jV)
gives:
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(14.179)

(14.181)

where

                                                             W1 = (S - MTo)/M6o.                                             (14.180)

We insert Eq. (14.178) into Eq. (14.179) and express the result in terms of the normalized
variable > = W/)W. The final form of the dispersion relationship results from an integration by
parts:

where 

                                                         >o = (S-MTo)M6o)W.                                                (14.182)

The function D(>o) is the plasma dispersion function. Note that properties of the function are
tabulated in The Plasma Dispersion Function by B.D. Fried and S.D. Conte (Academic Press,
New York, 1961).
. We must exercise care in evaluating the definite integral, particularly at the discontinuity at > =
>1. The portion of the integration near >1 is important because it involves those particles in the
distribution that move at the phase velocity of the slow wave. These particles cause growth or
damping of the wave. 
   We want to find conditions for beam stability so we assume a priori that S and >o are real
numbers and look for consistent conditions. We can find the integral of Eq. (14.181) along the
real axis from -4 to +4 by taking a contour integral in the complex plane, noting the pole at > =
>o. We expect that U o V, or 

                                                        Re[D(>o)] o Im[D(>o)].                                               (14.183)

Equation (14.183) implies that >o is much larger than unity; in this limit, the plasma dispersion
function has the approximate form

                                                D(>o) – 1/>o
2 - 2j(B)$$ >oexp(->o

2).                                       (14.184)

   For a valid solution with real >o the real and imaginary parts on both sides of Eq. (14.181) must
be separately equal when we substitute Eq. (14.184) on the right-hand side. The resulting
equations are
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(14.185)

(14.186)

(14.190)

and

Equation (14.185) gives the following value for the real frequency of the slow wave:

                                                     S – MTo - (M6oU)1/2.                                                     (14.187)

Equation (14.187) is identical to Eq. (14.175) derived for a delta function distribution – the shift
in the phase velocity of the slow wave does not depend on the form of the distribution.
   Analysis of Eq. (14.186) gives a sufficient condition for stability, equivalent to a real value
solution for >o. Substituting from Eq. (14.185) the stability criterion is :

                                                  >o
3 exp(->o

2) = - V/2U(B)1/2.                                               (14.188)

Figure 14.13 plots solutions to the transcendental equation. In principle, given values of U and V
we can use Eqs. (14.185) and (14.188) to calculate the spread in angular momentum )W for
stability. This approach, although exact for a particular distribution, does not lend itself to a
straightforward physical explanation.
   As an alternative, Neil and Sessler propose the following approximate rule for stability. The
criterion follows from the analysis of the properties of the complex integral for D(>o). The
necessary stability condition for well-behaved distributions is that go(W) extends over a range of
canonical angular momentum that includes Wo. In other words the spread in circulation
frequency must be comparable to  S - MTo. If the frequency spread is smaller, the cold beam
results apply. From Eq. (14.165) the circulation frequency spread is )T = 26o)W so that the
stability criterion is: 

                                                         M)T > 2(M6oU)1/2,                                                   (14.189)

or

We can simplify Eq. 14.190 to:
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(14.191)

The required spread in canonical angular momentum does not depend on the wall resistivity, the
mode number M or the radius of the circular accelerator R. A comparison to Eq. (14.112) shows
that the same stability criterion holds for the negative mass instability above transition if we
replace the factor in the denominator by ((2/(t

2 - 1). 
   At this point, you may wonder why we followed such a difficult path to arrive at a conclusion
that we could have found from the moment equations and some common sense. One reason is
that other times we might not be so lucky. Some instabilities and methods for radiation
generation depend sensitively on the velocity distribution – they saturate at levels quite different
from projections based on a displaced Maxwellian distribution. Another reason is that rules-of-
thumb like Eq. (14.189) must ultimately be supported by detailed analyses. Although intuition is
valuable in collective physics, it can often lead to incorrect predictions when processes are so
complex that we cannot construct a simple physical picture. The resistive wall instability is a
good example of the symbiosis between physical insight and detailed mathematical treatments in
collective physics. The mathematics guides us to conclusions that we can justify with physical
insights.
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15
Generation of Radiation with Electron Beams
______________________________________

   In the final chapter, we shall review the generation of coherent electromagnetic radiation by
charged particle beams. An understanding of this application demands a comprehensive
knowledge of beam physics. All the devices we shall discuss use electron beams because these
beams are easy to generate and to transport at high power levels.
   A multitude of methods have been developed to generate microwave radiation – we shall
address only a few of the main types. All beam-driven radiation sources share common features.
In every device an electron beam with directed kinetic energy interacts with a traveling or
standing electromagnetic wave. The wave has an electric field that oscillates at angular
frequency T. The beam electrons must move against the electric field to perform work on the
wave. A steady-state beam does not contribute a time-averaged energy to the wave – the electric
field of the wave alternately accelerates and decelerates the particles. We must use a modulated
beam to drive the wave. The term modulation implies a synchronized time variation of beam
current or position at frequency T. We can distinguish three types of beam modulation used in
microwave sources:

     1. For a standing wave that varies in time at an axial location, we can switch the beam on and
off so that current flows only during the decelerating phase of the wave. The two-cavity klystron
illustrates this modulation method.

     2. For a traveling wave with phase velocity equal to the beam velocity, we can bunch
electrons along the axial direction. The beam amplifies the wave if there is an excess of electrons
in the decelerating phase of the wave. The traveling-wave tube illustrates such an interaction.
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     3. If the amplitude of the wave electric field varies in the direction normal to the beam, we
can sweep the beam position in the transverse direction to achieve net power transfer. The
magnetron is a familiar example of transverse beam modulation.

The free-electron laser combines two modulation approaches. Wave amplification depends on
synchronized beam sweeping combined with axial bunching of the beam density.
   We can classify beam-driven microwave sources as either oscillators or amplifiers. Oscillators
create microwave energy through resonant instabilities. Here an electromagnetic disturbance
grows from noise at a favored frequency determined by a resonant circuit. Oscillators usually
operate in the saturation state of the instability. In contrast, an amplifier operates in the linear
regime of a beam instability. The beam-driven output is proportional to the amplitude of an input
wave. A single oscillator can drive several amplifiers in parallel to generate phased microwave
energy at high power.
   Section 15.1 describes the inverse diode, the simplest method to extract the energy of a
modulated beam. The beam energy changes directly to electrical energy in a deceleration gap.
We can use inverse diodes to generate RF energy from a beam with axial modulation or a
sweeping motion. The beam drives current through a load connected to the inverse diode
collector. For good efficiency the load impedance should be close to the beam impedance, equal
to diode voltage Vo divided by the peak beam current. Transmission lines and waveguides that
transport electromagnetic energy have characteristic impedances in the range 30-300 S. An
inverse diode driven by an intense electron beam matches such a line. For example a 200 keV, 1
kA beam has an impedance of 200 S. 
   Steady-state electron beams used in conventional microwave sources are poorly matched to
electromagnetic lines and loads. For example a 1 A, 20 keV beam has an impedance of 20 kS.
We use resonant cavities to match a high-impedance beam to an electromagnetic load. Section
15.2 describes the function of resonant cavities as impedance transformers. This matching
technique has important applications in klystrons and magnetrons. 
   Section 15.3 summarizes axial modulation of electron beams by velocity-bunching. This
method has application to high-frequency sources. Beam chopping is inefficient and beam gating
using the grid of an electron gun has limited frequency range because of transit-time effects of
low energy electrons. Velocity-bunching occurs after a continuous beam passes through a
resonant cavity with an axial electric field at frequency T. The beam emerges with a harmonic
velocity shift – after a drift distance the velocity dispersion changes to an axial modulation of the 
density.
   We apply the theory of velocity-bunching to the klystron in Section 15.4. In this device an
electron beam interacts with two or more discrete resonant cavities. An input signal drives the
first cavity, the buncher. The modulated beam drives electromagnetic oscillations in one or more
downstream load cavities. Klystrons have high gain, good stability and high pulsed-power
capability – they are often used to drive RF accelerators. A single klystron can produce a pulsed
output of 50 MW in the GHz range. 
   The traveling-wave tube, discussed in Section 15.5, illustrates the continuous interaction of a
beam with a wave over an extended distance. We review some properties of slow-wave
structures. These devices support electromagnetic waves with an axial electric field component
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and a phase velocity close to that of the beam. Because of these properties beam electrons
undergo a long-term average acceleration or deceleration. In the traveling-wave amplifier an
input wave bunches the electrons of an initially continuous beam. Bunching causes an enhanced
density in the decelerating regions of the wave.  The wave amplitude grows from energy
extracted from the beam. The result is an exponential growth of wave amplitude and beam
modulation. With correct design of the slow-wave structure, traveling-wave tubes amplify
radiation over a broad frequency range.
   Section 15.6 reviews the principles of magnetrons. These crossed-field devices have
perpendicular applied magnetic and electric fields. The electric field drives a sheet electron beam
that drifts normal to the magnetic field. The beam moves through a structure that supports a slow
wave with an electric field component along the electron drift direction. The wave field causes a
transverse drift of electrons – in decelerating regions of the wave the electrons shift to locations
where the axial electric field is stronger. This displacement results in a net transfer of energy to
the wave. The magnetron is usually used as a high-power oscillator. Magnetrons achieve high
energy conversion efficiency because electrons lose most of their kinetic energy before exiting.
   The final two chapters review an area of growing interest, free-electron lasers. These devices
generate short-wavelength radiation – depending on beam energy the output can extend to the
optical regime. They have the potential ability to operate as tunable sources at high-power and
high efficiency. In free-electron lasers a relativistic electron beam drives a transverse-
electromagnetic (TEM) wave. An alternating applied magnetic field causes a harmonic
transverse displacement of the beam. The dipole current component of the beam acts on the
transverse electric fields of the wave. The magnetic field of the TEM wave bunches the beam
toward regions of wave deceleration. Because of the properties of the relativistic Doppler shift,
the electrons in a free electron laser can drive electromagnetic radiation with a wavelength much
shorter than the scale of magnetic field variations. Section 15.7 describes the oscillations and the
TEM wave. Section 15.8 concentrates on axial bunching and phase dynamics of groups of
electrons in the free-electron laser.

15.1. Inverse diode

   An inverse diode converts the kinetic energy of a charged-particle beam to electrical energy.
The device performs the complementary function to a beam injector. In an inverse diode a beam
crosses a deceleration gap to a collector at elevated potential. The collected beam current can
drive an external load at high voltage. The inverse diode is the simplest method for energy
extraction from a directed flux of charged particles. The device has potential applications to
high-power RF radiation generators. At the end of the section we shall discuss two examples of
such generators, the scanned beam switch and the relativistic beam oscillator.
   Figure 15.1 shows an inverse diode. An electron beam from an electrostatic acceleration gap
moves through a transport system to a collector. In an ideal system the collector can recover the
full beam energy if the following conditions hold:



Generation of radiation with electron beams Charged Particle Beams

723

Figure 15.1. Components of an inverse diode to recover the energy of an
electron beam: electron gun, transport system, inverse diode, load circuit. 
      

     1. The beam is laminar. This conditions holds only if electrons from the source have no
random components of longitudinal or transverse energy.

     2. Focusing forces in the transport system are linear. The lenses generate an image of the
source beam at the collector.

     3. The electric and magnetic fields in the inverse diode are identical to those in the injector.

When the conditions hold electron motion in the inverse diode mirrors motion in the injector.
With a voltage equal to that of the injector the collector recovers the complete beam kinetic
energy. 
   In reality the inverse diode is not an exact reflection of the injector. Beams have spreads of
transverse and axial momentum. Figure 15.2 illustrates the effect of kinetic energy spread in a
beam of electrons incident on a one-dimensional inverse diode. In Figure 15.2a all electrons
have the same kinetic energy eVo and identical velocity in the z direction. All electrons reach the
collector if its voltage is slightly below Vo. Figure 15.2b shows a more realistic beam distribution
– there is a spread of kinetic energy below eVo. If the collector voltage equals Vo no electrons
reach the surface – the conversion efficiency of kinetic energy to electrical energy equals zero.
With lower voltage the collector captures some of the electron beam. On the other hand, the
collected electrons arrive with extra kinetic energy that is wasted heating the surface. For a given
beam distribution, there is an a value of collector voltage that gives the highest conversion
efficiency.
   A complete treatment of inverse diode physics could include effects of finite beam width, 
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Figure 15.2. Effect of beam energy spectrum on the efficiency
of an inverse diode. Collector voltage: Vc, peak beam kinetic
energy: eVo. a) With a small energy spread, the collector captures
the full beam current with Vc close to Vo. b) With a broad energy
spread, the inverse diode must operate at reduced voltage to
capture the full beam current (1) or collect a reduced beam
current near the full voltage (2).

spatial variations of applied fields and beam-generated magnetic fields. A problem of this
complexity requires a numerical simulation. Instead we shall study a one-dimensional model to
understand the basic principles. We shall use values of electrostatic potential appropriate for an
electron beam, although inverse diodes can also recover the energy of ion beams. The approach
is similar to the space-charge flow calculations of Chapters 5 and 6. We apply conservation of
particle flux in equilibrium to express the particle density as a function of the electrostatic
potential. We then solve the Poisson equation to find a self-consistent flow solution.
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Figure 15.3. Quantities to calculate self-consistent space-charge
equilibria for electron flow in a planar inverse diode.

(15.1)

   Figure 15.3 shows the geometry of the calculation. The inverse diode consists of a grounded
input mesh at z = d and a collector with bias voltage -Vc at z = 0. The diode has spacing d.
Electrons with current density jo enter from the positive z direction. If the electrons are
monoenergetic, the space-charge solution is the mirror image of the solution of Section 5.2.
Instead we allow a spread in the z directed kinetic energy T. Suppose that we know the
distribution of electron flux in terms of T to the endpoint energy eVo. We define the flux
spectrum f(T) so that jo f(T)dT equals the fraction of the incident current density carried by
electrons with longitudinal kinetic energy between T-dT/2 and T+dT/2. The flux function
satisfies the normalization equation:

   Figure 15.3 illustrates the nature of a self-consistent solution. An external circuit maintains the
collector voltage at -Vc, absorbing the energy of incident electrons. The electrostatic potential
decreases moving from the entrance grid to the collector. At each position in the gap, some low-
energy electrons turn while higher energy particles move forward. For a given flux function and
values for jo, Vc and Vo we can find a unique equilibrium. Assume that the solution has a point
where the electric field goes to zero. We denote the potential and position of this point as V* and
d*. The value of V* determines the fraction of incident electrons that pass the point. Beyond d*

the magnitude of the potential must decrease because the Poisson equation implies the d2N/dz2 is
positive everywhere in the gap. Therefore, all particles that enter the inverse diode with T > eV*

pass d* and continue to the collector. All other particles turn back. 
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   We can show that for a given fraction of collected electrons the best position for the collector
is the E = 0 point. Suppose we start with a solution with d* = 0 and Vc = V*. If we keep V*

constant and increase the gap width (d* > 0), the fraction of electrons that passes the point d*

remains the same. To ensure that all these electrons reach the collector we must set Vc below V*.
With the same collected current density but lower collector voltage the efficiency of the inverse
diode is lower. Conversely if we maintain the collector voltage at Vc = V* but move the electrode
closer to the entrance mesh (d* < 0), the transported current is the same but the electric field on
the collector has a positive value. With a positive field secondary electrons generated on the
collector surface flow back to the entrance grid reducing the efficiency of the system. In the
following discussion we shall take solutions where Ez(0) = 0.
  In equilibrium, conservation of charge implies that the product of particle density and velocity
is uniform with position for each energy group of electrons. We can express the velocity of
relativistic electrons that enter the inverse diode with kinetic energy T as a function of the
electrostatic potential

                                                 vz(N) = $c = c ((2 - 1)1/2/(                                                     (15.2)

where

                                                     ( = 1 + (T+eN)/mec2.

The equations that determine the electron equilibrium are conveniently written in terms of
dimensionless variables:

                                                             X = T/eVo,                                                                  (15.3)

the input kinetic energy,

                                                          M = -eN/eVo,                                                                 (15.4)

the electrostatic potential, and 

                                                    Z = z (ejo/2,oceVo)1/2,                                                          (15.5)

the normalized position. We also define two dimensionless constants:

                                                           " = eVo/mec2,                                                               (15.6)

a distribution relativistic factor, and

                                                             Mc = -eVc/To,                                                              (15.7)

the collector voltage. The normalized flux function is:
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(15.9)

(15.10)

(15.12)

                                                    F(X)dX = F(T/To) d(T/To).                                                  (15.8)

The distance scale of Eq. (15.5) is the gap width of an ultra-relativistic space-charge-limited
diode [Eq. (6.5)] for a current density jo of monoenergetic electrons with T = eVo. 
   Substituting the dimensionless quantities, Eq. (15.2) becomes

Electrons with incident energy X in dX make a contribution to the density at a position with
potential M equal to their incident flux divided by the magnitude of their local velocity:

The total density at the position is the integral of Eq. (15.10) over all electrons with sufficient
kinetic energy to overcome the potential M. In doing the integral we must separate the
contributions from electrons that pass the position once and continue to the collector (X > Mc)
and from electrons that pass through the region twice because they reflect at higher potential (M
< X < Mc). The correct expression for the particle density is:

                                                            n(M) = (jo/ec) N(M),                                                  (15.11)

where

We can find N(M) for a given flux choice of Mc and substitute the result into the one-dimensional
Poisson equation to find the gap spacing: 

We can solve Eq. (15.12) numerically for any function N(M), starting at the collector with the
conditions M(0) = Mc, M'(0) = 0. The position where M equals zero defines the normalized gap
width.
   For given F(T) the current density that reaches the collector is:
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Figure 15.4. Properties of a planar inverse diode for a nonrelativistic
electron beam with kinetic energy eVo and a Gaussian distribution of
transverse angle with a mean-squared value <22>. a) Collected power per
area normalized to the incident beam power density as a function of Vc/Vo
for three values of <22>. b) Normalized gap spacing for zero electric
field on collector, D* = d*/[(4,o/9jo)1/2(2e/me)1/4(To/e)3/4]

(15.13)

The conversion efficiency equals the electrical energy produced per unit area of the collector
divided by the incident beam power flux:
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Figure 15.4. (Continued)

(15.14)
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(15.17)

   We can illustrate application of the theory with the example of a nonrelativistic scattered beam
distribution. Following Section 10.4 we take a Gaussian distribution in transverse angle 2:

                                                       P(2)d2 ~ exp(-22/<22>).                                                (15.15)

The quantity <22> is the mean-squared scattering angle. For small angles, the longitudinal
kinetic energy is related to 2 by

                                                           T/To = X – (1 - 22).                                                     (15.16)

An expression for the spectral function follows from the relationship F(X)dX – P(2)d2:

Figure 15.4 shows results of numerical solutions of Eqs. (15.12) and (15.14) for three different
values of <22>. Figure 15.4a plots the energy efficiency ,norm, a function of the collector voltage,
Mc. At a high value of Mc, the fraction of current collected is low. At low Mc, most of the current
reaches the collector but the inverse diode recovers only a fraction of the kinetic energy. As a
result the efficiency reaches a maximum at an intermediate value of Mc. Note that ordered beams
with low <22> give higher efficiency. Figure 15.4b plots the normalized gap width as a function
of Mc and the input spectrum. The arrows show the points of peak efficiency.
   As an example suppose an incident electron beam has jo = 100 × 104 A/m2, eVo = 250 keV and
(<22>)1/2 = 15°. With a beam radius of ro = 0.05 m, the incident beam power is 1.96 GW. Figure
15.4a shows that the maximum power transferred to the inverse diode is 1.4 GW at a collector
voltage of 200 kV. Figure 15.4b gives a normalized gap spacing of D* = 1.2, or a physical gap
width of d = 0.02 m. Because d n ro the one-dimensional model should give a good
approximation.
   Inverse diodes have application to devices for the generation of high-power pulsed microwave
radiation. Here a diode can capture of the power of modulated electron beam and transfer it to a
high-voltage vacuum transmission line. The anticipated power levels (>1 GW) and frequency
range (100-500 MHz) are well-suited to high-gradient particle accelerators. Figure 15.5 shows
one such device, the scanned beam switch. A relativistic electron gun generates an extended
sheet beam – the results of Section 9.1 show that such beams can propagate long distances in
vacuum. The beam passes between electric field deflection plates and continues to one of two
inverse diodes. The collectors of the diode form the ends of vacuum transmission lines.
Operation of the scanned beam switch as an amplifier is easy to understand. A bipolar square
wave on the deflection plates sweeps the beam between the collectors, generating a high-power
square wave on the output lines. The sheet beam geometry is critical to the operation of the
scanned beam switch. It leads to low source current density, small beam expansion, and small
system dimensions along the deflection direction. 
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Figure 15.5. Pulsed-power switching by beam scanning. a) Geometry of a scanned-beam-switch
amplifier, side view. A) Vacuum housing of an electron beam generator. B) Extended linear cathode. C)
Electron gun anode. D) Matching magnetic lens. E) Deflection plate. F) Vacuum insulator and voltage
feedthrough. G)  Deflected sheet beam in vacuum. H) Inverse diode entrance grid. I) Inverse diode 
collector. J) High power strip transmission line. b)Scanned beam switch with feedback acts as a high-
power RF amplifier.
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Figure 15.6. High power relativistic diode oscillator.

   Figure 15.5b shows a scanned beam switch configured as an oscillator. Feedback transmission
lines connect the deflection plate to the output lines. The transmission lines act as quarter-wave
resonators excited by the coupling loop in the output lines. The feedback lines have high
impedance terminations at the deflection plates. Let J equal the period of the resonant mode.
Depending on the orientation of the loop, the device oscillates if the net elapsed time for
propagation of the electron beam and the electromagnetic radiation in the output line from the
deflection plates to the coupling loop equals:

                             )t = J(1/4 + m)    or    )t = J(3/4 + m),

where m = 0,1,2,.... 
   Figure 15.6 illustrates another device that uses an inverse diode to generate microwave power,
the relativistic feedback oscillator. The relativistic oscillator is the high-power equivalent of a
familiar vacuum triode circuit. It consists of a high-power electron diode with three electrodes
and a feedback circuit. The cathode generates an annular electron beam in a magnetically
insulated diode. The beam crosses to the collector of an inverse diode at the entrance of a high-
power vacuum transmission line. The anode of the magnetically insulated diode connects to a
high-Q resonant circuit excited by a coupling loop in the output line. The anode acts as a control
grid to modulate the electron beam. The modulated electron beam drives the output transmission
line at the frequency of the feedback oscillator with the proper choice of transit time from the
diode to the coupling loop. The parallel inductance and capacitance on the output line is a
resonant termination – the combined elements have high impedance only for the fundamental 
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Figure 15.7. Numerical computation of electron flow in a foil-less diode
for a relativistic diode oscillator using the EGUN code. Cathode voltage:
-600 kV, collector voltage: 0 kV, applied axial magnetic field: 0.2 tesla.
Distances in cm. a) Control voltage: 0 kV, predicted current: 28.9 kA. b)
Control voltage: -450 kV, predicted current: 10.0 kA.

oscillation frequency. The termination keeps the DC voltage of the collector low, increasing the
efficiency for converting beam energy to radiation at the fundamental frequency.
   Figure 15.7 shows predictions from a ray-tracing code for the foilless diode in a relativistic
oscillator. The cathode voltage is -600 kV and the collector voltage is near ground potential. The
uniform solenoidal magnetic field is 0.2 tesla. Simulations at two values of the anode potential
show that the anode voltage controls the current even though the electrode is well outside the
flow. In Figure 15.7a, the anode potential equals zero and the current is 28.9 kA. Dropping the
anode voltage to -450 kV reduces the current to 10.0 kA (Figure 15.7b). Figure 15.8 shows the
results of a circuit simulation of a relativistic oscillator driven by a 1 MV pulse generator. The
figure shows the voltage on the cathode pulse. The code predicts a net power output of 7.5 GW
at 200 MHz with a 24 per cent energy efficiency. 
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Figure 15.7. (Continued)

 

   Power output coupling through inverse diodes and vacuum transmission lines has application
to a variety of beam-driven RF sources including klystrons. To study the limits on power flux in
a vacuum transmission line, suppose that a sheet beam with linear current density J and kinetic
energy eVo drives a strip transmission line of width D. The impedance of such a line is:

                                                          Zo = (:o/,o)1/2(d/2D).                                                  (15.19)

The quantity d is the gap between the center and outer conductor. The voltage resulting from
complete capture of the beam is 

                                                  Vline =  (JD)Zo = (:o/,o)1/2(dJ/2).                                         (15.20)

Under ideal conditions, the voltage of the inverse diode collector approaches Vo. Combining Eqs.
(15.19) and (15.20) with the condition Vline = Vo we find that the spacing between the electrodes 
of the transmission line must be 
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Figure 15.8. Circuit simulation of a high-current relativistic diode oscillator. Three-
electrode magnetically-insulated diode with matched current of 30 kA at 400 kV. 12 S
output transmission line (1.5 ns) connected to 50 S feedback line with 200 S termination
(1.5 ns). Termination in output line, DC short circuit, 12 S at 200 MHz. Pulse generator,
100 ns transmission line with 800 kV charge, 30 nH series switch inductance. a) Cathode
voltage (Ordinate: 0 to 2 MV, Abscissa: 0 to 60 ns). b) Voltage at output termination.
(Ordinate: 0 to 2 MV, Abscissa: 0 to 60 ns). Output power: 7.5 GW at 200 MHz. 
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                                                              d $ 2Vo/J(:o/,o)1/2.                                                  (15.21)

The electric field in the strip transmission line is 

                                                         E = Vo/d # J(:o/,o)1/2/2.                                               (15.22)

If we assume a maximum allowed electric field of E = 15 MV/m Eq. (15.22) predicts a linear
current density limit of J = 7.95 × 104 A/m independent of beam energy. As an example suppose
a 600 keV electron beam of width 0.5 m drives a strip transmission line. The maximum allowed
beam current is about 40 kA, giving an output power of 24 GW.

15.2. Driving resonant cavities with electron beams

   Resonant cavities are often used to extract energy from charged particle beams for microwave
radiation generation. In this section we shall study some features of resonant cavities and
develop lumped circuit element models that give a simplified description of beam interactions
with resonant modes. We shall concentrate on electron beams because they are easier to
generate, accelerate and transport than ion beams of equal power. In comparison with direct
conversion devices like the inverse diode, resonant cavities have two important capabilities:
frequency selection and impedance transformation.
   Regarding frequency selection we shall find that modulated beams often carry a broad range of
harmonic components. While an inverse diode responds to all frequencies, energy transfer from
a beam to a resonant cavity is strong only at specific frequencies. As a result resonant cavities
can generate highly monochromatic radiation from a modulated beam.
   Impedance transformation is the second function of a resonant cavity. The charged particle
beams in many devices have high kinetic energy and low current. For such beams the impedance
of an inverse diode and output transmission line would have to be very high for efficient energy
conversion. Such a transmission line is impractical to build. On the other hand most microwave
loads have low AC impedance. We shall see that the resonant cavity can act as a transformer,
converting beam energy at high voltage and low current to electromagnetic energy at low
voltage and high current.
   To begin consider the motion of a single charged particle in an electric field with harmonic
variation. Figure 15.9 shows single electrons with kinetic energy ((o-1)moc2 and velocity vz = $oc
crossing a planar gap with width d and applied voltage:

                                                               V(t) = Vo sin(Tot).                                                   (15.23)

In cases of practical interest the applied electric field is almost uniform in z across the gap.
Therefore the voltage of Eq. (15.23) produces an electric field:
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Figure 15.9. Electron beam crossing a planar gap with
a harmonic applied voltage.

                                                          Ez(t) = - (Vo/d) sin(Tot).                                              (15.24)

   The kinetic energy of an electron that crosses the gap changes by an amount:

                                                               )Te = -I dz eEz.                                                      (15.25)

To evaluate Eq. (15.25) we must account for changes in the electric field during the particle
transit. To estimate the effect we assume that eVo n ((o-1)mec2 so that the electron velocity is
almost constant in the gap. The expression of Eq. (15.25) becomes an integral over the transit
time with the replacement dz – $oc dt. We denote the time at which the electron crosses the gap
midplane as to. The phase of the particle with respect to the oscillating gap field is:

                                                                     N = To to.                                                          (15.26)

An electron of phase N crosses the gap in the interval (N/To - d/2$oc) # t # (N/To + d/2$oc). We
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(15.27)

(15.28)

(15.30)

can rewrite Eq. (15.25) as:

Evaluating the integral of Eq. (15.27) and expanding the resulting trigonometric functions gives
the result:

The quantity Vo sinN is the voltage across the acceleration gap at the time the electron crosses the
midplane. The factor in brackets is the transit time factor, T. We can also write T in terms of the
electron transit time )t = d/$oc:

                                                      T = (2/To)t) sin(To)t/2).                                               (15.29)

The quantity T is always less than or equal to unity. Equation (15.28) also shows that peak
particle acceleration occurs when electrons cross at a phase of N = B/2. The gap decelerates
electrons with phase in the range -B # N # 0. [Note that the phase definition in Eqs. (15.23) and
(15.26) agrees with the common convention of particle phase in RF accelerators (CPA, Chapter
13)]. 
   We next consider energy interchange between the gap and a beam of monoenergetic electrons
with current I(t). With the polarity definitions of Figure 15.9 the energy transferred from the
cavity to the beam over an interval to is:

There is no time-averaged energy transfer to the cavity if the beam current is constant. The
average energy exchange is also zero if the beam current has a harmonic variation at a frequency
not equal to To. The gap accelerates the beam or the beam drives electromagnetic oscillations
only if the current varies at frequency To.
   In most devices the beam current always flows in the same direction. The current of a
modulated beam turns on and off rather than reversing direction. One possible form for the
current of a modulated beam is:

                                                    I(t) = (2Io) [1 + cos(Tot-N)]/2.                                          (15.31)
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(15.32)

We can resolve the expression of Eq. (15.31) into a steady-state component of current that has
no average energy exchange with the gap and a harmonic component at To with a strong
interaction. We shall ignore the steady-state current and concentrate on the fundamental
harmonic component, Iocos(Tot-N). 
   The time-averaged power transferred from the cavity to the harmonic component of an
electron beam is

In the phase range 0 # N # -B the beam drives voltage oscillations in the gap. If we add an
external circuit to absorb energy from the gap voltage we have the basis for a microwave
generator. The power extracted from a beam with a given current Io depends on the amplitude of
the gap voltage, the transit time factor and the phase between the beam current and the gap
voltage. 
   Many cavities and slow-wave structures used for microwave generation and particle
acceleration have geometries that are similar to a right circular cylinder. Therefore, we shall
concentrate on the resonant modes of the pillbox cavity of Figure 15.10a. The cavity has radius
ro and length d. The most important resonant mode for charged particle acceleration or
deceleration is the TM010 mode. The zeros in the subscript show that the electric and magnetic
fields of the mode are uniform in the 2 and z directions. The number 1 shows that the electric
field has a simple radial variation with no nodes. The electric field of the TM010 mode is purely
axial and has a maximum value at r = 0. As a result the mode interacts strongly with a
modulated, on-axis beam. The electric field varies as:

                                             E(r,2,z,t) = Eo Jo (2.405r/ro) sin(Tot) z,                                   (15.33)

where Jo is the zero order Bessel function and the mode frequency is:

                                                            To = 2.405c/ro.                                                          (15.34)

The magnetic field points in the 2 direction. It results from the axial displacement current from
the oscillating electric field. The magnetic field is 90° out of phase with the electric field:

                                         B(r,2,z,t) = - (Eo/c) J1(2.405r/ro) cos(Tot) 2.                               (15.35)

Figure 15.10b shows the radial variations of electric and magnetic fields. 
   The nature of the TM010 mode is easy to understand. The oscillating voltage across the center
of the cavity creates axial displacement current. The flow of real current around the outside of
the cavity completes the circuit. The changing magnetic field created by the current flow
supports the voltage between the cavity faces. The electromagnetic energy is alternately
exchanged between electric and magnetic fields. The field energy in the cavity at any time is
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Figure 15.10. Cylindrical or pillbox resonant cavity. a) Geometry. b)
Radial variation of normalized electric and magnetic fields.    
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                                                  U = (Bro
2d) (,oEo

2/2) J1
2(2.405).                                         (15.36)

With no drive current a resonant oscillation damps because of resistive losses associated with
real current flow in the walls. We represent resistive power loss in a resonant cavity by the
dimensionless quantity Q:

                                  Q = ToU/<Power loss to walls> = ToU/(-dU/dt).                             (15.37)

Resonant cavities fabricated of copper usually have Q values in the range >104. The theoretical
Q value for a cylindrical cavity oscillating in the TM010 mode is

                                                             Q = (d/*)/(1+d/ro).                                                   (15.38)

The quantity * is the skin depth in the cavity walls. If the If the inside wall of the cavity has
volume resistivity D then 

                                                               * = (2D/:oTo)1/2.                                                     (15.39)

   In most practical devices for microwave radiation generation, the driving beams are either
continuous or vary over long times compared with the RF period. In this limit we can represent a
given mode of a resonant cavity with a lumped circuit element model. The model is useful for a
localized beam interaction region. In this case we need only know the electric field at the beam
position – we do not need a detailed description of fields throughout the cavity. We can represent
any mode by an equivalent RLC circuit. We shall see how to choose the values of elements and
how to define the mode voltage and current for the TM010 mode of a cylindrical cavity.
   Figure 15.11 shows an equivalent circuit to represent the TM010 mode. The capacitor represents
the concentration of electric fields near the axis, while the inductor represents the magnetic 
fields at large radius created by the current of the mode and the beam. The beam acts as an on-
axis current source in parallel with the cavity capacitance. The resistor in series with the inductor
gives power loss from current flow in the cavity walls. We must choose L and C to give the
correct resonant frequency:

                                                                 LC = 1/To
2.                                                          (15.40)

The quantity To is given by Eq. (15.34) if the cavity is a right circular cylinder of radius ro. Note
that the LC circuit has only one resonant frequency while a cavity has many. The model of
Figure 15.11 applies only to a specific mode.
   The main point of interest is interaction of a beam with the on-axis electric field; therefore, a
good definition of the cavity voltage is the integral of the axial electric field at r = 0:
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Figure 15.11. Lumped element circuit model to
represent the TM010 mode in a cylindrical resonant
cavity.

(15.41)

(15.44)

We shall define the cavity current I(t) as the net current that flows through the cavity wall at r =
ro. This quantity equals the area integral of the axial displacement current: 

                                                       jdz(r,t) = ,o MEz(r,t)/Mt.                                                   (15.42) 

Substituting from Eq. (15.33), the displacement current is:

                                            jdz(r,t) = ,oToEo Jo(2.405r/ro) cos(Tot).                                     (15.43)

A radial integral gives the net current:

If we choose the mode capacitance to satisfy the equation: 
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(15.46)

(15.47)

(15.49)

                                                       C = I(t)/[dV(t)/dt].                                                          (15.45)

the Eqs. (15.41) and (15.44) imply that

   By Faraday's law, the voltage across the cavity axis is proportional to the spatial integral of the
time derivative of magnetic flux between the axis and the outer wall. Applying Eq. (15.35) we
can write this integral as:

The inductance satisfies the equation:

                                                           L = V(t)/[dI(t)/dt].                                                      (15.48)

The combination of Eqs. (15.44) and (15.47) gives the following equation for the inductance:

Eqs. (15.46) and (15.49) give expressions for L and C that satisfy Eq. (15.40).
   Resistive losses of energy result from the flow of real current around the outside of the cavity.
We can model this power transfer by adding a resistor R in series with the inductor. We choose
the value of R to be consistent with the Q value of the TM010 mode. If Io is the maximum value of
wall current, then the stored electromagnetic energy in the mode is LIo

2/2. The time-averaged
power absorbed by the resistor is Io

2R/2. Substituting the expressions in Eq. (15.37) gives:

                                                              R = (L/C)1/2/Q.                                                        (15.50)

The quantity (L/C)1/2 has the units of ohms and is sometimes called the cavity impedance. 
   As an application example consider a beam bunching cavity with ro = 0.12 m, d = 0.04 m and a
peak voltage of Vo = 50 kV. The resonant frequency of the TM010 mode is To = 6.0 × 109 s-1 (f =
0.96 GHz). If the cavity has copper walls the theoretical value of Q from Eqs. (15.38) and
(15.39) is 3 × 104. In practice the effects of wall roughness reduce the Q value – we shall take Q
= 1.5 × 104. Inserting values in Eqs. (15.46), (15.49) and (15.50) gives: C = 4.3 × 10-12 F, L = 6.4
× 10-9 H and R = 2.57 × 10-3 S. The net wall current is Io = 1.3 kA, while the stored energy in the
cavity is U = 5.4 x 10-3 J. The time-averaged power loss to the walls is 2.2 kW. A microwave
generator must supply 2.2 kW to support the 50 kV peak voltage across the cavity.
   We now turn to the problem of beam-cavity interactions. To begin suppose that the beam is the
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(15.53)

(15.54)

only source of power for the cavity and that the cavity walls are the only power sink. We model
the beam as an ideal current source. The time-variation of the current of a beam does not depend
on the cavity voltage; rather, it depends on the previous acceleration history. We add a current
source to the circuit element model in parallel with the capacitor to represent the beam. The
frequency component of beam current at To is Io sin(Tot).
   For a steady-state beam we seek an equilibrium solution. It is easy to calculate the cavity
voltage for a given beam current using the formalism of complex impedance [CPA, Chapter 12].
The AC impedance of a two-terminal circuit element is the ratio of the voltage across the
terminals to the current through the device: 

                                                            Z(T) = V(T)/I(T).                                                     (15.51)

The impedance may vary with frequency. If it has a complex part the current and voltage differ
in phase. Common passive circuit elements have the following impedances:

                                                      Resistor R: Z = R,                                                          (15.52)

                                                      Capacitor C: Z = -j/TC,

                                                       Inductor L: Z = jTL.

Note that the voltage and current of capacitors and inductors are 90° out of phase. We can
combine impedances in series and parallel following the same rules used for resistors. 
   For the circuit model of Figure 15.11 the cavity presents to the following impedance to the
beam for the TM010 mode:

When T = To the bracketed quantity in the denominator of Eq. (15.53) equals zero and the
imepdance takes the following form:

If the cavity has high Q Eq. (15.50) shows that the first term in brackets in Eq. (15.54) is small,
R n (L/C)1/2. Dropping the term we find that the cavity impedance is resistive:

                                                           Z(To) – (L/C)/R.                                                         (15.55)

   Equation 15.55 has two important implications. First, with the polarity conventions of Figure
15.9 the cavity voltage in steady-state is 180° out of phase with the beam current. In other words,
the cavity oscillation assumes a phase to extract the maximum power from the beam. Second, the 
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Figure 15.12. Numerical solutions for driven oscillations of a damped harmonic oscillator. a) Early time
variation of beam current (dashed line) and cavity voltage (solid line). b) Expanded time axis showing
growth and saturation of cavity voltage oscillations.
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impedance Z(To) in Eq. (15.55) is much higher than the load resistance, (L/C)/R o R. This result
shows that the cavity acts as a transformer. A small beam current transfers energy at high voltage
to the large circulating current of the resonant mode. 
   It is informative to observe the full time-dependent solution for electromagnetic oscillations in
a driven cavity. Figure 15.12a shows numerical solutions of the circuit model of Figure 15.11 for
a beam with current:

                                                              i(t) = 0  (t < 0),                                                        (15.56)

                                                           i(t) = sin(t)  (t $ 0).

The figure plots the voltage of a cavity with L = 1, C = 1, R = 0.05 and Q = 20. Note that the
cavity voltage approaches a phase of 180° relative to the beam current after an initial transient
lasting a few periods. Figure 15.12b shows an extended view of the voltage oscillations. The
time to saturation is called the cavity fill time. The fill time is approximately Q/To, equal to 20
for the parameters of the example. If we stop the current at time to Eq. (15.37) predicts that the
stored electromagnetic energy of the mode decays as

                                                       U(t) = U(to) exp[-To(t-to)/Q].                                         (15.57)

The saturation voltage amplitude is Vo = 20, consistent with Eq. 15.55.
   To this point we have included only cavity wall losses. In devices for the generation of
microwave radiation only a small fraction of the available power should be lost to the cavity. We
want to remove most of the electromagnetic power for applications. Figure 15.13 illustrates one
method for energy extraction from a cavity. The center conductor of a transmission line
penetrates the cavity near the outer radius where it forms a loop that connects to the cavity wall.
The area outlined by the loop is normal to the magnetic field of the TM010 mode. The oscillating
field induces a voltage on the transmission line. Power travels from the cavity to a load through
the line.
   It is difficult to calculate the exact combined fields of the loop and the resonant mode.
Fortunately we can find simple approximations for power coupled to the transmission line in a
parameter range of practical interest. We assume that the current that flows in the coupling loop
has a small effect on the total fields of the cavity. In other words the magnetic field near the loop
is close to that of the unperturbed TM010 mode. In this limit we can estimate the transmission
input voltage by applying Faraday's law assuming that the net magnetic field is close to that of
the resonant mode at r = ro:

                                    Vline(t) – (Brl
2) To (Eo/c) J1(2.405) sin(Tot).                                      (15.58)

The quantity rl is the loop radius. If the loop drives a transmission line with a matched
termination Ro then the time-averaged power leaving the cavity on the transmission line is

                                                              Pout = Vline
2/2Ro.                                                       (15.59)

   Equation (15.59) is valid if the following conditions hold:
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Figure 15.13. Energy extraction from a resonant cavity
by a coupling loop and a transmission line.

     1. The magnetic field generated by the loop current is much smaller than that of the resonant
mode.

     2. The energy removed by the transmission line in one cycle of the cavity oscillation is much
smaller than the stored energy U in the cavity. 

We shall see that the two conditions are equivalent. Suppose a loop with azimuthal length l
connects to a resistor Ro. The mode magnetic field at the loop is:
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(15.67)

                                                Bmode = (Eo/c) J1(2.405) exp(jTot).                                        (15.60)

A current Il exp(jTot) flows in the loop in response to the mode field. The loop current creates a
diagmagnetic field:

                                                      Bloop = - :o Il exp(jTot)/l.                                                  (15.61)

The quantity Il may have a complex component to represent a phase difference. We can equate
the loop voltage to the rate of change of the net enclosed magnetic flux:

                                              Il Ro = jTo [(Eo/c)J1(2.405) - :oIl/l].                                         (15.62)

Equation (15.62) shows that there are two regimes of steady-state loop operation. In the limit

                                                       (:oBrl
2/l)/Ro n (1/To),                                                     (15.63)

the field inside the loop is close to applied field and Eq. (15.59) holds. At the opposite extreme,
the loop current is high and the magnetic field inside the loop is much smaller than the field of
the resonant mode. 
   We can write the power absorbed through the coupling loop in terms of a quality factor for the
resonant mode:

                                                               Ql = ToU/Pout.                                                         (15.64)

Equation (15.59) gives the average output power Pout. Substitution from Eq. (15.58) gives the
following expression:

                                                      Ql = (ro
2d) Ro/B:orl

4To.                                                   (15.65)

The quantities ro and d are the cavity dimensions. Substitution for the output transmission line
impedance Ro from the condition of Eq. (15.63) gives the following relationship.

                                                          Ql o (Bro
2d)/(Brl

2l).                                                     (15.66)

For a small loop perturbation Eq. (15.56) shows that Ql must be much larger than the ratio of the
cavity volume to the volume enclosed by the loop. When Ql o 1 the loop extracts a small fraction
of the stored cavity energy in each cycle.
   We can find the transformer ratio of the cavity when the limit of Eq. (15.66) holds. The voltage
amplitude for power extraction from the beam is Eo dT. Equation (15.58) gives the voltage on the
output transmission line. The transformer step-down ratio equals the ratio of the voltages:
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Equation (15.67) shows that a beam-driven cavity is an effective step-down transformer. Large
values of N can be achieved if the loop area is much smaller than the cross-section area of the
cavity, 2rod. With no transformer losses the current amplitude in the transmission line is a factor
of N times the amplitude of the beam current component at To. Wall losses reduce the energy
efficiency of the cavity as a transformer. When there are both wall losses and output coupling,
we can find R in the lumped circuit element model by using a total quality factor: 

                                                             Q = (1/Qw + 1/Ql)-1.                                                 (15.68)

The quantity Qw is the wall loss factor of Eq. (15.38).

15.3. Longitudinal beam bunching

   We found in Section 15.3 that a charged particle beam interacts strongly with a resonant cavity
only if it has a current modulation at the resonant frequency. One way to create electron beams
with a low-frequency modulation is to apply an oscillating voltage to a grid electrode close to the
cathode – the grid turns the flow on and off. This method is not practical at microwave
frequencies because of transit-time limitations on the acceleration of slow electrons in the
cathode-grid gap [see, for instance, C.K. Birdsall and W.B. Bridges, Electron Dynamics of
Diode Regions (Academic Press, New York, 1966)]. An effective method for high-frequency
modulation is to modify the velocity distribution of the full energy beam.
   In this section we shall discuss methods to modulate high-energy electron and ion beams by
adding variations in longitudinal energy. The longitudinal compression of a steady-state beam
into periodic pulses is called beam bunching. Longitudinal bunching has application to the
klystron microwave amplifier (Section 15.4) and to beam conditioning for injection into RF
linacs. Axial compression of a pulsed beam amplifies the instantaneous beam power; therefore,
bunching is a major component of inertial fusion driver systems using ion beams. 
   We shall concentrate initially on beam bunching resulting from by impressing periodic
variations of longitudinal velocity on a beam. This method is useful only for nonrelativistic
beams because relativistic particles travel close to the speed of light, independent of their energy.
We shall start with a simple model that neglects the effects of space-charge fields and
longitudinal velocity spread. Suppose an incident monoenergetic beam has kinetic energy To and
uniform current Io. The velocity of all particles is vo = (2To/mo)1/2. The beam crosses a gap with a
voltage waveform V(t) periodic over time 1/fo. For nonrelativistic beams the energy shift from
the buncher results in a variation of axial velocity. The gap accelerates some particles and
decelerates others. As the beam propagates fast particles overtake slower ones. The beam current
is higher at points where the particle orbits converge. At a downstream point the beam current
has a modulated current with a component at frequency fo. 
   To calculate the current variations of a drifting beam let the variable t represent the time a
group of particles crosses the buncher. We want to find the time-dependent current at a distance
L from the buncher (Figure 15.14). The variable t' represents the time that the group of particles
reaches the point. The variation of axial velocities causes a variation of current at the observation
point, I(t'). 
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Figure 15.14. Axial bunching of a relativistic beam by an applied voltage in a cavity. 

  All particles that cross the buncher ultimately pass the observation point. Consider the charge
the passes through the buncher in a small interval, Iodt. Depending on the axial velocity
variation, the charge may take a longer or shorter time (dt') to pass the observation point.
Conservation of charge implies that Io dt = I dt', or

                                                               I(t) = Io(t)/(dt'/dt).                                                  (15.69)

To find I(t) we must calculate t' as a function of t. Particles that cross the buncher at t arrive at
the observation point after a drift delay:

                                                                  t' = t + L/v(t).                                                      (15.70)

The quantity v(t) is the exit velocity from the buncher gap:

                                                          v(t) = vo (1 + eV(t)/To)1/2.                                            (15.71)

In limit that eV(t) n To Eq. (15.71) reduces to:

                                                        t' – t + (L/vo)(1 - eV(t)/2To).                                         (15.72)

Equation (15.72) implies that 

                                                  dt'/dt = 1 - (L/vo)(e/2To)(dV(t)/dt).                                      (15.73)

   We can generate a harmonic energy shift by directing a beam along the axis of resonant cavity
oscillating in the TM010 mode. For a harmonic voltage the energy shift at the cavity exit is

                                                           eV(t) = eVo T sin(To t),                                                (15.74)

where T is the transit-time factor of Section 15.2. The ratio of the interval at the observation
point to that at the buncher is
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(15.80)

                                             dt'/dt = 1 - (LTo/vo) (eVoT/2To) cosTot.                                    (15.75)

Inserting Eq. (15.75) into Eq. (15.69) gives the following expression for the beam current at the
observation point:

                                                         I(t) = Io/[1 - P cos(Tot)].                                              (15.76)

The quantity P is the harmonic bunching parameter:

                                                          P = (LTo/vo) (eVoT/2To).                                             (15.77)

Note that I(t) is the current at the observation point for particles that leave the injector at time t.
In Section 15.4 we shall use Eq. (15.76) to find the net current as a function of time at the
observation point, I(t'). Figure 15.15 shows results of this calculation – the graphs plot I(t') for
different values of P. A high value of P corresponds to increased distance from the bunching
cavity. At L = 0 the current is constant. Moving downstream the current increases near particles
that pass through the buncher during the rising portion of the voltage waveform. The density
divergence at P = 1 occurs when particles that cross the buncher near t = 0 overtake one another.
By inspection of Figure 15.15 we expect good compression between P = 1 and P = 2. Section
15.4 shows that the best value of the bunching parameter for beam modulation at fo is P = 1.84.
   The harmonic buncher produces a beam with a strong modulation component at fo – it is useful
for microwave generation (Section 15.4). For other applications such as beam conditioning for
injection into RF linacs, the goal is to gather the beam particles into narrow bunches. Here, the
ideal bunching voltage waveform is the sawtooth:

                                               V(t) = Vo t/(1/2fo),  (-1/2fo < t # 1/2fo).                                  (15.78)

We can find the location of maximum particle convergence by substituting the waveform of Eq.
(15.78) into Eqs. (15.69) and (15.73). Bunching occurs when the denominator equals zero. We
can derive the same result from the following argument. Ignoring transit-time effects particles
that cross the buncher at the extremes of the voltage variation have velocities:

                                                       v – vo (1 ± eVo/2To) = vo ± )v.                                       (15.79)

A particle at the bunch tail must travel a distance L in the reduced time (L/vo - 1/2fo) to catch up
to the particles that cross the buncher when V(t) = 0, or:

In the limit that eVo n To and (1/2fo) n L/vo the bunching length is

                                                        L = (vo/fo)(To/eVo).                                                        (15.81)
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Figure 15.15. Current as a function of time downstream from a harmonic buncher
with frequency To and different values of bunching parameter P. (Using 50 term
series expansion, Eq. 15.105). a) P = 0.5. b) P = 1.0. c) P = 1.5. d) P = 2.0.
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Figure 15.15. (Continued)
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Figure 15.16. Effective cumulative voltage waveforms in a multiple cavity buncher -
approxmations to a sawtooth. Results included for 3 and 5 cavity bunchers compared
with the ideal waveform.

   We can illustrate the application of Eq. (15.81) with an example relevant to inertial fusion with
intense light ion beams. Consider a proton beam driven by a pulsed-power generator with a
ramped voltage that rises from 4 to 5 MV over a 100 ns pulse length. We can resolve the voltage
pulse into a sawtooth superimposed on a 4.5 MV square pulse. The parameters imply that Vo =
0.5 MV, fo = 1.0 × 107 s-1 and vo = 2.94 × 107 m/s. Substituting in Eq. (15.81) gives a bunching
distance of L = 26 m. The long distance implies that longitudinal bunching of intense ion beams
is possible only with an effective method for extended transverse confinement.
   At high frequency it is difficult to generate sawtooth voltage waveforms in a non-resonant
structure. An alternate approach useful for accelerator bunchers simulates the sawtooth
waveform with multiple resonant cavities. Figure 15.16a illustrates the method. The beam
crosses several bunching cavities with frequencies fo, 2fo, 3fo,.... The total energy shift is the sum
of cavity voltages. The strategy is to adjust the phases and amplitudes of the cavity oscillations
so that the voltages at the time of the particle transit constitute the initial terms of a Fourier series
expansion of a sawtooth. Figure 15.16b illustrates the summed waveform for a three-cavity
buncher. Bunchers with multiple resonators involve complex technology. They are used for
beam conditioning when the available flux from the particle source limits the accelerator output.
   The Applegate diagram is an effective method to visualize the bunching process. The diagram
plots several particle orbits in the drift space beyond the buncher with axial distance on the
ordinate and time on the abscissa. The slope of the drift orbits depends on the velocity at the exit
of the buncher. Figure 15.17 is an Applegate plot for a harmonic voltage applied at z = 0 of the
form sin(2Bfot). Note the convergence of orbits at downstream locations. 
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Figure 15.17. Applegate diagram - plot of several particle orbits as functions of P and fot for an
applied voltage at P=0 of the form sin(2Bfot).

   The divergence of beam current to an infinite value predicted by Eq. (15.76) does not occur in
real beams. The effects of space-charge and axial velocity spread limit the peak longitudinal
compression. A longitudinal velocity spread limits axial compression in the same way that a
transverse velocity spread limits focusing. Figure 15.18 illustrates the effect of velocity spread
for a harmonic buncher. The figure shows an axial phase space plot of a nonrelativistic beam
with a uniform distribution function. The incident beam has an axial velocity spread of ±*v. The
buncher impresses a harmonic velocity variation with amplitude ±)vo. Figure 15.18a shows a
case where )vo o *v. From Section 2.5 the configuration space beam density is proportional to
the width of the distribution along the velocity axis. When )vo n vo the current I(z) is
proportional to the density. Figure 15.18b shows that the beam distribution emerging from the
buncher has uniform width in vz although it is strongly distorted. The distribution changes after
propagation. Figure 15.18c shows that the width of the distribution along vz is large at positions 
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Figure 15.18. Effect of a small axial velocity spread on beam bunching with an harmonic
applied voltage. Axial phase-space plots. a) Beam distribution emerging from the buncher. b)
Beam distribution near the point of peak bunching. 
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Figure 15.19. Effect of a large axial velocity spread on beam bunching with an harmonic
applied voltage. Axial phase-space plots. a) Beam distribution emerging from the buncher. b)
Beam distribution near the point of peak bunching. 
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where fast particles overtake slow ones. The resulting density, plotted in Figure 15.18d, exhibits
strong bunching. Figure 15.19 illustrates a similar sequence of events for a beam with a large
initial velocity spread, *v – )vo. Here the width of the beam along vz is not a strong function of z
– bunching is less pronounced.
   We can derive a quantitative expression for the effect of axial velocity spread most easily for
the sawtooth bunching waveform. Figure 15.20a shows a beam segment of length 2)z and
velocity width 2*v entering a sawtooth buncher. The distribution leaving the buncher (Figure
15.20b) has a linear velocity displacement with peak amplitude )vo – we assume that 

                                                                    )vo o *v.                                                           (15.82)

Peak bunching occurs after the beam drifts for a time )z/)vo (Figure 15.20c). Because of the
velocity spread the beam segment has a non-zero width 2)z' at the point of peak bunching. The
amplification of current at the bunching point is approximately:

                                                                  I/Io – )z/)z'.                                                       (15.83)

Conservation of emittance implies that, 

                                                             )z' )vo – )z *v.                                                       (15.84)

Therefore, the bunching ratio is

                                                                I/Io – )vo/*v.                                                        (15.85)

Equation (15.85) shows that a small initial velocity spread is necessary for a strong bunching. 
   We can estimate the effect of axial space-charge electric fields by viewing the bunching
process in the rest frame of the beam. In this frame the buncher creates a flow of particles toward
a common point. Strong space-charge fields slow the converging particles and ultimately reflect
them. This effect determines a distance of closest approach and hence a peak value for the
bunched current. A complete self-consistent treatment of beam bunching with space-charge must
account for the non-linear axial forces from the beam and from wall charges in conducting
boundaries. Here we shall use a simplified model to estimate bunching limits for a nonrelativistic
beam. A narrow cylindrical beam of radius ro propagates in a circular pipe of radius rw. The
beam has a small initial velocity spread that satisfies the condition of Eq. (15.82). We assume
that the beam length at all axial positions in much smaller than rw justifying the use of field
expressions for an infinite-length beam. 
   Particles emerging from the buncher converge toward a common point. The compression
results in an increase of the electrostatic potential in the beam. The process stops when eN
reaches a level comparable to the kinetic energy associated with convergence. To derive a
bunching limit we must estimate the kinetic energy of particles in the beam rest frame. In the
stationary frame the particles emerge from the buncher with a kinetic energy variation ±eVo and
a corresponding shift of axial velocity, )vo – ±eVo/movo. In the rest frame the kinetic energy of
convergence is
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Figure 15.20. Axial phase-space plots for the bunching of a rectangular beam distribution with a
sawtooth applied voltage. a) Beam distribution entering the buncher. b) Beam distribution
leaving the buncher. c) Beam distribution at the point of peak bunching.

                              )T – mo)vo
2/2 = (eVo/2)(eVo/movo

2) = (eVo/4)(eVo/To).                          (15.86)

Equating )T to the space-charge potential energy of Eq. (5.68) we find the space-charge limit on
the bunching ratio: 
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(15.87)

with Vo in volts. To illustrate application of Eq. (15.87) consider bunching a 1 A, 100 keV
electron beam. We take rw/ro = 4 and Vo = 25 kV. Substituting in Eq. (15.87) gives I/Io # 10.
Space-charge forces also modify the point of peak bunching. Depending on the beam geometry
bunching occurs at smaller values of P.
   Relativistic electron beams have advantages for the generation of high-power microwave
radiation. The cancellation of beam-generated electric and magnetic fields makes confinement of
high-power beams easier at relativistic energies. Because the beam particles all have velocity vz
– c we must find alternate methods of modulation. Given a successful bunching method,
relativistic electron beams have the important advantage – they preserve the modulation
structure over long distances. The beam could interact with a long array of resonant structures. In
principle a single beam could drive an entire RF accelerator. 

   Figure (15.21) shows one method to bunch a relativistic beam. A constant current beam
emerges from a bunching cavity with a harmonic variation of kinetic energy. Instead of a linear
drift space, the beam enters a helical transport region with a vertical magnetic field. The
electrons are bunched when they emerge because they follow different path lengths through the
bending field. High energy particles have longer paths and therefore take more time to reach the
output. After a 360° revolution the particle orbits converge to a common axis at different times.
   A mathematical description of the bunching process is easy in the ultra-relativistic limit. We
can modify Eq. (15.70) so that the transit time from the buncher to the observation point depends
on the pathlength L(t) rather than on the particle velocity:

                                                                  t' = t + L(t)/c.                                                      (15.88)

The path length is the distances through the bending field. In a uniform axial magnetic field Bo
the electrons follow circular orbits with an energy-dependent radius: 

                                    rB(t) – ((t)moc/eBo = (moc/eBo) [(o + eV(t)/moc2].                            (15.89)

The quantity eV(t) is the buncher voltage and (o is the entrance kinetic energy. The total
pathlength is

                                          L(t) – 2Brg(t) = 2BrBo [1 + eV(t)/(omoc2].                                   (15.90)

where rBo = (omoc/eBo. Combining Eqs. (15.69), (15.88) and (15.90) gives the following
prediction for the time-dependent current emerging from the helix:

                                                 I(t') = Io/[1 + Pr cosTo(t'-L/c)].                                             (15.91)
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Figure 15.21. Bunching a relativistic electron beam by introduction
of an energy modulation and transport through a uniform transverse
magnetic field. 

The quantity Pr in Eq. (15.91) is the relativistic harmonic bunching  parameter for a magnetic
bending field,

                                                Pr = (2BBTorBo/c)(eVo/(omoc2).                                             (15.92)

   Equation (15.91) is similar to Eq. (15.76) except for the plus sign in the denominator. The
difference arises because bunching occurs for particles that cross the buncher during the fall of
the voltage. As an application example assume a harmonic buncher oscillates at frequency To/2B
= 1 GHz with a peak voltage of Vo = 50 kV. The input electron beam has kinetic energy 2 MeV.
The beam relativistic factors are (o = 4.91 and $o = 0.979. Substituting parameters in Eq. (15.92)
with Pr = 1.84 gives rBo = 0.7 m. The field for magnetic bending is Bo = 0.012 tesla.
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(15.95)

15.4. Klystron

   In this section we shall begin our study of beam devices to generate microwave radiation. In
the microwave regime of the electromagnetic spectrum wavelengths are comparable to the size
of structures – they lie in the range 1 mm to 10 cm. As a result closed resonant cavities and
waveguides are usually used to transport the radiation. For historical reasons, the microwave
radiation is divided into the frequency bands listed in Table 15.1. 
   The klystron is the most widely-used microwave source for high-energy particle accelerators.
Klystrons have several advantages for this application. They function as high-gain amplifiers
with excellent frequency stability. A master oscillator can drive several klystrons in parallel to
provide the high peak-power levels required for RF linacs. 
   Figure 15.22 shows the two-cavity klystron amplifier. A steady-state or pulsed electron beam
with current Io and kinetic energy To enters the first cavity, the buncher. An input signal at
frequency fo supports TM010 cavity oscillation. The buncher imparts a harmonic velocity shift to
the beam. Following the discussion of Section 15.3 the velocity shift results in a modulated
current downstream. The load cavity, located at the point of peak modulation, usually has a
TM010 resonance at frequency fo. Section 15.2 showed how the modulated beam drives a resonant
oscillation.  Microwave energy is extracted from the load cavity by a loop or other coupling
device to drive low-impedance loads. A beam dump at the end of the klystron absorbs the
unused portion of beam energy. 
   Many klystrons have reentrant cavities like that of Figure 15.22. Compared with a pillbox
cavity of the same diameter a re-entrant cavity has a lower TM010 frequency because of the added
capacitance on axis. As a result re-entrant cavities are more compact for a given operating
frequency. Another advantage of the geometry is that the narrow gap gives a transit-time factor
(Section 15.2) close to unity. The gaps in klystrons are often defined by grids. The grids limit the
axial extent of cavity fields and confine oscillations to a single cavity. We shall see that the
klystron operates as an oscillator rather than an amplifier if microwave energy couples back
from the load cavity to the buncher.
   To find the best geometry for a klystron we must analyze the frequency content of bunched
electron beams. Figure 15.3 shows that the beam downstream from a harmonic buncher has a
modulation at the fundamental frequency fo and a steady-state component. The sharp peaks
suggest the presence of high-frequency components. We can find the harmonic content of the
bunched beam current by a Fourier analysis. Section 15.3 gives the current at a position
corresponding to bunching parameter P as:

                                                        I(t) = Io/(1 - PcosTot).                                                   (15.94)

We seek Fourier decomposition of the downstream current as a function of t', the arrival time:

Following standard techniques we can find the coefficients in Eq. (15.95) in terms of integrals 
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                            TABLE 15.1
                         MICROWAVE BANDS
 Band   Frequency  Wavelength        Band   Frequency  Wavelength
        range (GHz)    (m)                  range(GHz)    (mm)
------------------------------------------------------------------
  UHF        0.30       1.000           K          18       16.67
             1.12       0.268                    26.5       11.32

    L        1.12       0.268          Ka        26.5       11.32
             1.70       0.176                      40        7.50

   LS        1.70       0.176           Q          33        9.09
             2.60       0.115                      50        6.00

    S        2.60       0.115           U          40        7.50
             3.95       0.076                      60        5.00

    C        3.95       0.076           M          50        6.00
             5.85       0.051                      75        4.00

   XC        5.85       0.051           E          60        5.00
             8.20       0.037                      90        3.33

    X        8.20       0.037           F          90        3.33
            12.40       0.024                     140        2.14

   Ku       12.40       0.024           G         140        2.14
            18.00       0.017                     220        1.36

                                        R         220        1.36
                                                  325        0.92

(15.96)

(15.97)

(15.98)

over the current waveform:

Equation (15.69) implies that
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Figure 15.22. Schematic drawing of a two-cavity
klystron amplifier.

(15.100)

(15.102)

(15.103)

                                                        I(Tot') d(Tot') = Io d(Tot).                                              (15.99)

Substitution of Eq. (15.99) simplifies the integrals in Eqs. (15.96) through (15.98). We can then
evaluate the integrals over the variable t, the particle crossing time at the buncher. The
expression for ao becomes: 

We can modify the higher order terms by using the expression:

                                        t' = t + (L/vo) - (eVo/2To)(Lo/vo)sin(Tot).                                      (15.101)

Substitution of Eqs. (15.99) and (15.101) in Eqs. (15.97) and (15.98) leads to the equations:
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(15.105)

   Equations (15.102) and (15.103) have the analytic solutions [see, for instance, H.B. Dwight,
Tables of Integrals and Other Mathematical Data (Macmillan, New York, 1947)]:

                                                  an = 2IoJn(nP) cos(nToL/vo),                                              (15.104)

                                                    bn = 2IoJn(nP) sin(nToL/vo),

where Jn is a Bessel function of order n. Combining Eqs. (15.95), (15.100) and (15.104) gives the
downstream current:

   The expression of Eq. (15.105) consists of a series of phase-shifted harmonic components at
frequency nTo multiplied by the coefficients 2Jn(nP). Figure 15.23 plots the coefficients for
different harmonics as a function of the bunching parameter P. The proportion of high-order
modes reaches a peak at P = 1 where the density diverges to infinity. The amplitude of the
fundamental mode component reaches a maximum value at P = 1.84 – at this point I1 = 1.16Io.
To generate radiation at frequency fo the best location for the load cavity of a klystron is

                                                     L = 1.84 (vo/To)(eVo/2To).                                              (15.106)

Figure 15.23 shows that the beam carries significant components of high-order modes at
different values of P. With some sacrifice of energy efficiency a klystron can function as a
frequency-multiplying amplifier. Table 15.2 lists the best values of bunching parameter to
generate high-frequency output radiation along with the ratio of the harmonic current component
to the steady-state beam current. Figure 15.25 shows a klystron frequency doubler. 
    The harmonic analysis gives an upper limit for the energy efficiency of a klystron. Although
the beam carries a broad frequency spectrum, energy extraction occurs only from the current
component in resonance with the output cavity. If the load cavity has a resonance at the
frequency of the buncher cavity and if P = 1.84, then the cavity extracts energy from the
component of beam current 1.16Iocos(Tot). Section 15.2 showed that the impedance of the load
cavity at resonance is resistive. If Ro is the on-axis impedance, then the voltage across the load
cavity is V(t) = 1.16 IoRo cos(Tot). The time-averaged power extracted from the beam is

                                                            P = (1.16Io)2Ro/2.                                                    (15.107)

The power rises as the square of the beam current. There is an upper limit on IoRo – the
amplitude of the cavity voltage cannot exceed To/e. A higher voltage results in reflection of
electron orbits. This process reduces the average beam current and may cause feedback to the
buncher cavity. The limiting value of the on-axis cavity impedance is

                                                           Ro # (To/e)/(1.16Io).                                                 (15.108)
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Figure 15.23. Harmonic content of a beam with a sinusoidal energy modulation as a function of
the bunching parameter P.

                           TABLE 15.2
             FREQUENCY MULTIPLICATION IN A KLYSTRON
Harmonic number, n   Bunching parameter         In/Io
     (f/fo)          for maximum output       (maximum)     

------------------------------------------------------
       1                   1.84                1.16
       2                   1.52                0.97        
       3                   1.40                0.87
       4                   1.33                0.80
       5                   1.28                0.75
      10                   1.18                0.61

For the highest value of Ro the extracted power from the beam is 

                                                   Pmax = 1.16IoTo/2e = 0.58 IoTo/e.                                     (15.109)

The beam power incident at the buncher is IoTo/e. Therefore, the maximum efficiency for the
two-cavity klystron is 58%. The efficiency of actual devices is lower for several reasons. The 
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Figure 15.24. Components of a klystron frequency multiplier.

(15.110)

cavity impedance must be less than the limit of Eq. (15.108). There are power losses to the load
cavity walls and output waveguides. Also the thermionic cathode of the electron gun requires
continuous power input. A low-power (~10 W) two-cavity klystron may have an efficiency of
10% and a power gain of only 10 decibels (dB). 
   The power gain of a klystron amplifier equals the extracted output power divided by the input
power to excite the buncher. For a gain value G in dB the power multiplication factor is:

Higher gains and efficiencies are possible with multi-cavity klystrons. Figure 15.25 shows a
four-cavity klystron. The voltage in the first cavity is low, insufficient to provide complete beam
modulation in the second cavity. Nonetheless, the resonant component of current at the second
cavity is high enough to drive the cavity to a high voltage. The second cavity acts as a buncher,
producing an enhanced current modulation in the third. With proper design the distance between
the third and forth cavities satisfies Eq. (15.106) – at the fourth cavity the beam has the highest
possible harmonic current component at fo. In the limit where a klystron has many cavities over
the bunching length we can describe the growth of current variations by the theory of Section
14.4. Beam dynamics in a multi-cavity klystron is the discrete, non-linear analogy of a resistive
wall instability. A commercial five-cavity klystron may generate 25 MW microwave pulses at 3
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GHz with a 50 dB gain. A large device may achieve an energy efficiency of 40% with typical
beam parameters of To = 250 keV and Io = 250 A.
   Klystrons also function as oscillators if there is feedback from the load cavities to the buncher.
Either the beam or a portion of the electromagnetic output energy can carry feedback
information. The simplest method to operate a two-cavity klystron as an oscillator is to connect
the cavities with a transmission line terminated by coupling loops. A fraction of the power from
the load cavity maintains the resonant oscillation in the bunching cavity. The steady-state
amplitudes of electromagnetic fields in the cavities are determined by the beam power and the
loaded Q values. It is also possible to achieve feedback through the beam modulations. This
approach is the basis for the reflex klystron. The device requires only a single resonant cavity –
by changing the geometry of the cavity the reflex klystron can provide a reference signal over a
wide frequency range.
   Figure 15.26 shows the geometry of the reflex klystron. A single resonant cavity acts as both a
buncher and a load. Incident electrons pass through the cavity in the +z direction. If the cavity
has a TM010 mode oscillation, the electrons emerge with a shift in axial kinetic energy at
frequency fo. A repeller electrode creates a retarding axial electric field in the region downstream
from the cavity. The field is strong enough to stop the electrons and return them to the cavity.
Electrons with high energy penetrate farther into the region of electric field; therefore, they take
a longer time to return to the cavity. The energy dependence of the reflex time can lead to
bunching. With the correct choice of parameters the returning beam is strongly modulated.

   We can use the model of Section 15.3 to describe beam bunching in the reflex klystron. Again,
we shall neglect the effects of space-charge and axial velocity spread. If the cavity has a voltage
V(t) electrons moving in the +z direction emerge with axial velocity

                                                          v(t)  =  vo [1 + eV(t)/To]1/2.                                        (15.111)

where vo and To are the velocity and kinetic energy of nonrelativistic electrons from the gun. The
variable t is the time when incident electrons cross the gap. Suppose there is a uniform axial
electric field Eo downstream from the cavity. The following equation describes the motion of
electrons in this region:

                                                                 me (dv'/dJ) = -eEo.                                             (15.112)

The variable J is the elapsed time after leaving the cavity. The solution of Eq. (15.112) with the
initial condition that v'(0) = v(t) is:

                                                            z'(J) = v(t)J - eEo
2J2/2me.                                        (15.113)

Setting z(J) = 0 in Eq. (15.113) we find that the interval for an electron to return to the cavity is:

                                                                    J = 2mev(t)/eEo.                                               (15.114)

Finally we can use Eq. (15.111) to find the time t’ when electrons cross the cavity in the reverse
direction as a function of the first crossing time:
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Figure 15.25. Cut-away view of the Varian VA-849 four-cavity klystron. (Courtesy of Varian
Associates).
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Figure 15.26. Components of a reflex klystron.

(15.115)

(15.116)

Setting V(t) = Vosin(Tot), taking the time derivative of Eq. (15.115) and substituting in Eq.
(15.69) gives the current of the returning electrons:

The bunching parameter for the reflex klystron oscillator is

                                                            Po = 2ToVo/Eovo.                                                      (15.117)
 
The highest oscillator output occurs when Po = 1.84.
   There are two differences between Eq. (15.116) and Eq. (15.94) for the two-cavity klystron.
First the plus sign in the denominator shows that high-energy electrons take longer to return to
the gap. Second I(t) has a negative value because returning electrons move in the opposite
direction from incident electrons. For a strong oscillation electrons should return to the cavity
with the correct phase to drive the voltage oscillation. Suppose a group of incident electrons
crosses the cavity near t = 0. Because of the rising voltage these particles will be bunched when
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they return to the cavity. The bunch drives the cavity oscillation if V(t) has a maximum negative
value when they return. We can write this condition mathematically as:

                                                  J = (m + 3/4)(1/fo),    m = 0,1,2,....                                   (15.118)

Equation (15.118) is the elapsed return time for electrons that cross the gap when V(t) = 0.
Setting the equation equal to Eq. 15.114 with v(t) = vo gives:

                                                         2mevo/eEo = (m + 3/4)(1/fo).                                       (15.119)

The best operation of the reflex klystron occurs when Po = 1.84 and the condition of Eq. (15.119)
holds. For a given cavity tune (fo) the voltages on the electron gun and repeller electrode are
adjusted for maximum power output.
   As an application example suppose we want to design a 3 GHz reflex klystron with a 30 keV
electron beam (vo = 1.0 × 108 m/s). If m = 1 Eq. (15.119) gives a value Eo = 2 × 106 V/m. If Po =
1.84 then the cavity voltage is Vo = 104 V. We can find conditions where Vo equals the optimum
value by applying power balance for a given value of net cavity Q. The quantity factor includes
contributions from wall loading and output coupling. For a given beam power we can achieve a
desired value of Vo by adjusting the output power coupling.
   The available power from a single klystron is limited in part by beam optics. The 250 keV, 250
A beam that we used as an example has a perveance of 2 :perv, near the limit of conventional
gun design. The strong focusing magnets necessary for high-perveance beams are dominant
contributors to the mass and size of high-power klystrons. A potential method to extend the
pulsed-power output of klystrons to the GW range is the use of relativistic driving beams. We
discussed techniques to bunch such beams in Section 15.3. One advantage of relativistic beams
is that modulations persist over long distances because the electrons have a longitudinal mass of
(3me (Section 14.1). A high-power modulated beam can drive an extended array of load cavities.
Also, relativistic beams reduce demands on the focusing the beam (Section 9.4). For a given
beam radius and field magnitude, the matched current scales as: 

                                                                     I ~ $(.                                                            (15.120)

The corresponding beam power equals the product of the current and kinetic energy:

                                                              P ~ ((-1)((2-1)1/2.                                                 (15.121)

For relativistic beams the allowed power scales approximately as (2. As an example a magnetic
field less than 0.1 tesla can contain a 5 GW electron beam with To = 5 MeV and Io = 1 kA.
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15.5. Traveling-wave tube

   The traveling-wave tube is a widely-used microwave amplifier. Although it does not achieve
the power levels of a klystron it has the advantage that it amplifies over a broad frequency range.
Wide band traveling-wave tubes used for FM communications have high gain (35-50 dB) over a
full octave bandwidth (2:1 frequency shift). Traveling-wave tubes are also used in tunable
radars. A pulsed S-band tube can generate 10 MW of power at an efficiency of about 40 per cent.
We shall study the traveling-wave tube in detail because it illustrates an important area of beam
physics. The equations we shall derive describe a broad class of devices that rely on longitudinal
coupling of beams to slow wave structures.
   Figure 15.27 shows a schematic view of a high-power traveling-wave tube. A Pierce gun
(Section 7.1) generates a space-charge-dominated nonrelativistic electron beam that propagates
through a solenoidal magnetic field in a Brillouin equilibrium (Section 10.3). The beam passes
through a structure that supports a slow electromagnetic wave with phase velocity close to that
of the beam. A low-level input excites the slow wave structure at the beam entrance. The electric
field of the wave bunches the beam. The electrons shift in phase relative to the wave so that the
beam gives up energy. The wave amplitude increases with a consequent increase in beam
bunching. The result is that the power flux of the wave is much larger at the end of the tube
while the beam energy is lower.
   We shall begin the analysis by reviewing some properties of slow-wave structures, particularly
the helical transmission line. The helical line is used in many low-power tubes because it has low
dispersion – the phase velocity of waves is almost independent of frequency. This characteristic
gives the tube its broad bandwidth. Figure 15.28a shows the geometry of the helical transmission
line. The main difference from a standard coaxial line is that the center conductor is a helical
winding rather than a cylinder. We can understand wave transport on the helical line by
comparing the device to a standard coaxial line. Figure 15.28b illustrates the familiar lumped
circuit element model for a coaxial line with inner radius ri and outer radius ro. The model
divides the line into differential elements of length )z. The quantity C is the capacitance per unit
length between the inner and outer conductor of the coaxial line:

                                                            C = 2B,o/ln(ro/ri).                                                   (15.122)

and L is the inductance per unit length:

                                                          L = (:o/2B) ln(ro/ri).                                                  (15.123)

The quantity V(z,t) is the voltage of the inner conductor relative to the grounded outer conductor
and I(z,t) is the axial current flowing along the inner conductor. For harmonic waves that flow in
the +z direction, the voltage and current have the form:

                                                       V(z,t) = Vo exp[j(Tt-kz)].                                             (15.124)

                                                    I(z,t) = (Vo/Zo) exp[j(Tt-kz)].
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Figure 15.27. Schematic view of traveling wave tube with a helical transmission lines. (From
J.R. Pierce, Traveling Wave Tubes. Used by permission, Van Nostrand Reinhold Company.)

where 

                                                                  Zo = (L/C)1/2.                                                     (15.125)

The quantity Zo is the characteristic impedance of the line. The phase velocity of the waves:

                                                                T/k = 1/(LC)1/2,                                                   (15.126)

is independent of frequency. In a vacuum coaxial line, the phase velocity equals the speed of
light.
   We cannot use waves on a coaxial line to extract energy from a beam for two reasons. First the
phase velocity of the waves is always greater than the beam velocity. Second waves on a coaxial
line are transverse – they have no electric field component along the propagation direction. The
helical transmission line solves these problems – it slows the waves and creates an axial electric
field on the axis. To analyze the structure we take ri as the radius of the helical windings and ro
as the radius of the grounded outer conductor. The windings advance an axial distance ) per
turn. The quantity R is the pitch angle of the helix. The distance between turns is:

                                                                ) = 2Bri tanR.                                                    (15.127)
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Figure 15.28. Coaxial transmission line with a helical center conductor. a) Geometry. b)
Lumped circuit element model of a conventional coaxial transmission line with a
cylindrical center conductor. c) Modified lumped circuit element model for a coaxial
transmission line with a helical center conductor.
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(15.131)

We assume that the distance between turns is much smaller than the distance between the helix
and outer conductor:

                                                                  ) n (ro-ri).                                                        (15.128)

When the condition of Eq. (15.128) holds the capacitance per unit length between the helix and
the outer conductor is almost equal to the value for the coaxial transmission line [Eq. (15.122)].
The main effect of the helix is to increase the inductance per length. Current flow through the
winding creates an internal axial magnetic field that supplements the external toroidal field.
Equation (15.126) shows that an increased value of L results in reduced phase velocity.
   We can apply the transmission line model of Figure 15.28b with the modified value of
inductance per length L if the capacitance between turns of the helix is small. The validity
condition is that the axial flow of real current along the helix is much larger than the axial
displacement current. If we denote the axial displacement current as id and the real current as ir,
then the following condition defines a line with low dispersion:

                                                                       id/ir n 1.                                                        (15.129)

We can derive an alternative form of Eq. (15.129) in terms of the properties of the line and the
transmitted wave. The capacitance between two turns of the helix is roughly Cturn ~ 2B,ori. The
capacitance between one turn and the outer conductor is about Cout ~ C), where Eq. (15.122)
defines C. The ratio of the capacitances is:

                                                             Cout/Cturn ~ )/(ro-ri).                                               (15.130)

   The inductance per turn is L), where L is the inductance per length of the helix. Suppose a
wave with frequency T creates a voltage difference )V between two turns. The ratio of axial
displacement current to real current on center conductor is

If id is small then k of the wave satisfies Eq. (15.126). We can rewrite the condition of Eq.
(15.129) as

                                                  id/ir ~ (k))2 [)/(ro-ri)] n 1,                                                (15.132)

or

                                                         ) n (1/k) [(ro-ri)/)]1/2.                                                (15.133)

A typical value of the helix spacing is ) < (ro-ri)/5. Equation (15.133) implies that the helical
line acts like a transmission line for long wavelengths, 8 oB). 
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(15.134)

(15.135)

(15.136)

   When 8 o ro we can make a simple estimate of the total inductance per length by adding the
contribution from an infinite-length solenoid:

The characteristic impedance of the helical line is

Inserting Eq. (15.134) into Eq. (15.126) gives the following expression for the phase velocity:

The final form of Eq. (15.136) is valid for R n 1. 
   Note that phase velocity of Eq. (15.136) is approximately equal to the length ) divided by the
time for an electromagnetic disturbance to follow a turn of the helix, 2Bri/c. One interpretation of
the effect of the helix is that it forces electromagnetic waves to follow a longer path. As an
example consider a helical line with phase velocity equal to the velocity of a 5 keV electron
beam, vo = 0.14c. For the choice ri = 0.01 and ro = 0.03 m, Eq. (15.136) predicts a pitch angle of
R = 5.4°. The distance per turn is ) = 0.006 m. The helix acts like transmission line for 8o 0.02
m or f n 2 GHz.
   For a given slow-wave structure we can derive equations for the complete traveling wave tube
circuit. Suppose an electron beam of kinetic energy eVo and current Io travels inside the helix.
The beam interacts with the axial electric field generated by voltage differences between the
windings. To understand the device we shall add the effects of the beam to the lumped circuit
element model of Figure 15.28b. For a helical line a natural choice for the length of differential
elements is the distance between turns ). Let the index k represent the number of turns on the
winding counted from the device entrance. The quantity I is axial component of real current in
the helix – the current at turn k is Ik. Similarly Vk is the average voltage between the outer
conductor and the kth turn.
   Coupling between the beam and the helix is capacitive because the beam does not contact the
wires. Figure 15.28c shows an element of the circuit with the contribution from the beam. We
distinguish beam node points on axis from the circuit node points on the helix. The charge at
beam node point k is qk ), where qk is the beam line charge density. The charge at k changes with
time because of the axial flow of beam current. The principle of charge conservation implies that
the total time-varying beam current entering the beam node point flows through the coupling
capacitance to the circuit node point. As a result the beam deposits a charge qk ) at the circuit
node point k. 
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(15.138)

(15.139)

(15.143)

   If ik is the beam current at point k the conservation of charge implies that

                                                                Mqk/Mt = - Mik/Mz.                                                  (15.137)

Modifying the standard analysis of the lumped circuit element model [CPA, Chap. 9] the
transmission line equations are

The second term on the right-hand side of Eq. (15.138) is the beam contribution. Taking
harmonic perturbations we can convert Eqs. (15.138) and (15.139) to an algebraic form. In the
traveling-wave tube we seek a steady-state solution with waves that grow with distance from the
injection point. Therefore we shall use the form:

                                                   V, I, i ~ exp[j((z - Tt)].                                                   (15.140)

The frequency T is a real number while the wave number ( may have a complex part to
represent spatial growth. Substituting into Eqs. (15.138) and (15.139) gives following circuit
equations. 

                                                         (I = TCV - (i,                                                           (15.141)

                                                            (V = TLI.

The solution for the circuit voltage in terms of beam current is,

                                                  V = i (TL()/(T2LC - (2).                                                  (15.142)

We can express Eq. (15.142) in a convenient form using the characteristic impedance of the
transmission line [Eq. (15.125)]:

The quantity k in Eq. (15.143) is the wave number of a wave on the transmission line with
frequency T when there is no beam:

                                                            k = T(LC)1/2.                                                           (15.144)

   To complete the solution we need an equation that describes the effect of the transmission line
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voltage on the beam. The line circuit couples to the beam through its axial electric field. In the
limit that 8 o ri the electric field is approximately:

                                                          Ez(k+1/2) – - (Vk+1 - Vk)/).                                           (15.145)

Equation (15.145) holds when the beam is closely coupled to the transmission line. We can add
correction factors to account for contributions from the beam space-charge and other effects. The
following equation describes small changes in the axial velocity of a cold, nonrelativistic
electron beam:

                                                   (Mvz/Mt) = -eEz/me - vo (Mvz/Mz).                                         (15.146)

Equation (15.145) implies that Ez – -MV/Mz. Taking velocity and voltage variations of the form of
Eq. (15.140), Eq. (15.146) becomes

                                                         vz (T - (vo) = (e(/me) V.                                            (15.147)

To simplify the notation we shall define an effective wavenumber ko that relates the wave
frequency to the beam velocity

                                                                  T/ko = vo.                                                          (15.148)

Equation (15.147) becomes 

                                                     vz = [(e(/mevo)/((-ko)] V.                                               (15.149)

   To complete the beam equation we must relate changes in the axial velocity to changes in the
beam current. For a linear analysis we assume that the current consists of a steady-state value
and a small perturbation, Io + i. The beam current at a point depends on both the average beam
velocity (vo + vz) and the line density (no + n):

                                                  (Io + i) = -e (no + n) (vo + vz).                                           (15.150)

The steady-state line density is:

                                                                no = Io/evo.                                                          (15.151)

Dropping second-order terms, Eq. (15.150) implies that

                                                         i – - (Io/vo) vz - evon.                                                  (15.152)

The line density of the beam is also related to the axial current by the condition of conservation
of charge:

                                                             e(Mn/Mt) = -Mi/Mz.                                                   (15.153)
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(15.157)

Combining equations and applying the form of Eq. (15.140) we find the following relationship
between axial velocity of beam and the current:

                                                       i = -[(koIo/vo)/(ko - ()] vz.                                             (15.154)

Equations (15.149) and (15.154) imply the following relationship for the beam current in terms
of the circuit voltage:

                                                     i = -[ko(/(ko-()2] (Io/2Vo) V.                                          (15.155)

In Eq. (15.155) the quantity eVo is the kinetic energy of the beam,

                                                             eVo = (mevo
2/2)1/2.                                                  (15.156)

   We have enough information to construct a complete equation for wave behavior in the
traveling-wave tube. The combination of Eqs. (15.143) and (15.155) gives the following
dispersion relationship:

Equation (15.157) specifies the complex propagation constant ( in terms of the properties of the
beam and transmission line.
   We can derive a simple solution of Eq. (15.157) by invoking a condition from a more
advanced analysis. The maximum growth rate for unstable solutions occurs when 

                                                                  ko = k.                                                               (15.158)

Equation (15.158) implies that the beam velocity equals the phase velocity of an unperturbed
wave in the transmission line. We seek a solution where the phase velocity of the wave is close
to the beam velocity:

                                                                ( = ko + >.                                                          (15.159)

The quantity > in Eq. (15.159) is small, |>|| n ko. Substituting in Eq. (15.157) we find:

                                                        >3 = - (ZoIo/4Vo) ko
3.                                                   (15.160)

   Equation (15.160) is similar to the dispersion relationship for the two-stream instability
(Section 14.1). It has three solutions:
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(15.161)

(15.162)

(15.163)

Equations (15.161) through (15.163) incorporate the gain parameter:

                                                           C = (ZoIo/4Vo)1/3.                                                      (15.164)

The gain parameter is proportional to the cube root of ratio of the circuit impedance to the beam
impedance, Vo/Io. When the circuit impedance is high and the beam impedance is low variations
of the beam current induce large voltages on the transmission line. In turn the voltage causes
strong perturbations of the electron velocity.
   In the solution of Eq. (15.161) > is a real number. For this mode the presence of the beam
causes a shift in the wave number but no growth of the wave. The second solution [Eq. (15.162)]
has a positive imaginary part – the corresponding wave decays. The third solution is the most
interesting – the wave grows in the presence of the beam. The voltage of waves on the helical
transmission line varies as:

                                  V(z,t) ~ exp{j[ko(1 - C/2)z - Tt]} exp{[(3)1/2Cko/2]}z.                    (15.165)

Note that the phase velocity of the wave of Eq. (15.165) is less than the beam velocity – the
growing solution is a slow wave. The difference between the wave and beam velocities is
proportional to C. The amount of energy extracted from the beam also scales with C. When the
condition for the best coupling between the beam and transmission line holds [Eq. (15.158)] the
growth length of the wave amplitude is:

                                                               Le = 2/(3)1/2Cko.                                                   (15.166)

   The traveling-wave tube is an amplifier – the frequency and amplitude of the output signal
follow the input signal. It is essential that there is no feedback from the high-power output to the
low-power input. Feedback occurs if there is an imperfect impedance match at the output,
reflecting a fraction of the wave energy toward the input. One solution to the problem is to coat
the helix with a resistive material at a point about halfway along the tube. Although the resistive
coating damps waves that travel in both directions, it has little effect on the gain of the tube.
Although the layer almost eliminates the forward-directed waves the beam crosses unimpeded.
The partially-bunched beam carries information about the input wave across the resistive layer.
A resistive coating that attenuates waves on the transmission line by 70 dB may reduce the tube
gain by only 3 dB. Like the klystron, the traveling-wave tube can also function as an oscillator.
In this application it is desirable for wave energy to propagate back toward the beam input. An
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oscillating traveling wave tube is called a backward wave oscillator.
   We should note that there are alternative slow wave structures that have application to
traveling wave tubes besides the helical transmission line. High power devices often incorporate
a coupled-cavity structure similar to those used on linear accelerators. Chapter 14 of [CPA]
discusses coupled cavity arrays for charged particle acceleration. In an accelerator the phase
velocity of the traveling wave increases with distance along the structure. In contrast, the phase
velocity in a traveling-wave tube is slightly less than the beam velocity and decreases with
distance. Another difference is that the beam in a traveling-wave tube is continuous at injection –
bunching results from the interaction with the slow wave. The coupled-cavity structure has two
advantages over the helical line: 1) it is mechanically stronger,and 2) the geometry allows higher
RF electric fields without breakdown. The disadvantage is that a cavity array has dispersion. The
wave number, and hence the wave phase velocity, depends on the frequency. Tubes with a
coupled-cavity structure generally operate with a single frequency input. 

15.6. Magnetron

   The magnetron was the first successful source of high-power microwave radiation. It is still a
widely-used microwave oscillator with applications in industrial processing, microwave ovens,
and radar. The magnetron achieves the highest energy efficiency of any source in common use.
Conversion efficiencies of 50% to 80% are typical. Magnetrons can generate high output power.
In pulsed mode single magnetrons can produce over one MW of microwave power. Average
power levels of several kW are possible. 
   The magnetron converts the energy of a sheet electron beam to microwave radiation. An
applied electric field normal to a magnetic field drives the beam. Figure 15.29 shows a multi-
cavity traveling-wave magnetron, the most common type. It consists of coaxial cathode and
anode electrodes immersed in a uniform axial magnetic field. A radial electric field between the
electrodes causes an azimuthal drift of electrons emitted from the cathode. The anode is a
complex structure, interrupted periodically by resonant cavities. The cavities support
electromagnetic oscillations – the electric field of the modes points in the azimuthal direction
and has maximum amplitude where the cavities connect to the anode-cathode gap. The
oscillations in individual cavities interact through the shared region of the anode-cathode gap –
the structure is a closed coupled-cavity array. The coupled electromagnetic oscillations resolve
into slow electromagnetic waves that propagate in the azimuthal direction. An electron beam that
travels at the same velocity as the wave phase velocity receives periodic displacements in the
radial direction. The concentration of electron density at different radii results in a net transfer of
energy from the drifting electrons to the wave. The resulting microwave power is extracted from
the magnetron through one or more coupling devices in the resonators.
   The self-consistent motion of electrons in the electromagnetic fields of the magnetron is a
complex collective problem. As a result development of the magnetron has been largely 
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Figure 15.29. Schematic diagram of a multi-cavity traveling-wave magnetron
with output coupled to a coaxial transmission line. A) Anode block. B) Cathode
with end hats to inhibit axial electron loss. C) Resonant cavity. D) Coupling loop
and coaxial tranmission line. (From H.J. Reich, P.F. Ordung, H.L. Krauss, and
J.G. Skalnik, Microwave Theory and Techniques. Used by permission, Van
Nostrand Reinhold Company.)

empirical, guided by conceptual models. This section reviews the principles of radiation
generation by drifting electrons in crossed fields. After studying electron equilibria, we shall
develop models for coupled electromagnetic oscillations in magnetrons. Finally, we shall discuss
qualitative features of the interaction of electrons and oscillating fields.
   We have already studied self-consistent equilibria of electrons in related crossed-field systems.
We derived Brillouin flow solutions for conical, planar and cylindrical geometries. It is easy to
extend the results to the coaxial geometry of Figure 15.30. Nonrelativistic equations usually
provide a good description of electron motion. The applied voltage Vo between the cathode and
anode is almost always less than 100 kV; furthermore, we shall see that the electron drift energy
is much smaller than eVo. The diamagnetic field of the non-relativistic rotating electron
distribution is much smaller than the applied field (Section 10.3). Therefore we take a uniform
magnetic field with value Bo.
   With a cylindrical anode and no microwave fields the forces on the electrons are symmetric in
the azimuthal direction. The canonical angular momentum of electrons P2 is a conserved
quantity. If all electrons leave the cathode with zero azimuthal velocity, the distribution is a
delta-function in canonical angular momentum, *(P2). If we normalize the vector potential so
that it equals zero on the cathode, A2(rc) = 0, then the electron velocity is:

                                                            v2(r) = eA2(r)/me.                                                   (15.167)

The vector potential and axial magnetic field are related by:
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Figure 15.30. Electron equilibrium in a magnetically-insulated
gap between two cylinders.

(15.170)

                                                       Bz = (1/r) M(rA2)/Mr = Bo.                                           (15.168)

Integrating Eq. (15.168) from the surface of the cathode to radius r we find that 

                                                         A2(r) = Bo(r2 - rc
2)/2r.                                               (15.169)

Inserting Eq. (15.169) into Eq. (15.167) gives the following expression for the angular velocity
of electrons as a function of radius:

In contrast to the result for a solid cylindrical beam [Eq. (10.29)], Eq. (15.70) shows that the
angular frequency varies with radius.
   The constraint of Eq. (15.167) permits a variety of equilibrium solutions. The type of solution
depends on how the radial electron velocity vr varies with radius. The Brillouin flow equilibrium
corresponds to the choice vr(r) = 0. The corresponding distribution is a delta function both in
canonical angular momentum and total energy.  We expect that electrons have such a laminar-
flow equilibrium if the magnetron voltage rises to its final value over a time much longer than
1/Tg and if electrons remain in the gap indefinitely. Clearly these conditions cannot apply to the
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(15.173)

(15.174)

magnetron because electrons continually escape by the generation of microwave radiation. In
reality electrons follow the scalloped orbits discussed in Section 8.1. Nonetheless all
introductory texts discuss the magnetron in terms of the Brillouin equilibrium for the following
pragmatic reasons. First there is an infinite set of possible beam distributions and we have little
guidance on how to choose the right one. Second the derivation with scalloped electron orbits is
too difficult for an analytic solution. We should view the Brillouin flow solution in the following
treatment as a limiting case that gives physical insight and useful scaling relationships. 
   When electron flow is laminar the equation of energy conservation has the form:

                                                       -eN(r) + mer2(d2/dt)2 = 0.                                            (15.171)
Equation (15.171) holds for the following boundary conditions on the electrostatic potential:

                                                           N(rc) = 0,  N(ra) = Vo.                                              (15.172)

Combining Eqs. (15.170) and (15.171), the self-consistent radial variation of potential for a
Brillouin equilibrium is:

   Suppose that the electron cloud extends almost to the anode. Setting r = ra in Eq. (15.173)
gives a minimum value of magnetic field for magnetic insulation of the gap: 

Equation (15.174) states the Hull cutoff condition – we denote the cutoff value of magnetic field
as BH. When Bo exceeds BH the electrons extend partly across the gap. The region filled by
electrons is often called the Brillouin cloud. 
   We shall see that the strongest interaction between the electrons and the electromagnetic fields
occurs on the surface of the Brillouin cloud at radius ro. We must be sure that this surface is far
enough from the cathode so that the electrons experience strong microwave fields. On the other
hand the surface should be far enough from the anode so that electrons interact coherently with
the traveling wave over an extended distance. The radius of the Brillouin cloud surface is usually
in the range

                                                  (ro-rc)/(ra-rc) ~ 0.1 - 0.2.

We can express ro in terms of the applied voltage and magnetic field. Differentiation of Eq.
(15.173) gives the radial electric field within the Brillouin cloud while the Laplace equation
gives the field between ro and ra. The solutions must match at ro. Integrating the electric field
between the cathode and anode and setting the result equal to Vo gives the following equation:



785

Figure 15.31. Normalized width of the Brillouin cloud between cylindrical electrodes as
a function of applied field. rc: cathode radius, ra: anode radius, ro: Brillouin cloud surface
radius, Bo: applied magnetic field, BH: Hull cutoff magnetic field.

(15.175)

(15.176)

A numerical solution of Eq. (15.175) yields ro as a function of Bo. Figure 15.31 plots the
normalized width of the Brillouin cloud (ro-rc)/ra as a function of Bo/BH for the choice rc/ra =
0.333. Following the discussion of Section 8.1 the width scales approximately as 1/(Bo/BH)2. 
   The most important property of the electron distribution for the operation of the magnetron is
the azimuthal velocity of electrons on the Brillouin cloud surface. The velocity should closely
match the phase velocity of the slow wave supported by the resonant structure. Equations
(15.170) and (15.174) imply that
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As an example for Vo = 70 kV, rc/ra = 0.5 and Bo/BH = 4 we find that ro/ra = 0.67 and v2/c = 0.41. 
   To understand the magnetron we must be familiar with electromagnetic oscillations in complex
structures. We shall concentrate on unperturbed modes of magnetron resonators with no
electrons. The resonant cavities in the anode block may have different shapes to suit specific
applications – the simplest geometry to analyze is that of Figure 15.32a. Here the cavities are
slots of uniform width. The metal extensions that define the cavities are called vanes. We assume
that the structure has infinite length in the direction out of the page. 
   To begin consider a single anode slot resonator in isolation. The slot has width d and length l.
We can treat the slot as a parallel-plate transmission line [CPA, Section 9.8]. The line has a
short-circuit termination at the outer radius and an open-circuit termination where it meets the
anode-cathode gap. The isolated shorted line is a quarter-wave resonator – the fundamental
mode has frequency:

                                                        fo = To/2B = c/4l.                                                        (15.177)

The cavity of Figure 15.32b has l = 0.02 m; therefore, fo = 3.75 GHz. The figure shows
calculated field variations. The electric field is strongest at the open end – the field varies with
radial position as:

                                                    E(r) = Eo cos[B(r-ra)/2l].                                                (15.178)

The mode magnetic field has maximum amplitude at the shorted end.
   For a given mode Section 15.2 showed that we can represent a resonant cavity by an equivalent
LC circuit. Figure 15.32c shows the circuit for the single slot resonator with an arbitrary length
)z in the z direction. We define the mode voltage as the integral of electric field across the open
circuit end – the strength of this electric field determines the amplitude of traveling-wave in the
gap. We take the oscillator current i equal to the total displacement current across the slot.
Following the method of Section 15.2, the equivalent capacitance and inductance are:

                                             C = (2/B),o l)z/d,   L = (2/B))z:o dl.                                   (15.179)

For the dimensions in Figure 15.32b (d = 7.32 × 10-3 m, l = 0.02 m) Eq. (15.179) implies that
C/)z = 1.54 × 10-11 F/m and L/)z = 1.17 × 10-10 H-m.
   In the magnetron, the resonators are not independent because adjacent cavities share a vane.
The set of N resonators forms a coupled-cavity array. Figure 15.32d shows an equivalent circuit
model for a set of slots ignoring the effect of the magnetron cathode. Resonant oscillations in
individual cavities generate differences in the relative voltages of the connecting vanes. The
phase vane voltage oscillations defining a traveling-wave component of azimuthal electric field.
If all cavities have the same resonant frequency To then we can write the voltage on the nth vane
as:

                                                           Vn(t) = Vn exp(jTot).                                                (15.180)

The resonant frequency of an isolated cavity is To = (LC)1/2. Figure 15.32e shows the lumped
circuit element model with the effect of the cathode included. There is an extra capacitance Cc
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between each vane and the cathode. Displacement current flows across the anode-cathode gap
when the cathode and vanes are at different voltages. We take the cathode as a reference
equipotential plane with V = 0 because the azimuthal electric fields of the traveling wave equal
zero on its surface. 
   The solution of the equivalent circuit of Figure 15.32e gives insight into the operation of the
magnetron and the properties of coupled-cavity arrays. Because all voltages and currents vary
harmonically at angular frequency T, we can apply the method of AC impedances discussed in
Section 15.2. The quantity In is the total current that crosses cavity n from vane n to n+1 – the
quantity equals the sum of currents through the inductor and capacitor. The difference in voltage
between two vanes is the product of the net current times the AC impedance of the resonator Zr:

                                                            Vn-1 - Vn = In-1 Zr.                                                    (15.181)

The resonator impedance is the parallel combination of impedances for the inductor and the
capacitor [Eqs. (15.52)]:

                                                          Zr = jTL/(1-T2LC).                                                   (15.182)

Similarly, the vane voltage difference across the next cavity is 

                                                                Vn - Vn+1 = In Zr.                                                  (15.183)

We can find another relationship for the voltage at vane n. The voltage equals the product of the
total current flowing to the vane times the shunt impedance to the cathode Zs:

                                                               Vn = (In-1 - In) Zc.                                                  (15.184)

The shunt impedance is:

                                                                   Zc = 1/jTCc.                                                     (15.185)

   The combination of Eqs. (15.181), (15.183) and (15.184) gives the following difference
equation for the amplitudes of the vane voltages:

                                                  Vn+1 - 2 [1 + Zr/2Zc] Vn + Vn-1 = 0.                                     (15.186)

Equation (15.186) is a familiar relationship in accelerator physics. It also describes the
propagation of particles through periodic focusing systems. Chapter 8 of [CPA] discusses the
solution of the difference equation in detail. The amplitudes of the vane voltages satisfy the
relationship:

                                                               Vn = Vo cos(n:).                                                   (15.187)

The quantity : is a phase difference in the voltage between adjacent vanes. Substituting Eq.
(15.187) in Eq. (15.186) we find that:
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Figure 15.32. ) Properties of azimuthal traveling waves in the
magnetron. a) Cross-section of magnetron with slot resonators. b)
Variation of electric field for the fundamental mode in a single slot
resonator. c) Lumped element circuit model for an independent single
slot resonator. d) Array of slot resonators coupled by shared vanes with
an anode of infinite diameter. e) Array of slot resonators coupled by
anode vanes with capacitance between the vane tips and the cathode.
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Figure 15.32. (Continued)
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(15.192)

                                                              cos: = 1 + Zr/2Zc.                                                 (15.188)

Substitution from Eqs. (15.182) and (15.185) gives the following equation for the frequency of a
coupled mode with phase advance ::

                                                      T2LCc/2(1-T2LC) = 1 - cos:.                                       (15.189)

   We can rewrite Eq. 15.189 in terms of the dimensionless quantities:

                                                              S = T/To = TLC,                                                  (15.190)

                                                                     6 = Co/C.                                                        (15.191)

The quantity S is the frequency divided by the frequency of the uncoupled cavity mode, while 6
is the normalized value of the shunt capacitance that couples the oscillators together. The
frequency equation is

  The values of : allowed for a magnetron with N cavities and vanes must satisfy a periodic
condition – the voltage level must  repeat after traversing N cavities:

                                                             cos(N:) = 1.                                                          (15.193)

Equation (15.193) implies that

                                                 : = m (2B/N),    m = 1, 2, 3,....                                         (15.194)

Values of m higher than N are redundant; for example, the voltage  variation for m = N+1 is the
same as that for m = 1. We conclude  that there are N unique modes of oscillation for N values of
m.  Figure 15.33 shows the frequency as a function of :n for a six-cavity magnetron. When m =
N the phase advance is :N = 2B. The  corresponding oscillation is called the 2B-mode. This
mode is of  little interest because it has zero frequency. If the magnetron has an even number of
cavities, then there is a mode with :  = B for m = N/2. The B mode is the standard oscillation
mode for  a magnetron – it has the highest frequency. In the B mode the  voltage polarity
reverses between adjacent cavities. Figure 15.34  shows the B mode electric fields. The
frequency is

                                                  Sn/2 = T/To = 1/(1 + 6/4)1/2.                                              (15.195)

  Figure 15.35 shows a calculation of the B mode resonant frequency with the SUPERFISH
program. The computer code solves the electromagnetic equations on a triangular mesh fitted to 
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Figure 15.33. Predicted resonant frequencies for a six-cavity magnetron with slot resonators for
the dimensions of Fig. 15.35.

the  boundaries. Figure 15.35a shows the mesh for the magnetron problem  – Figure 15.35b
illustrates computed electric field lines. To avoid  redundant calculations and to achieve the
highest possible accuracy, the code calculates fields in 1/12 of the six-cavity magnetron and
applies symmetry conditions at the boundaries. In  the B mode the electric field lines are normal
at the bottom boundary that bisects a cavity and parallel to the top boundary  that bisects a vane.
The code predicts a resonant frequency for  the coupled cavity array of 2.87 GHz, 25% lower
than the  3.75 GHz resonant frequency of the isolated cavity. We estimate  that the coupling
capacitance to the cathode per vane is roughly one-sixth of the capacitance per length of a
coaxial capacitor with outer radius 0.021 m and inner radius 0.016 m, or Cc – 3.2 × 10-11 F/m.
With a value of 6 = Cc/C = 2.1 Eq. (15.195) predicts a  resonant frequency of 3.04 GHz, about 6
per cent higher than the code solution.
   For the best power extraction the drift velocity of electrons at the surface of the Brillouin cloud
should match the phase velocity of the B mode fields. Electrons experience a nonzero average
deceleration (or acceleration) if they move a distance 2Bro/N in a time 1/2fo, The phase velocity
of the traveling wave  near the cathode is approximately

                                                                  T/k –4Brcfo/N.                                                  (15.196)
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Figure 15.34. Electric-field distribution for the B-mode of a six-cavity magnetron using the
SUPERFISH code. Cathode radius: 1.58 cm, anode radius: 2.11 cm, outer radius of resonator:
4.11 cm. Predicted resonant frequency: 2.416 GHz.

For the geometry of Figure (15.35) Eq. (15.196) predicts a phase velocity of 9.5 × 107 m/s,
corresponding to an electron kinetic energy of 26 keV. The figure is higher than typical electron 
drift velocities. For a practical device with the given cathode  radius, we must modify the
magnetron geometry to reduce the wave phase velocity, either by adding more cavities or by
reducing the resonant frequency by elongating the cavities.
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Figure 15.35. Calculation of the B-mode resonant
frequency of a six-cavity magnetron with slot resonators
using the SUPERFISH code. Predicted resonant frequency:
2.88 GHz. a) Geometry of 1/12 of the device with a
triangular mesh for the relaxation solution. b) Electric
fields of the B-mode. 

   End-strapping is used on many magnetrons to ensure that all the available beam energy drives
only the B mode. Without precautions a magnetron could generate radiation at multiple
frequencies and be useless for most applications. The problem of multi-mode  excitation occurs
because the electrons in realistic distributions have a spread in azimuthal velocity. They can
drive modes with frequency and phase velocity close to those of the B mode. One approach to
improve mode purity is to increase the frequency separation between the B mode and competing
modes. Figure  15.36 illustrates how end-strapping modifies the resonant frequencies. Two
concentric straps connect the ends of alternate vanes. For B mode excitation the straps have
opposite voltage  polarity. The capacitance between the straps loads the B mode,  pulling down
the frequency. Loading is less pronounced for other  modes. A similar strapping method is use in
some RFQ (radio-frequency quadrupole) linacs to separate the quadrupole mode of oscillation
from the undesirable dipole mode [CPA, Sect. 14.6].
   We can now address the topic of electron interaction with electromagnetic waves in a
magnetron. Figure 15.37 illustrates the  mechanism. The figure shows drifting electrons on the
surface of  the Brillouin cloud. For clarity the figure displays the circular system as an extended 
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Figure 15.36. Magnetron end-strapping to shift the resonant
frequency of the B-mode.

straight line. With the correct choice of parameters the cavities support a traveling wave with a
phase velocity equal to the electron velocity. Some electrons give up energy to wave, while
others absorb energy. Figure 15.37 shows the regions of acceleration and deceleration. If
electron- wave interactions are the same in both regions, there is no amplification of the wave.
On the other hand, amplification takes  place if the electromagnetic wave modifies the properties
of the electron cloud.
  Electrons moving at the same velocity as the traveling wave experience a constant azimuthal
electric field. This field superimposes a radial E × B drift (Section 8.1) on the azimuthal  motion.
In the region of decelerating electric field the electrons drift radially outward. Conversely,
electrons drift toward the cathode in regions of accelerating electric field. The electrons that
yield energy to the wave move to a position where they interact more strongly – these electrons
are called favorable-phase electrons. Electrons that absorb energy from the wave move toward
the cathode where the azimuthal electric field  is weak – they are called unfavorable-phase
electrons. 
   Because of the radial electron displacement, the drifting beam gives up more energy to the
wave than it absorbs. The favorable-phase electrons drift outward in rotating helical spokes until 
they reach the anode. In the B mode there are N/2 spokes. We should note that the mechanism
that concentrates electrons in phase does not depend on longitudinal bunching – instead it 
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Figure 15.37. Mechanism for resonant interaction of drifting electrons with a traveling wave in a
magnetron.

(15.197)

results from the radial electron drift and the variation in wave amplitude across the
anode-cathode gap. In contrast to klystrons, it is straightforward to operate magnetrons at
relativistic voltages for high-power pulsed microwave generation. The energy of the
unfavorable-phase electrons is not wasted. In magnetrons with thermionic cathodes, the kinetic
energy lost by these electrons helps to heat the cathode. In steady-state magnetrons it is often
possible to turn off the cathode heater after a warm- up time. 
   For high energy conversion efficiency, the favorable-phase electrons should give up most of
their potential energy to microwave fields as they cross the gap. If this condition holds,  the
electrons arrive at the anode with little kinetic energy. An equivalent statement is that the kinetic
energy of electron drift  motion should be much smaller than eVo. To derive a rough criterion, we
can estimate the drift velocity using the unperturbed radial electric field at the anode. Applying
Eqs. (10.122)  and (15.174) we find that 

The geometric factor in braces is less than 0.2 for common geometries. Because magnetrons
usually operate well above the Hull cutoff, Eq. (15.197) implies that drift energy is small.
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15.7. Mechanism of the free-electron laser

   The free-electron laser has catalyzed renewed interest in the generation of coherent radiation
by electron beams. The device is a tunable source of high-intensity radiation at short
wavelengths. Present experiments span the wavelength range from 0.1 to 1000 :m. In principle,
free-electron lasers can achieve high efficiency converting beam energy to photons. 
   The free-electron laser is not actually a laser. We can explain its operation completely within
the framework of classical physics. Free electrons do not occupy well-defined quantized energy
levels; therefore, population inversions are undefined. The free-electron laser is most closely
related to beam-driven microwave sources such as the traveling-wave tube. The principle of the
free-electron laser was discovered and investigated experimentally as early as 1960 in the
Ubitron, a microwave generator [R.M. Phillips, Trans. IRE. Elec. Devices 7, 231 (1960)].
Despite the misnomer we shall use the terms free-electron laser and FEL to agree with current
usage. 
   The FEL has some unique characteristics compared with the other beam-driven radiation
sources discussed in this chapter:

     1. Relativistic electron beams can drive FELs. Because high-current relativistic beams are
easy to transport, projections show that FELs can achieve very high output power. 

     2. Most beam-driven microwave sources generate radiation with a wavelength comparable to
the physical size of the surrounding structures. In contrast the wavelength of the radiation from
an FEL can be much shorter than the size of the surrounding cavities.

     3. Electromagnetic waves in conventional microwave sources are usually transverse magnetic
(TM) waves. Here the beam exchanges energy by interaction with axial electric fields. In
contrast the FEL generates transverse electromagnetic (TEM) waves with no axial electric field    
 components.

     4. In many microwave devices the beam drives slow waves. The TEM waves in the FEL
travel at the speed of light.

   In this section, we shall learn how single electrons can exchange energy resonantly with a
TEM wave. Section 15.8 describes how a continuous beam of electrons with a spread of axial
kinetic energy can transfer power to an electromagnetic wave over long distances. To begin we
shall review some properties of TEM waves. These excitations propagate in free space or in a
chamber with boundaries much larger than the radiation wavelength. Neglecting the effects of
diffraction and amplification, the electric field of a monochromatic linearly-polarized TEM wave
with frequency To is:

                                                     E(z,t) – Eo sin(koz-Tot-N).                                             (15.198)

The quantity Eo is a vector normal to the z direction. We will use the notation that all parameters
that refer to the electromagnetic wave have the subscript "o". The constant ko is the wave
number, related to the radiation wavelength by 
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                                                                 ko = 2B/8o.                                                         (15.199)

The phase velocity of the wave is

                                                              vphase = To/ko = c.                                                  (15.200)

The quantity N is a phase factor that is important in the theory of phase dynamics in the FEL
(Section 15.8). For simplicity we consider a linearly-polarized wave with electric field in the x
direction. The transverse components of electric and magnetic field are:

                                                     Ex(z,t) = Eo sin(koz-Tot+N),                                           (15.201)

                                                  By(z,t) = (Eo/c) sin(koz-Tot+N).                                        (15.202)

   Two conditions must hold for energy exchange between the wave and an electron:

     1) The electron must oscillate in the x direction to perform work on the wave electric field.

     2) The electron oscillations must maintain synchronism with the wave electric field over an
extended distance.

If the final condition is not true energy moves back and forth between the beam and the wave –
the time-averaged power transfer equals zero. There are several methods to impart oscillatory
transverse motion on an electron that moves in the z direction. The most common approach is to
direct the beam through a region of spatially-varying magnetic field. The field region is called a
wiggler.
   Figure 15.38 shows a wiggler consisting of an array of permanent magnets with alternating
polarity. The magnets generate a field in the y direction that varies periodically along z. If we
pick the origin of the axial coordinate at the boundary between a positive and a negative polarity
magnet, the axial variation of magnetic field is:

                                                      Byw(z) – Bw sin(kwz).                                                    (15.203)

We shall denote all quantities related to the wiggler with the subscript "w". The constant kw is the
wave number of the wiggler,

                                                             kw = 2B/8w.                                                            (15.204)

The wiggler wavelength 8w equals the length of two magnets. Permanent magnet arrays allow
small values of 8w.
   With no electromagnetic wave the equations of motion for an electron with kinetic energy Te =
((-1)moc2 that passes through the wiggler field are:
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Figure 15.38. Permanent magnet wiggler for a free electron laser. (From T. Marshall, Free Electron
Lasers. Used by permission, MacMillan Book Co.).

                                                  (mo (dvx/dt) = (-e)(-vzBy),                                                (15.205)

                                                   (mo (dvz/dt) = (-e)(vxBy).                                                 (15.206)

Equations (15.205) and (15.206) incorporate the condition of constant ( in a region with no
applied electric field. Electrons oscillate in the x direction. The limit

                                                                  vx n vz,                                                               (15.207)

holds for all practical devices. Eq. (15.207) implies that the axial velocity is almost constant.
Therefore we can replace the axial velocity in Eq. (15.205) with an average value taken over one
wavelength of the wiggler:

                                                                vzo = <vz>.                                                           (15.208)

The wiggler frequency Tw is the angular frequency in the stationary frame for magnetic field
variations experienced by a particle moving at velocity vzo:

                                                               Tw = vzokw.                                                           (15.209)

Using Eqs. (15.203) and (15.207), we can rewrite Eq. (15.205) as
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(15.210)

(15.211)

(15.212)

(15.213)

(15.214)

(15.215)

Equation (15.210) has the solution:

Equations (15.211) and (15.212) hold if: 1) the average electron velocity in the x direction equals
zero, and 2) the origin of the x coordinate is at the position where the electron has maximum
transverse velocity.
   An expression for the longitudinal velocity follows from the conservation of energy. If vo is the
total velocity of the injected electron, then

Using Eq. (15.211) the average axial velocity is:

After some algebra we can combine Eqs. (15.213) and (15.214) to show that the axial velocity of
electrons in the wiggler varies as:

Equation (15.215) incorporates the non-relativistic gyrofrequency for electrons in a field of
magnitude Bw, Tgw = eBw/mo. 
   The equations for electron velocity and position are usually written in terms of the wiggler
strength parameter aw. The parameter equals the electron ( multiplied by the ratio of the peak
transverse velocity to the average longitudinal velocity:
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                                                       aw = (vx(0)/vzo = (eBw/mo)/Tw.                                     (15.216)

The final form of Eq. (15.216) shows that aw equals the ratio of Tgw to the wiggler frequency.
The following equations describe electron motion:

                                                        vx(t) = vzo (aw/() cos(Twt),                                          (15.217)

                                                     x(t) = (vzo/Tw) (aw/() sin(Twt),                                      (15.218)

                                                 vz(t) – vzo [1 - (aw
2/4(2) cos(2Twt)].                                   (15.219)

   To find resonant conditions for FEL operation we must calculate the total distance an electron
travels passing through one period of the wiggler. The differential element of pathlength ds is
related to distance along the axis by:

                                             ds = (dz2 + dx2)1/2 – dz [ 1 + (dx/dz)2/2].                                (15.220)

Modification of Eq. (15.217) gives the relationship dx/dz – (aw/() sin(kwz). The total distance an
electron travels while moving an axial distance 8w is:

                                                               s – 8w (1 + aw
2/4(2).                                            (15.221)

  Figure 15.39 illustrates the mechanism by which an electron in the wiggler resonantly transfers
energy to a TEM wave. The figure represents a typical case where the wavelength of the
radiation is much shorter than the wavelength of the wiggler, 8o  n 8w. We shall follow an
electron that enters the system at z = 0 and t = 0. Figure 15.39 shows the electric field at the time
the electron enters – the wave field equals the expression of Eq. (15.198) with N = -B/2. Hence
we say that the particle shown has a phase of -B/2 relative to the wave. 
   At the injection point (z = 0) the wiggler magnetic field deflects the electron in the x direction.
The electron moves against the force of the wave electric field. As a result the electron gives up
energy to the wave near the entrance. With an arbitrary relationship between vzo and To/ko
electron motion downstream is uncorrelated with the electric field of the wave – the electron
crosses regions of positive and negative transverse electric field with zero time-averaged energy
exchange. On the other hand there is a special condition, illustrated in Figure 15.39, where the
electron drives the wave over an extended distance. The wave travels a distance (8w + 8o) in the
same time it takes for the electron to move through a wiggler period 8w. For given values of 8o
and 8w, there is a particular value of vzo that satisfies this condition. Figure 15.39 shows the
motions of the electron and wave at resonance for times t = 0, B/2Tw, and B/Tw. Note the
relationship between the direction of the wave electric field and the direction of the particle
velocity – the electron continuously transfers energy to the wave. 
   Electrons that move at the resonant velocity may enter the system at different times and may
have different values of phase with respect to the wave. The phase determines whether a particle
amplifies the wave or whether the wave accelerates the particle. For example, consider an
electron that enters with phase N = B/2. We can make a drawing similar to Figure 15.39 to show 
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Figure 15.39. Resonant interaction of a single oscillating electron with a
transverse electromagnetic wave. Top line: configuration-space view of
an electron orbit in a wiggler. Lower lines: Spatial distribution of the
wave transverse electric field at points of maximum electron velocity.
Bottom: Polarity of thevertical magnetic field in the wiggler.

that the wave performs work on the electron, amplifying its oscillatory motion. For phase values
N = 0, B, 2B, ..., there is no time-averaged energy transfer between the particle and the wave.
   We can derive a mathematical statement of the condition illustrated in Figure 15.39 by
comparing the distances of travel for the electron and wave. In the interval )t = 2B/Tw the
electron travels a distance 8w(1 + aw

2/4(2) at velocity vo. For resonant interaction the wave should
move a distance (8w + 8o) at velocity c in the same interval. Equating the transit times of electron
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(15.222)

(15.223)

(15.225)

and wave gives the condition:

We can rewrite Eq. (15.222) as:

The quantity $ is the relativistic velocity factor vo/c. Expanding the quantity in brackets,

                                                         [(1/$) - 1] – 1/2(2.                                                     (15.224)

we find the familiar form of the FEL resonance condition:

   Equation (15.225) implies that energetic electrons with high ( can transfer energy to radiation
with a wavelength much shorter than that of the wiggler. For example a 100 MeV relativistic
beam in a wiggler with wavelength 8w = 0.02 m resonantly drives electromagnetic radiation with
wavelength 8o = 0.5 :m. This wavelength corresponds to radiation in the visible range. Tuning
of the FEL (varying the resonant 8o) is accomplished by varying either the amplitude of the
wiggler field or the electron kinetic energy.   We can derive the resonance condition of Eq.
(15.225) from an alternative viewpoint based on the relativistic Doppler shift. For simplicity we
take a weak wiggler with aw n 1. The condition means that transverse oscillations contribute a
small enhancement to the total electron path length. Electrons move in the axial direction with
velocity $cz and kinetic energy ((-1)moc2. In the electron rest frame the wiggler appears to move
at velocity -$cz. Because of the Lorentz contraction the wiggler cell length observed in the
electron rest frame has the reduced value of 8w/(. The relativistic transformation of fields [see
Section 1.3] implies that the transformed wiggler magnetic field creates a component of
transverse electric field in the electron rest frame that oscillates at frequency:

                                                                     T' = (Tw.                                                       (15.226)

   The electric field from the time-varying wiggler magnetic displaces electrons in the x direction.
The oscillating electrons emit dipole radiation at frequency T'. In the rest frame electrons radiate
primarily in the x direction. After transformation back to the stationary frame, the radiation
pattern is strongly peaked within an angle 1/2( of the z direction.
   To find the frequency of the radiation in the stationary frame, we must apply the relationships
for the relativistic Doppler shift. Consider a TEM wave with wave number ko' = T'/c. In a frame
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(15.229)

moving at velocity -$c relative to the direction of the wave, the observed wavenumber is [see,
for instance, J.D. Jackson, Classical Electrodynamics, 2nd Ed. (Wiley, New York, 1975), p.
521]:

                                                               ko = ( (ko' - $ko').                                                 (15.227)

Equation (15.227) implies the frequency transformation: 

                                                               To = ( T' (1 - $).                                                 (15.228)

The quantity To is the frequency of the forward-directed radiation from the oscillating electron
observed in the stationary frame. Substituting from Eq. (15.226) and noting that 1 - $ – 1/2(2,
we arrive at the following expression: 

Equation (15.229) is identical to Eq. (15.225) when aw equals zero.

15.8 Phase dynamics in the free-electron laser

   Our discussion of the FEL mechanism in the previous section concentrated on isolated
electrons. The generation of a high-power photon beam demands a beam with many electrons.
The following processes complicate the description of the collective interaction of an electron
beam with TEM waves: 

     1. Electrons in the driving beam lose energy to the wave. With no adjustment of the wiggler
properties, the beam soon falls out of resonance because of the decreasing (.

     2. Particles in beams always have a distribution of orbit parameters. We cannot assume that
all electrons precisely meet the resonant condition of Eq. (15.225).

     3. Even if all electrons have an energy that satisfies the resonant condition, the wave does not
grow if electrons have a uniform distribution in phase N. With a uniform distribution, half of the
electrons contributes energy to the electromagnetic wave while the other half absorbs energy.

   We can apply the familiar theory of longitudinal phase oscillations to understand the
amplification of a TEM wave in a free electron laser over an extended interaction length [CPA,
Chapter 13]. In this section we shall derive the phase equations for the FEL and use them to
estimate requirements on electron beam quality. We know that the phase of a transverse
oscillation of an electron determines whether it amplifies the wave or absorbs energy. The
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(15.233)

definition of the phase of an electron orbit in Section 15.7 maintains a close connection with the
theory of phase dynamics in RF linacs. A positive value of phase corresponds to particle
acceleration (wave damping), while a negative value gives wave amplification and particle
deceleration. To clarify the definition Figure 15.40 plots particle orbits with different phases.
   To pump a wave the electrons in a beam must be concentrated in the phase range:

                                                                 0 # N # -B.                                                        (15.230)

We shall follow two steps to describe electron containment. First we shall calculate conditions
where an ideal electron moves at constant phase relative to the electromagnetic wave. Given the
properties of this ideal orbit, we shall then investigate the stability of other electrons with similar
orbits. An electron orbit is stable in phase if it oscillates about the phase of the ideal orbit.
  To begin we shall calculate the orbit of an ideal electron that moves in the combined fields of
the wiggler and wave at constant phase. The electron is called the synchronous particle – the
phase of the synchronous particle is the synchronous phase Ns. We take Ns in the range of Eq.
(15.230). At a particular time a wiggler contains a set of synchronous particles spaced a distance
8o apart. As synchronous electrons move through the wiggler they lose axial energy through
interaction with the wave. The characteristics of the wiggler must vary in the axial direction to
maintain a synchronous particle. 
   At first glance we might expect that the best choice for the synchronous phase is Ns = -B/2. At
this value electrons clustered about the synchronous particle transfer energy to the TEM wave at
the maximum rate. Later we shall find that neighboring particles cannot remain synchronized
with the wave if Ns = -B/2. Therefore we allow the possibility that Ns may have any value in the
range of Eq. (15.230).
   We shall first calculate the time-averaged work performed on the electromagnetic field by the
synchronous particle as a function of Ns. The instantaneous power loss from a synchronous
electron at position zs to a TEM wave with wavenumber ko and frequency To is:

                                         P(zs,t) = [-vx(zs)] [-eEo sin(kozs - Tot - Ns)].                                (15.231)

We adopt the convention of Figure 15.40 and let the synchronous particle enter the system at t =
0. The position of the electron is:

                                                                        zs = vzot.                                                      (15.232)

Substituting Eqs. (15.217) and (15.232) in Eq. (15.231), the time dependent power transfer is 

The quantity vzo is the average axial velocity of the synchronous particle with kinetic energy 
((s-1)mec2. 
   By definition, the synchronous particle fulfills the resonance condition of Eq. (15.225):
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Figure 15.40. Phase of resonant electrons relative to a transverse electromagnetic
wave. Plots of the electron orbit in a wiggler and the wave transverse electric
field at points of maximum electron velocity. a) N = -B/2. b) N = 0. c) N = B/2.
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(15.234)

(15.235)

(15.238)

(15.239)

or

                                                           kovzo - To = -Tw.

We can rewrite Eq. (15.233) as:

The power averaged over the time for the synchronous electron to move through one period of
the wiggler is:

                                                 P(t) = (eEovzoaw/2(s) sin(-Ns).                                           (15.236)

Equatkion (15.236) confirms the physical picture of Figure 15.39. Maximum wave pumping
occurs when the synchronous electron has Ns = -B/2; there is no time-averaged interaction
between the wave and particle if Ns = 0, B, .... 
   An electron loses kinetic energy when it pumps a TEM wave because the wave exerts an axial
force on the electron. The TEM wave has field components Ex and By while the electrons have
velocity components vz and vx. The only axial component of force is -evxBy. Substituting
expressions from Eqs. (15.202) and (15.217), the axial retarding force is: 

                         Fz(t) = -evx(t)By(t) = e(vzoaw/(s) cos(Twt) (Eo/c) sin(-Twt - Ns).                (15.237)

Averaging Eq. (15.237) over one period of the wiggler gives the long-term force of the wave: 

The axial force of Eq. (15.238) is called the ponderomotive force of the wave. Equation (15.238)
is consistent with the power equation, Eq. (15.236). The ponderomotive force decelerates
electrons with synchronous phase in the range 0 < Ns < -B. 
   We can write Eq. (15.238) for highly relativistic particles as: 
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(15.241)

(15.242)

In Eq. (15.239) the amplitude of the wave electric field is written as a function of axial position
to include the possibility of wave pumping. The final form of Eq. (15.239) incorporates a new
parameter ao, the wave constant: 

                                                         ao(z) = eEo(z)/komoc2.                                                 (15.240)

Electromagnetic waves with a high value of ao have either high intensity or long wavelength.
The wave constant is the ratio of eEo/ko to the electron rest energy. The quantity eEo/ko equals the
change in the potential energy of an electron moving a distance 1/ko in an electric field Eo. 
   For a known variation Eo(z), Eqs. (15.240) and (15.239) imply conditions for the existence of a
synchronous electron. For a self-consistent calculation we need another equation that gives the
variation of Eo(z) that results from wave pumping by the beam. We can apply conservation of
wave energy. Let Ao be the cross-section area of both the electron and photon beams. The
average electromagnetic wave energy per length is Uo = ,oEo

2Ao/2. We assume that the wave
traps a fraction of the beam electrons in stable orbits near the synchronous phase – they
exchange energy with the wave at about the same rate as the synchronous particle. We denote
the time-averaged excess current carried by trapped particles as It(z). We shall discuss methods
to estimate It later in this section. Setting the increase in Uo equal to the change in energy per unit
length of the trapped electrons, we find that

We can introduce correction factors in Eq. (15.241) if the radiation and electron beams do not
overlap perfectly. For constant It(z) a simultaneous solution of Eqs. (15.239) and (15.241) gives
expressions for (s(z) and Eo(z). The solutions depend on the injection properties of the beam and
the incident TEM wave. Advanced computer simulations are necessary to predict changes in It as
the wave amplitude grows. 
   Throughout the wiggler, the energy of a synchronous electron must satisfy the equation: 

Neglecting refractive effects and the active optical properties of the beam, the quantity 8o is
constant over the length of the device. Equation (15.242) implies that the characteristics of the
wiggler must vary along z to maintain resonance. Either the wiggler wavelength (8w) or the
amplitude of the wiggler field (aw) must decrease to compensate for the reduction in (s. Because
the wiggler is usually constructed with the shortest possible cell size and highest possible
entrance magnetic field, the common approach is to lower aw by increasing the transverse
distance between magnet poles. A wiggler with a varied transverse profile along the axial
direction is called a tapered wiggler. An alternative method to maintain resonance is to
accelerate the electrons in a uniform wiggler to maintain constant (s. Although this approach has
attractive features, the associated technology is very complex.
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(15.245)

(15.246)

(15.248)

    We shall now discuss the orbits of electrons close to the synchronous particle. We seek
conditions where these electrons have phase stability – they perform stable oscillations about the
position of the synchronous particle. The trapped particle current It is nonzero only if many
electrons are contained in a region of phase near Ns. Without a stabilizing mechanism there
would be no hope of adjusting and compensating electron velocity with such precision that the
resonance condition holds over the full length of a wiggler. As an example of the required
accuracy, in a short-wavelength FEL experiment the position of electrons must be accurate to
within microns over a wiggler length of several meters.
   To describe phase oscillations, we take the synchronous particle properties, Ns and (s(zs), as
known functions. To characterize the orbits of electrons with properties close to those of the
synchronous particle, we define small quantities:

                                                             )( = ( - (s,                                                            (15.243)

and

                                                             )N = N - Ns.                                                           (15.244)

If an electron has phase N with respect to the wave, modification of Eq. (15.239) implies that the
change in ( averaged over a wiggler cell is: 

Substitution from Eq. (15.239) gives the following equation for the energy error of a particle in
terms of the phase difference:

   We can find another equation to relate the phase difference of a non-synchronous particle to its
energy error. Suppose an electron is a distance )z in front of the synchronous particle. The phase
difference is proportional to the ratio of the position error to the wavelength of the TEM wave,
or

                                                        )N = -2B ()z/8o).                                                       (15.247)

The change in the position error as the non-synchronous particle moves through the wiggler is
related to the error in the longitudinal electron velocity, )$zc:
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(15.249)

(15.250)

(12.251)

If the transverse kinetic energy is much smaller than the longitudinal energy, we can write the
longitudinal velocity error in terms of the variation (:

Combining Eqs. (15.247) through (15.249) gives the following equation for the axial derivative
of the phase error:

The last form follows from Eq. (15.229). 
   Equations (15.246) and (15.250) are the FEL phase equations – their form is similar to the
equations of axial motion in RF accelerators. The equations describe the displacements of
particles relative to the synchronous particle as a function of position in the wiggler. In the limit
that the phase oscillations of non-synchronous electrons are rapid compared with changes in the
properties of the synchronous particle, then we can combine Eqs. (15.246) and (15.250) into the
familiar non-linear differential equation:

To derive Eq. (15.251) we dropped axial derivatives of Ns. 
   In the limit of small phase oscillations ()N nNs) the phase equation is:

                                                        d2)N/dz2 – - Sz
2 )N,                                                  (15.252)

where

                                         Sz = kw [2awaocosNs/(1 + aw
2)]1/2.                                              (15.253)

Eq. (15.252) has bounded solutions for synchronous phase in the range: 

                                                             -B/2 # Ns # -B.                                                       (15.254)

When the condition of Eq. (15.254) holds, the solution of Eq. (15.252) is:

                                                        )N(z) = )No cos(Szz).                                                (15.255)

Equation (15.255) may confuse readers familiar with phase dynamics in RF accelerators – note
that the independent variable is z rather than t. Figure 15.41 illustrates the physical meaning of
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(15.256)

(15.258)

Eq. (15.255) – the figure shows phase relationships among a group of trapped electrons as a
function of z. Note that the length scale in the figure is much larger than the wavelength of the
RF radiation 8o. Figure 15.41a shows the synchronous particle and a particle with phase error
)No and zero energy error )(. Here the test particle has the same energy as the synchronous
particle but has a position error smaller than the electromagnetic wavelength. Figure 15.41b
shows the particle positions after the group travels an axial distance B/2Sz in a time B/2Szvzo. In
this case the test particle has a phase error )N = 0 and an energy error )(o. We can calculate the
magnitude of the energy error in terms of the phase error from Eq. (15.246_:

We define the axial distance the group travels in the wiggler during the time for one-quarter of a
phase oscillation as the bounce distance:

                                                                zb = B/2Sz.                                                           (15.257)

   Analysis of Eq. (15.251) gives limits on the properties of electron orbits for stable phase
oscillations. As in RF accelerators the wave traps only electrons that are close to the
synchronous particle in position and energy. The region of allowed )N and )( is called the FEL
bucket. The size of the trapped region shrinks to zero when Ns = -B/2. Although the size of the
stable region is maximum when Ns = -B, there is no time-averaged wave pumping at this value of
synchronous phase. In free-electron laser experiments it is impossible to control the beam
distribution in )N. The beam current from conventional accelerators is almost constant over the
time-scale of an electromagnetic wave period. Therefore only a fraction of the injected electrons
close to the synchronous phase are initially trapped. The experimenter can control the spread of
beam kinetic energy. It is essential that the initial )( is small enough so that the injected wave
captures some electrons. We can estimate the energy spread from Eq. (15.256) – we take both Ns
and )No equal to 1 radian. The allowed spread in injected energy for significant beam capture is

Equation (15.258) shows that the energy spread for beam trapping is larger at long wavelengths
because of the 1/ko dependence in ao. For experiments on the generation of microwave radiation
by the FEL mechanism, it is possible to use pulsed high-current electron beams with poor
emittance and moderate kinetic energy. On the other hand the generation of short-wavelength
radiation demands high-energy beams with very low emittance and energy spread. 
   It is interesting to note the implications of the axial confinement of electrons in bunches for the
scattered radiation model of Section 15.7. In that viewpoint the wiggler fields accelerate
electrons in the transverse direction – the electrons emit dipole radiation. When the distribution
of radiating electrons is uniform along the axis the radiation from individual dipoles interferes
destructively. As a result the beam emits almost no radiation. In contrast the dipole radiators in a 
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Figure 15.41. Illustration of the meaning of the free-electron-laser phase equations. Plots of electron
orbits and the variation of the transverse wave electric field as a function of axial position, z. Synchronous
electron orbit: solid line. Non-synchronous electron orbit: dashed line. Left-hand-side: Non-synchronous
electron has the same kinetic energy as the synchronous electron, but a phase different from Ns. Right-
hand side: After the beam propagates a distance B/2Sz, the phase of the non-synchronous particle equals
Ns, but its energy differs from that of the synchronous particles.

confined beam are spaced a distance 8o apart in the stationary frame. For this geometry, the
radiators constitute a moving phased array giving strong emission of a narrow photon beam in
the forward direction.
   As an example of the parameters of a free-electron laser experiment we shall consider the
Palladin experiment at Livermore National Laboratory. The beam source is a pulsed induction
linac. The machine generates a 1 kA beam at 45 MeV. The available beam power is 45 GW at (
= 89.1. The laser amplifies radiation at 8o = 10.6 :m. For this wavelength a pulsed CO2 provides
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an input wave strong enough to trap a portion of the beam. We assume a laser input power of 50
MW (50 J in a 1 :s pulse). The peak magnetic field strength in the permanent magnet wiggler is
Bw = 0.3 tesla. To find the wiggler wavelength we can substitute values in Eq. (15.225). The
result is 8w = 0.0514 m, a convenient length for fabrication. The Palladin wiggler consists of 500
cells. The associated wiggler constant is aw = 1.44. 
   To estimate the electric field of the TEM wave at injection, we take electron and photon beams
with 2.5 mm radii. The cross-section area is Ao = 2 × 10-5 m-2. The wave electric field Eo is
related to the power flux by:

                                                              P – (c,oAo/2) Eo
2.                                                 (15.259)

Equation (15.259) implies that Eo = 4.3 × 107 V/m. Substitution in Eq. (15.240) gives the wave
constant as ao = 1.3 × 10-4. If Ns = -45° the bounce distance approximately equals the length of
16 wiggler cells. Because zb is much shorter than the total wiggler length, Eq. (15.251) provides
a good description of beam phase dynamics. Equation (15.258) gives a value of allowed energy
spread for trapping at the injection point of less than 1%. We expect that the wave traps a
fraction of the beam at the entrance – the proportion of trapped electrons increases with distance
through the wiggler as the wave amplitude grows. To estimate the growth length for the wave,
consider a position in the wiggler with ten per cent of the beam electrons trapped, It = 100 A.
The other electrons move incoherently and have no time-averaged interchange of energy with
the wave. Equation (15.241) gives a radiation growth length of:

                                             Eo/(dEo/dz) ~ 2(c,oAoEo/awItsinNs = 4 m.                             (15.260)

   In this section and the previous one we reviewed the basic mechanism of the free-electron
laser. Although we shall not discuss other material in detail, it is important to recognize that
there are many outstanding areas of concern for the design of efficient devices for short-
wavelength radiation generation. Numerical computer models are essential to describe axial
dynamics processes such as initial beam trapping, wave amplification and capture of a
substantial fraction of a beam in a tapered wiggler. For high-current beams we must include the
effects of axial space-charge forces and space-charge waves on the beam. Transverse motions of
electrons are also important. Emittance contributes to the kinetic energy spread of the beam and 
also makes it more difficult to guide narrow beams through long wigglers. Confinement of the
TEM wave is another important problem – long wigglers exceed the diffraction length for the
photons beams in free-space. A important area of recent research is gain guiding of the wave.
Here the collective interaction between the wave and the beam confines the radiation over
distances much longer than the diffraction length.
   Introductory works on the free-electron laser often emphasize the theory of the free-electron
laser oscillator. In the oscillator a uniform electron beam in a wiggler creates and pumps a TEM
wave from initial noise. Oscillator theory treats the self-consistent processes where the
ponderomotive force of a weak wave causes a small concentration of the beam in the phase
region of Eq. (15.230). Amplification of the wave results in adiabatic trapping of more particles
and modulation of the electron beam. We shall not discuss this theory in detail – the process is
similar to the growth of radiation in the traveling-wave tube (Section 15.5).
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Absolute potential, definition, 225
Acceleration column:
   electrostatic, Pierce electrodes, 270
   electrostatic, with quadrupole fields, 326
   space-charge-limited flow in, 226
Accel-decel electrodes, ion extractor, 323
Acceleration gap:
   transformation of beam characteristics across, 403
   with grids for neutralized ion beam, 534
   with radial magnetic field for neutralized ion beam,  
      534
Acceptance, 93, 113, 122
   in current limit expression, 412
   multi-element systems, 125
   of optical elements, 122
Alfven current:
   for electrons, 580
   for ions, 580
   in foil focusing system, 465
   limit for multiple electron beams, 419
   limiting current for neutralized electron beam, 578
   relation to Budker parameter, 581
   of plasma, 568
Analytic functions, solution to Laplace equation, 266
Angular momentum:
   canonical, 256, 332, 710
   conservation in magnetically-insulated diode, 383
   conservation of canonical, 332, 336
Annular beam, to reduce space-charge potential, 210
Antiproton beam:
   cooling of, 177, 179
   creation, 171
Applegate diagram, 755

Backscattering, electrons from materials, 455
Beam breakup instability (BBU), 631
   computer modeling, 636
   convective, 632
   cumulative, 631
   equations for, 635
   growth criterion, 634
   growth rate, 636
   in induction and RF linacs, 632

   lumped circuit element model, 637
   regenerative, 632
   relation to resistive wall instability, 645
Beam plasma frequency, 441, 546, 550
   corrected for longitudinal mass, 684
Beam, charged particle: o7�3 
   definition, 1, 4
   laminar, 80
   parameters, 4, 5
Beam-generated forces, 187
   axial direction, 687
   axial, narrow non-relativistic beam in pipe, 688
   axial, relativistic beam in pipe, 696
   electric and magnetic of cylindrical beam, 194
   for cylindrical beam, 194
   for sheet beam, 188, 193
   for uniform-density beams, 190, 193, 194
   induced charge and current in metal walls, 475,        
    691, 696
   longitudinal limit, 187
   magnetic, current limit for neutralized electron      
beam, 578
   non-linear, 597
   pinched electron beam in a plasma, 583
   relation of electric and magnetic forces in paraxial   
beam, 190, 192, 216
   role in integer resonance instability, 596
   table for beam expansion in drift region, 212
   transverse limit, 187
   validity of infinite-length beam approximation, 189
Bennett equilibrium, 582
Bennett pinch condition, 584
Beta function, 140, 146, 150, 408
Betatron frequency, 16
Betatron oscillations, damping of, 179
Betatron wavelength, 16
   effect of spread in elastic beam approximation, 477
   electron beam in ion column, 650
   in non-linear focusing system, 160
   role in resonance instability, 595
   role in stochastic beam cooling, 179
   self-pinched electron beam in a plasma, 659
   spread, damping of transverse oscillations, 619
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Betatron waves, 610
   fast, 611
   nonrelativistic beams, 610
   relativistic beams, 613
   slow, 611
Bethe formula, collisional stopping power, 452
Bipolar flow, 239, 364, 366
Bohm current density, 299, 317
Boltzmann equation, 52, 55
   relativistic, 78
   with collisions, 56
   Boltzmann constant, 49
Bremsstrahlung radiation:
   stopping power for electrons, 453
   variation with materials, 455
Brightness:
   definition, 106
   interpretation for a focused beam, 106
   normalized, 106
   normalized, from thermionic cathode, 287 o7�3 
   requirements for free-electron lasers, 286
Brillouin cloud, in magnetron, 785
Brillouin condition, for equilibrium, 447
Brillouin flow:
   conical flow, parapotential model, 339
   cylindrical electron beams from non-immersed 
  cathode, 445
   definition, 339
   in magnetically-insulated transmission line, 353
   in magnetron, 784
   limitations of model for cylindrical beam, 449
   relativistic electrons in cylindrical beam, 450
Budker parameter, 580
   relation to Alfven current, 581
   significance, 582
Bunching, beam, 85, 749
   Applegate diagram, 755
   by velocity modulation, 749
   compression ratio, 86
   drift length, 754
   equations for, 751
   equations for ultra-relativistic electrons, 761
   harmonic bunching parameter, 751
   harmonic content, 765
   ideal, by sawtooth waveform, 751
   limits set by axial velocity spread, 758
   ratio, 758
   relativistic beams, 760
   relativistic harmonic bunching parameter, 761
   space-charge effects, 759
   with multiple resonant cavities, 755

Canonical variables, in Vlasov equation, 710
Cathode:
   controlled plasma, 322
   design for uniform current density, 274, 279
   dispenser, 284
   high current, 283
   immersed, 439
   immersed versus nonimmersed, 438
   lanthanum hexaboride, 286
   laser-driven, 287
   poisoning, 285
   surface plasma, 288
   thermionic, 227, 283
   virtual, 201, 203, 228, 384
Center-of-momentum frame, 167
Charge density, 57
   for KV distribution, 260 
   multiple species, 59
   relativistic beam, 217
   space-charge ellipsoid, 258, 409
Charge, surface, on a resistive vacuum chamber wall, 
   617
Child law, 195, 199, 360
   as self-consistent equilibrium, 201
   bipolar flow, 239
   derivation of, 197 o7�3 
   for electrons, 199
   for ions, 199
   for non-relativistic particles, 195
   graph of predicted current, 200
   in spherical geometry, 232
   local, for application to computer codes, 281
   relativistic electrons, 242, 367
   significance of, 196
   with electric field limitation, 201, 324
   with initial injection energy, 225
Chromatic aberration, 103
Circular accelerator:
   geometry and coordinates, 483
   horizontal and vertical directions, 483
   longitudinal resistive wall instability, 708
   resonance instabilities in, 595
Collider, 150, 168
   Fermilab TEV I, 171
   luminosity in, 168
   problems of, 168
   proton-proton, 168
   protron-antiproton, 168
Colliding beams, 168
Collisions, 23, 43
   and plasma resistivity, 569
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Collisions (continued)
   Coulomb, 58, 451, 457, 569
   effect on electrons, 451
   energy loss, electrons, 452
   rate, electrons and ions in plasma, 570
   scattering, electrons, 457
Column, acceleration, 270
Compression, beam, 128
   by non-linear forces, 163
   focused neutralized ion beam, 525
Computer algorithms:
   density and average velocity of distribution, 64
   Lax-Wendroff solution for plasma neutralization, 
     560
   RMS emittance, 100
   simulation of high-current beam transport in thin 
     lens array, 603
Computer calculations:
   BBU instability, 638
   beam transport in induction linear accelerator, 403
   electromagnetic fields in magnetron, 792
   high-current beam in foil transport system, 470
   high-current sheet beam in thin lens array, 599
   hose instability of electron beam in ion column, 652
Computer codes, ray tracing, 279
Computer simulations, 30, 60
   cloud-in-cell method, 62, 607
   computational particles, 61
   electrostatic, 63
   high-current sheet beam in non-linear thin lens 
     array, 606
   ion beam neutralization by comoving electrons, 509
   limitations, 60 
   magnetically-insulated diode, 391
   negative mass instability, 704
   PIC (particle-in-cell) method, 62
   relativistic feedback oscillator, 736
   techniques, 602
   transverse ion beam neutralization, 515
   two-stream instability, 679
Configuration space, 22
Confining potential, 246, 426, 430
Conservation of phase volume, 36
   and stochastic cooling, 177
   circumvention by beam cooling, 175 
   effect of collisions, 43
   effect of friction, 43, 175
   nonrelativistic particles, 38
   relativistic particles, 77
   validity conditions, 37
Conservation of total energy, 206, 208, 332

Constants of motion:
   particles in cylindrical beam, 255
   particles in quadrupole array, 254
Continuity equation, 66, 554, 558
   meaning, 67
Convective derivative, 42, 614, 641, 649
Cooling, beam, 174
   betatron, 179
   by axial expansion, 174
   by transverse expansion, 115
   detector noise in stochastic, 181, 184
   electron by synchrotron radiation, 175
   equation for stochastic, 183
   equation for stochastic with imperfect mixing, 186 
  cooling, beam, mixing in stochastic, 182, 185
   mixing parameter, 185
   of ion beams by co-moving electrons, 176
   rate for stochastic, 184
   rate with imperfect mixing, 186
   stochastic, 177
Coulomb collisions, 58, 176
   and plasma resistivity, 569
Coupling loop, extraction of energy from resonant 
   cavity, 747
Courant-Snyder invariant, 141, 147
Cross sections:
   and luminosity, 170
   and reaction rates, 170
   reaction, 168
Crossed fields, motion of electrons in, 329
Current decay time, in a resistive plasma, 574, 659, 
   666
Current density, 57
   drifting electrons in plasma, 570
   enhancement in reflex triode, 375
   from a thermionic cathode, 283
   in a resistive vacuum chamber wall, 617
   limited by space-charge, 199
   limits, 199
   measurement, intense ion beam, 521 
  multiple species, 60
   space-charge-limit for relativistic electrons,  243, 
     245
Current limit:
   Brillouin equilibrium in solenoidal field, 449
   current limit, electron beam in cusp array, 494
   foilless diode, 349
   in space-charge lens, 534
   longitudinal, in induction ion linacs, 431
   longitudinal, in RF linacs, 428
   magnetically-insulated transmission line, 353
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Current limit (continued)
   multiple ion beams, 420
   neutralized electron beam, 577, 580
   paraxial beams, 412
   pinched beam diode, 342
   quadrupole lens array, 417, 422
   relativistic cylindrical beam in solenoidal field,  450
   scaling laws, 414
Current neutralization:
   electron beam in plasma, 566, 576
   of ion beam, 517
Cusp array:
   beam steering in, 499
   cancellation of drift motions, 499
   electron beam propagation, 490
   envelope oscillations in, 495
   envelope stability, 497
   focusing forces of, 498
   neutralized ion beam transport, 530
Cylindrical beam:
   electric and magnetic fields of, 194
   geometry of, 192

Debunching, antiproton beam in storage ring, 174
Debye length:
   expression for, 228
   for electrons from a thermionic cathode, 230
   neutralization of electron beam by plasma, 
   thermal electrons in a neutralized ion beam, 524,      
 526, 528
Debye shielding, 540
Debye sphere, definition of plasma, 571
Decay time, energy in transverse resonant mode, 629
Decibel, 768
Delta function:
   KV distribution, 259
   properties of, 203
Density:
   definition, 46
   electrons in a neutralized ion beam, 524
   electrons in inverse diode, 727
   electrons in space-charge lens, 531
   in Child law, 203
   in terms of flux spectrum, reflex triode, 374
   of neutral gas versus pressure, 302
   relativistic electron beam, 243
Dielectric constant, relative, 13
Diffusion:
   electrons in magnetically-insulated diode, 389
   equation, 572
   of magnetic field in a resistive plasma, 572

   of magnetic field through a resistive wall, 475
Diodes:
   high-current, 328
   inverse, 722
   foilless, 348
     computer simulation of, 350
     criterion for magnetic insulation, 349
     current from, 349
     magnetron gun, 350
   ion, electron loss in, 364
   ion, reflex triode, 364
   magnetically insulated, 377
     barrel, 384
     beam neutralization near, 511
     electron losses, 383
     geometry of, 383
     ion deflection in, 378
     ion flow enhancement in, 388
     radial field, 384, 534
     relativistic effects, 382
     space-charge-limited ion flow, 379
   pinched electron beam, 337
     bias current for parapotential flow, 344
     computer simulation of, 344
     criterion for pinch, 338
     electrode geometry, 344
     electron, with applied magnetic field, 346
     for ion beam generation, 346
     ion flow in, 344
     matched to magnetically-insulated  transmission     
    line, 343
     parapotential model for, 338
     relative ion and electron current  in, 346
Dipole current, of a thin beam, 618
Discrete distribution function, 29
   calculation of density from, 46
   representations, 29
Disk of least confusion, 159
Dispenser cathode, 283
   table of characteristics, 286
Distribution function, 28
   as a data base, 29
   continuous, 32
     calculation of charge density,  59
     calculation of current density, 60
     calculation of density from,  48
     contour plots, 32
     measurement, 53
   definition, 29
   discrete, 29
   KV, 259
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Distribution function (continued)
   linearized solution of Vlasov equation, 711
   multidimensional, 31
   relativistic, 76
Distributions:
   cold, 114
   distortions by non-linear forces, 159
   electrons from non-immersed cathode, 446
   electrons in magnetically-insulated diode, 388
   electrons in neutralized ion beam, 509
   electrons, transverse neutralization, 514
   ellipse, general form, 140
   elliptical, 114, 137
   envelope angle of elliptical, 142, 148
   hot, 114
   in total energy, reflex triode, 372
   in trace space, 90
   KV, 256, 409
   matched to focusing system, 119
   matched to non-linear focusing system, 162
   matched to quadrupole array, 152
   particle orbit vectors, 29
   transformations of elliptical, 142
Divergence, beam, slit to measure, 94
Doppler shift:
   in free-electron laser, 802
   of betatron waves, 610
Drift velocity, 331, 479
   amplitude of oscillatory motion, 480
   cancellation in cusp array, 499
   E cross B, 331, 480
   electron beam in solenoidal field, 477, 485
   equations, beam in circular accelerator with    
solenoidal field focusing, 488 
   general transverse force, 479
   grad B, 482
   polarization, 336, 481
   validity of drift orbit theory, 480
Duoplasmatron, 309

E cross B drift, 331
   electrons in magnetically-insulated transmission       
line, 
   in Brillouin equilibrium, 447
   in magnetically-insulated diode, 383
   in parapotential model, 338
EGUN code
   converging beam electron gun, 276
   cylindrical Pierce gun, 269
   foilless diode, 733
   magnetron gun, 351

   methods, 279
   ray tracing computer code, 279
   simulations, 205
Einzel lens, focusing system, 403
Elastic beam approximation, 475
   application to electron drifts in solenoidal field, 478 
   betatron waves, 610 
Electric field:
   annular relativistic beam, 210
   axial, beam-generated, 687
   axial, in a resistive pipe, 705
   beam-generated, 188, 193
   cylindrical relativistic electron beam, 206
   effect on beam transport, 211
   focusing sheet beam, 397
   force on a beam in a cylindrical pipe, 474, 617,       
691, 696
   generated by thermal electrons, 523
   in focused, neutralized ion beam, 523, 526
   in magnetron, 792
   motion of electrons in crossed fields, 329
   of a space-charge ellipsoid, 258
   of transverse resonant modes, 625
   properties, beam in a metal pipe, 472, 474
   radial, in foil focusing array, 462
   separated charge cylinders, 547 
   TEM wave, 797
   TM010 mode, pillbox cavity, 740
   transformations, relativistic beam, 217
   transverse, paraxial expression, 397, 401
Electromagnetic radiation generation, 720
   advantages of relativistic  beams, 760, 772
   free electron laser, 796,  803
   inverse diode, 722
   klystron, 762
   magnetron, 781
   oscillators and amplifiers, 721
   power gain of amplifier,  768
   power limits in vacuum transmission lines, 736
   relativistic feedback oscillator, 732
   role of modulated beams,  721, 739
   role of resonant cavities,  736
   scanned beam oscillator,  732
   scanned beam switch, 732
   traveling wave tube, 772
Electron:
   classical radius, 175, 452
   interaction with matter, 451
   properties, 2, 3
Electron beam:
   current limit for annular beam, 210
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Electron beam (continued)
   current limit for magnetically confined, 204, 209    
   cycloid versus laminar motion in crossed fields,  
      336
   drifts in solenoidal field, 477
   electron beam, in crossed ele ctric and magnetic       
      fields, 329
   in foil-focusing array, 457
   in laser-generated ion channel, 587
   in plasma, current neutralization, 566, 576
   longitudinal space charge current limit, 242
   motion in solenoid field transition, 438
   oscillations in ion column, 550, 551
   pinched, 337, 582, 587
   propagation in elastic limit, 475
   propagation in weakly ionized plasma, 588
   propagation under vacuum, 432
   resonance with plasma wave, 545
   self-pinched, in plasma, 582
   steady-state, space-charge neutralization by plasma, 
     538
   transport in magnetic cusp array, 490
   transverse fields of relativistic, 217
Electron control, of neutralized ion beam, 528
Electron ring, 450
Electron volt, definition, 3
Elementary particle physics, 167
Ellipse, trace space
   acceptance, 93
   at a beam waist, 114
   definition of emittance, 91
   drifting beam, 112
   envelope angle, 142, 148
   general form for distribution, 140, 147
   linear transformations, 134, 139 
   machine ellipse, 148
   matched beams, 119, 152
   matched beam, continuous force, 119
   matched to quadrupole array, 155
   mismatched beam, continuous force, 119
   role in linear focusing systems, 93, 107,  138
   shape related to beam properties, 114
   shape related to transport parameters, 140 ellipse,    
trace space, skewed, 138
Ellipsoid, space-charge
   electric and magnetic fields of, 257
   form factors for, 257
   microbunch in RF accelerator, 427
Emittance, 87
   and luminosity, 171
   change with stochastic beam cooling, 184

   conservation in compression, 128
   coupled beam distributions, 102
   cylindrical beams, 102
   definition, 89, 91
   for skewed ellipse, 101
   force expression, 108, 400, 402
   growth, 91, 159, 418, 468, 589, 664
   hyperemittance, 102
   implications for storage rings, 167
   limits in non-linear focusing system, 162
   longitudinal, 103
   measurement of, 93, 103 
   normalized, 104
      from thermionic cathode, 287
   of general elliptical distribution, 140
   origin of, 91
   pepperpot measurement, 96
   reduction by stochastic beam cooling, 177
   relationship to beam pressure, 76
   RMS (root-mean-squared), 93, 98
   scanned wire measurement, 97
   units, 91
   variation, electrons in a collisional medium, 589
End strapping, in magnetron, 793
Energy straggling, 44
Energy, total
   conservation, 206
   conservation in Brillouin equilibrium, 447
   distribution of, 203, 250, 252
   in reflex triode, 372 
   KV distribution, 259
   limit on electron propagation into solenoid field,      
      438
   variation in magnetically-insulated diode, 389
Envelope angle, expressions for, 142, 148
Envelope equation, 108
   cylindrical beam, 401
   cylindrical beam with space charge, 211
   electron beam in collisional plasma, 588
   electron beam in cusp array, 496
   electrons from immersed cathode, 440
   focused neutralized ion beam, 527
   for sheet beam, 191, 396, 399
   high-current sheet beam in thin lens array, 598
   periodic focusing system, 407, 410
   quadrupole lens array, 407
   sheet beam, 399
   with emittance, 109
Envelope instability, 598
   cusp array, 497
   in quadrupole array, 601
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Envelope instability (continued)
   sheet beam in thin lens array, 600
Envelope width, expression for, 408
Equations of motion, 10, 77
Equations of state, 128
Equilibrium:
   electron beam in cusp array, 493
   electron beam in foil focusing array, 464, 466
   partially neutralized relativistic electron  beam,  220
   self-consistent, 197
     Bennett model for self-pinched electron beam, 582
     Brillouin flow of cylindrical beam,  445
     cylindrical relativistic electron  beam, 208
     distribution a function of constants of motion, 201, 
        250, 254
     in magnetron, 782
     in space-charge lens, 531
     in two dimensions, 254
     inverse diode, 726
     one-dimensional beam in linear focusing system,    
     246, 253
     parapotential model, 338
     procedure in quadrupole array, 261 equilibrium,     
 relation to Child law, 201
     rigid rotor, 446
     space-charge-limited flow in spherical geometry,    
     233
    stability of, 592
   thermodynamic, 592
Erosion, plasma, 356
   clearing time, 362
   equations of, 359
   opening switch, 363
   opening time, 362
Eulerian equations, 53
Expansion, beam:
   axial cooling in storage ring, 174
   electrons in a collisional medium, 590
   from beam-generated fields, 211
   from emittance, 109
   table of space charge expansion function, 212
Extraction gap, 196, 262, 322
   high-current diodes, 328
   optics with a plasma source, 294
Extractor, ion, 322
   accel-decel geometry, 323
   electron trap, 324
   magnetically-insulated with virtual cathode, 387   
extractor, ion, multiple aperture, 323
   plasma-filled, 357

Fast waves, 610, 643
FD, quadrupole lens array, 137
Fermilab, debunching ring, 186
Fields, electromagnetic, energy flux, 352
Filamentation instability neutralized electron beam,     
    664
   equations  in foil focusing system, 671
   equations  in plasma, 667
   growth length, foil focusing system, 672
   growth rate  in plasma, 668
   in homogeneous plasma, 664
   mechanism  in foil focusing system, 670
   stabilization by transverse velocity spread, 669, 672
Firehose instability,  656
Fixed targets, elementary particle research, 167
Focal spot:
   beam in a converging pipe, 166
   maximum current to, 215
   minimum, 85, 144
   neutralized ion beam, 527
Focusing electrode, 267, 277, 279, 282
Focusing lattice, 150
Focusing system:
   accelerator lattice, 595
   linear, betatron waves in, 610
   linear, elastic beam approximation, 475
   nonlaminar beams in linear, 113
   quadrupole array in circular accelerator, 595
   transverse foils for electrons, 458
   weak versus strong, 699
Focusing,beam:
   description with transport theory, 143
   limitations, 85
   neutralized ion beam, 528, 530
FODO, quadrupole lens array, 137, 153
Foilless diode, 348
   relativistic feedback oscillator, 733
Foil, extraction, heating by electrons, 456
Foil focusing:
   electrostatic potential in, 461
   filamentation instability, 670
   foil lenses, 467
   laminar beam equilibrium, 464
   longitudinal reduction factor, 462
   nonlaminar beam equilibrium, 466
   of relativistic electron beams, 457
   radial electric field, 462
   radial reduction factor, 464
   steering by beam-generated magnetic fields, 467
Fokker-Planck equation, 56
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Force:
   beam-generated, 193, 217, 399
   centrifugal, 487
   collisional, 23
   electric and magnetic for a beam in a cylindrical 
   pipe, 472, 615
   electromagnetic, 12
   emittance, 108
   for a space-charge ellipse, 258
   friction, 43, 175, 615, 619
   from a resistive vacuum chamber wall, 615
   in a quadrupole lens array, 408
   in space-charge lens, 532
   magnetic field on plasma, 568
   periodic, 145
   ponderomotive, 804
   relation of beam-generated to emittance, 215, 254
   smooth, 23, 58
   transverse resonant mode, continuous beam, 628
Force balance
   in a relativistic beam, 259
   in an ion-electron beam, 221
Form factors, space-charge ellipsoid, 257
Fourier-Bessel series, expansions  to solve the    
Poisson equation, 460
Free-electron laser, 796, 803
   allowed beam energy spread, 811
   characteristics, 796
   conditions for phase stability, 810
   electron source requirements, 286
   gain guiding in, 813
   mechanism for resonant interaction, 800
   phase dynamics in, 803
   phase equations, 809
   phase oscillation frequency, 810
   ponderomotive force, 807
   resonance condition, 802
   synchronous particle and phase, 804
   tapered wiggler, 808
   transverse electron motion, 798
   trapped electrons, 812
   wiggler, 797
   wiggler strength parameter, 799
Friction:
   amplification of slow betatron waves, 613
   effect on conservation of phase volume, 43
   force from transverse resonant mode, continuous      
 beam,  628
   from a resistive vacuum chamber wall, 617, 619
   related to transverse impedance, 618
   role in resistive wall instability, 640

F/number, 106

Gain parameter, traveling wave tube, 780
Generalized perveance:
   definition, 212
   for matched beam in periodic focusing system, 416
   in KV equations, 410
   of sheet beam, 399
Gun, electron and ion, 262
   converging beam, 273
   converging beam with plasma source, 295
   designs for high perveance, 277
   designs for moderate perveance, 273
   extraction aperture, 271
   injection into solenoidal field, 445
   magnetron, 351
   negative lens effect in, 271
   perveance of, 272
   Pierce design method, 263
Gun, high current in strong axial magnetic field, 347
Gyrofrequency, 437, 441, 446
Gyroradius, 332, 698
   for particle drift motion, 480

Harmonic bunching parameter, 751, 771
Harmonic functions, cylindrical, 548
Helical transmission line, 772
   characteristic impedance, 776
   lumped circuit element model, 773
   phase velocity on, 776
High-dispersion region, of circular accelerator, 179
Hose instability of electron beam in ion column, 645
   equations for,  649
   linear growth rate, 651
   mechanism, 650
   numerical solutions for, 652
   saturation of,  651
Hull cutoff condition, in magnetron, 785
Hyperemittance, 102
IFR, ion-focused regime transport, 587, 645
Images, method of, fields from beam in a cylindrical   
 pipe, 473,  617
Impedance:
   AC of resistors, capacitors and inductors, 744
   cavity, 743
   coaxial transmission line, 353
   free space, 352, 630
   magnetically-insulated transmission line, 353
   of plasma-filled gap, 356
   transformation by resonant cavity, 737, 748
   transverse, 618, 630
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Induction accelerator, linear, 207
   beam transport in, 402
   ions, longitudinal confinement, 429
   laser-guiding in, 587
   longitudinal current limit for ions, 431
   modeling BBU instability, 638
   shaped voltage pulses for ion confinement, 429
Inertial fusion:
   focusing heavy ion beams, 527
   multiple ion beam transport for, 419
   propagation of light ions in a plasma channel,  164
   with light ions, 328, 384
Instability:
   anomalous resistivity in plasma, 576
   collective, 593
   electron loss in magnetically-insulated diode, 383
   longitudinal, 674
     negative mass, 697
     resistive wall, 704
     two-stream, 675
   transverse, 592
     BBU (beam breakup), 631
     conditions for resonance instability, 595
     damping by phase mixing, 622
     envelope, 497, 598
     filamentation, neutralized electron beam, 664
     firehose, 656
     hose, general properties, 646
     hose, ion-focused electron beam, 645
     integer resonance, 410, 595
     orbital in periodic focusing system, 497, 597
     reduction of, 639
     resistive hose, 655
     resistive wall, 640
     resonance, with space-charge forces, 595 
     with non-linear focusing forces, 596
Insulation, magnetic, 329, 378
   effect of space-charge on, 334
   equation for, 332
   in foilless diode, 349
   in magnetron, 785
   in pinched electron beam diode, 337
   ion diodes, 377
   transmission line, 343, 351
Interaction regions, of colliders, 168
Inverse diode, 722
   application in scanned beam switch, 732
   conversion efficiency, 730
   effect of energy spread, 724
   ideal, 723
   theory of space-charge-limited flow, 726

Ion channel, electron beam guiding, 587, 649
Ion emission surface, 292
   control by biased grids, 319
   shape of, 293
Ion extraction:
   from electrostatically-confined plasma, 315
   from free plasma, 289
Ion microprobe, emittance in, 127
Ionization coefficient:
   differential, 301
   graph of, 302
   relation to conversion efficiency, 302
Ionization potential, mean, table, 452
Ions:
   properties, 3
   transport, multiple-beam, 419

Kinetic energy, definition, 11
Klystron, 763
   best geometry, 765
   efficiency, 766
   frequency multiplication, 766
   multiple cavities, 768
   oscillators, 768
   reflex, 768
   relativistic, 771
   two-cavity, geometry, 763
KV distribution, 256, 407
   limitations of, 261
   skewed ellipse, 409
KV equations, 410
KV equations, matched beam in a storage ring, 411

Lagrangian equations, 52
Laminar beam:
   definition, 80
   generation with Pierce gun, 263
Laminar flow:
   condition for space-charge-dominated beam, 247
   cylindrical beam in magnetic field, 447
   electron beam in cusp array, 494
   in magnetically insulated gap, 336
   in magnetically-insulated diode, 389
   in magnetron, 783
   parapotential model, 338
Landau damping, 708
Langmuir function, 234
   applications to converging beam guns, 274
   table for converging beam, 235
   table for diverging beam, 236
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Laplace equation:
   solution by cylindrical harmonic functions, 548 
   solution with complex variables, 265
Larmor frequency, 446
Laser, gas, electron-beam-controlled, 441
Laser-driven cathode, 287
Laser-guiding, electron beam, 587
Lattice:
   focusing in accelerator, 595
   tune, 595
Lax-Wendroff method, 555
Leapfrog method, 34
Lens:
   foil, for relativistic electron beams, 467
   space-charge, 530
Limits, beam current, 187
Linearization, moment equations of unmagnetized 
  plasma, 542, 677 
Liouville theorem, 36
Liquid metal lens, 174
Longitudinal limit:
   in foil focusing array, 462
   magnetically confined electron beam, 204
   multiple ion beams, 419
   on beam current, 187
Longitudinal mass, relativistic electrons, 684
Lorentz force, 12
Lorentz transformations, 14
   implications for transverse forces in beams, 216
Luminosity, 168, 170
   and emittance, 
   integrated, 171
   per crossing, 170
   per second, 170

Machine ellipse, 148
   method to calculate, 149
Macroscopic quantities, 46
Magnetic diffusion time:
   in a resistive plasma, 574, 659, 666
   role in filamentation instability, 669
Magnetic field:
   acceleration of plasma, 567
   beam-generated, 188, 193
   critical field for insulation, 332
   cusp, 435, 490
   diamagnetic effect of trapped electrons, 336
   diffusion, 475 o7�3 magnetic field, effect on beam 
  transport, 211 
   effects in pinched electron beam diode, 337
   electron motion in crossed fields, 329

   FEL wiggler, 797
   flux, 402, 436
   focusing cylindrical beam, 401, 412
   focusing sheet beam, 396
   force, beam in a cylindrical pipe, 474
   in electron diodes, 346
   insulation, 329
   of a displaced beam in a pipe, 468
   of a finite-length solenoid, 403, 435
   of transverse resonant modes, 625
   pressure, 568
   properties, beam in a pipe, 470
   relativistic transformation, 217
   solenoid, 433
   solenoid lens array, 492 
   TEM wave, 797
   TM010 mode, pillbox cavity, 741
   to prevent electron beam pinching, 347, 444
   transverse, paraxial expression, 401
Magnetic permeability, relative, 13
Magnetic skin depth:
   current neutralization of electron beam, 566 
   of plasma, 564, 565
Magnetron, 781
   allowed frequencies, 791 
   Brillouin cloud radius, 785
   Brillouin electron equilibrium, 783
   efficiency, 795
   electric field distribution, 792
   electron drift velocity, 786
   electron interaction mechanism, 795
   end strapping, 793
   favorable phase electrons, 795
   geometry, 782
   Hull cutoff condition, 785
   lumped circuit element model for, 787  
   magnetic insulation in, 784
   multi-cavity, traveling wave, 782
   pi mode, 791
   traveling waves in coupled cavities, 786
   vanes and cavities, 786
Magnetron gun, 351
Matched beam:
   Brillouin flow equilibrium, 445
   calculation of machine ellipse, 149
   continuous linear force, 115, 119
   definition in periodic focusing system, 150
   high-current beam in periodic focusing system, 416 
   high-current beam in thin lens array, 599
   in non-linear focusing system, 162 
   methods to calculate, 150
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Matched beam (continued)
   periodic focusing system, 121, 152
   pinched electron beam in plasma, 586
   thin lens array, 120
Matrices, transfer, 14, 15, 115, 135
   drift region, 115, 137
   for beam matching system, 151
   periodic systems, 137
   thin lens, 115, 137
   with separable forces, 136, 137
Maxwell distribution, 49
   average kinetic energy, 51
   average speed, 51
   average velocity, 51
   displaced, 52
   electrons from thermionic cathode, 228, 283 
   Maxwell distribution, electrons in neutralized ion 
      beam, 523
   in a plasma, 290, 296
   local, 50
   pinched electron beam in a plasma, 582
   pressure force of, 74
   variation of density with position, 75, 228 
Maxwell equations, 12, 56
Maxwell equations:
   current density, 57
   quasistatic limit, 57
   role of charge density, 57
   sources, 56
   space charge, 57
   with dielectric materials, 13
Microbunch, in RF accelerator, 426
Microwave frequency bands, 763
Mixing, effect on beam cooling, 182, 184, 185
Mixing parameter, 185
   expression for, 186
Modulation, beam, 720, 739
   by beam bunching, 750
Moment equations, 65
   beam in traveling wave tube, 777
   cold beam approximation, 70
   continuity, 66
   filamentation instability of electron beam in a  
      plasma, 666
   for unmagnetized plasma, 541
   higher order, 71
   linearized, 678
   longitudinal resistive wall instability, 705
   momentum conservation, 68
   negative mass instability, 700
   non-linear, solution for cold electron plasma,  553

  two-stream instability, 677, 680
Moments, of a distribution function, 46, 65
Momentum, definition, 10
Momentum conservation equation, 68, 554, 558
Momentum convection, 69
Momentum, canonical:
   conservation for cylindrical beam, 401, 440 
   conservation for sheet beam, 398
   conservation in solenoid field transition,  436
   variation in magnetically-insulated diode,  389
Multiple-beam transport, 419

Necktie diagram, 595
Negative lens effect, 271, 274, 275
Negative mass instability, 697
   cold beam solution from Vlasov equation, 715
   equations for, 700
   growth rate, 702
   mechanism, 697
   stabilization by longitudinal momentum  spread, 
      702
Neutralization:
   along field lines in magnetically-insulated diode, 
      387
   current, 219, 563
   electron beam
     filamentation instability, 664
     limiting current, 578
     partial, by ion column, 550
     pulsed beam in plasma, 561
     steady-state by plasma, 536
   factor, 220, 221, 550, 648
   ion beam
     active, 503
     auto, 504
     by comoving electrons, 502
     by neutral gas, 323
     current, 517
     distribution of comoving electrons, 
     focusing, 528
     for improved focus, 522
     methods, 501
     methods of acceleration, 534
     space-charge lens, 530
     theoretical problems of autoneutralization, 507 
     transverse, 511
   ion beams versus electron beams, 219
   relativistic electron beams, 220
   space charge, 59, 219
     electron beam by plasma, 537
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Neutralized beam:
   acceleration and transport, 528
   focal limits, 522
   self-contained propagation, 221
Non-linear focusing system:
   definition, 157
   emittance growth in, 159
   implications in linear and circular  accelerators, 157
   matched beam distributions, 162
   modified necktie diagram, 597
   reduction of BBU instability, 640
   role in phase-mix damping, 622
   simulation of high-current beam transport in, 606
Non-linear lens
   effect of, 89
   effect on resonance instability condition, 595
   focusing by, 158
   properties, 157
   spherical aberration coefficient, 159
Nordsieck equation, 590
Normalized brightness, definition, 106
Normalized emittance:
   conservation of, 104
   definition, 105
Numerical methods:
   accuracy, 35, 555
   boundary conditions, 559
   finite difference formulation for partial differential 
     equations, 555
   Lax-Wendroff method for partial differential  
      equations, 555
   leapfrog, 34
   numerical mesh for finite difference calculations, 
      555
   solution of diffusion equation in resistive plasma, 
      573
   solution of Poisson equation, 63
   stability, 561
   time-centered, 35, 555

Ohm's law, in collisional plasma, 570
Orbit calculations, 32
   accuracy, 34, 36
   beam in converging pipe, 164
   leapfrog method, 34
   numerical, 32
   particle in a periodic focusing system, 406
   time-centered, 35
   with beam-generated forces, 33
Orbit traces, definition, 90
Orbit traces, rays, 279

Orbital instability:
   in cusp array, 497
   in non-linear focusing system, 162
Orbital resonances, 150
Oscillations, envelope:
   electrons from immersed cathode, 441
   electrons in cusp array, 495
Oscillations:
   in linear focusing force, 251
   plasma, 542, 562
   relativistic electron beam in ion column, 550
   relativistic particles, 25

Parapotential model, 338
   bias current, 344
   in magnetically-insulated transmission line,  352
   saturated flow, 341
Paraxial beam:
   definition, 396
   field expressions, cylindrical beam, 195
   field expressions, sheet beam, 194
   relationship of electric and magnetic forces, 190   
paraxial beam, transport, 395
Paraxial ray equation, 400, 407
   at low kinetic energy, 402 
   with beam-generated forces, 211
   with collisions, 588
Particle dynamics:
   Newtonian, 11
   relativistic, 10
   transverse approximation, 11
Particles, charged, properties, 2
Pepperpot, for emittance measurement, 96
Periodic focusing systems, 15
   current limit in, 417
   cusp array, 413
   einzel lens array, 403
   focusing cell, 15 
   PPM (periodic permanent magnet array),  403
   resonance instabilities in, 595
   transport with beam-generated fields,  403
Perveance:
   definition, 272
   generalized, 212
   multi-aperture ion extractors, 322
   of converging beam gun, 274
   of electron guns, 272
   of superpinched electron beam, 337
   regimes for gun design, 278
   unlimited in magnetically-insulated diode, 388
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Phase, of particle with respect to electromagnetic  
   cavity oscillation, 738
Phase advance:
   coupled cavity electromagnetic oscillations, 790
   in a beam matching system, 151
   in cusp array, 414
   limits in quadrupole array, 418
   related to transverse forces in periodic system,  415
   vacuum, 16, 406
   vacuum, in quadrupole lens array, 416
   variation in non-linear focusing system, 160
   with beam-generated forces, 411
Phase dynamics:
   in free-electron laser, 803
   in RF accelerators, 16
   limits of stable phase, 19
   synchronous particle, 16
   synchronous phase, 16
   with space-charge in ion induction linacs, 429
   with space-charge in RF accelerators, 424
Phase fluid, 23, 31
Phase mixing:
   damping length or time, 621
   damping of hose instability, 652
   damping of resistive hose instability, 664
   damping of transverse oscillations, 477, 619
   sources of, 621
Phase space, 22
   laminar and nonlaminar beams, 83
   relativistic particles, 77
   trajectories
     beam emerging from a slit, 93
     effect of collisions, 24 o7�3 phase space 
  trajectories, elliptical, 
     focusing by an imperfect lens, 88
     focusing in a thin lens array, 87
     laminar, 23
     laminar beam focusing, 83
     linear force, 24
     nonlaminar beam focusing, 85
     relativistic particles, 24
     uniform electric field, 24
   volume conservation, 36
Phase velocity:
   beam-to-plasma coupling, two-stream instability,  
     682
   fast and slow betatron waves, 611
   in magnetron, 793
   on helical transmission line, 776
   plasma wave, 545
   space-charge waves, 693

PIC (particle-in-cell) method, 62
Pierce column, 270, 326
Pierce method:
   equations for electrode shapes, 267
   gun design, 263
Pierce electrodes, 267, 282
PIG, ion source, 305
Pillbox cavity, electromagnetic modes of, 739
Plasma:
   acceleration by magnetic field, 567
   anomalous resistivity, 576
   Bohm current density, 299
   charge balance, 537
   confinement by accel-decel electrodes, 324
   confinement by magnetic cusps, 305
   dielectric constant, 683
   effect of electron temperature on ion extraction, 296
   electron-ion collision rate, 570
   electrostatic confinement by grids, 316, 319, 324
   electrostatic potential near biased rod, 317
   erosion, 356, 359
   erosion opening switch, 363
   expansion, electron extraction, 288
   generation, 537
   generation by electron flow, 301
   hose instability in, 656
   ion emission surface, 292
   ion extraction from a free boundary, 292 
   magnetic acceleration of, 313
   magnetic skin depth, 563
   magnetic skin depth, 565
   meniscus, 295
   neutralization of steady-state electron beam, 536
   oscillations, 542
   parameter, 571
   presheath for ion extraction, 299
   properties, 4, 290, 536
   resistivity, 570
   response to pulsed electron beam, 552
   return current, 563, 571
   sheath, electrostatic, 318, 357, 538
   sources, 303 
   space-charge neutralization of steady-state electron 
      beam, 537
   surface, electron source, 288
   switch, 321
   thermal fluxes of ions and electrons, 290
   two-stream instability in, 676, 683
   waves, 544
Plasma dispersion function, 717
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Plasma frequency:
   beam, 441, 546
   electron beam propagation, 441, 447
   relativistic beam, 450
   time scales for plasma response, 553
   unmagnetized plasma, 542
Plasmoid, 220, 223
Poisoning, cathode, 285
Poisson equation, 57, 63, 225
   acceleration gap for active neutralization, 504 
   autoneutralization of ion beam, 506
   biased rod in plasma, 317 
   Child law derivation, 197
   finite-difference form, 63
   for bipolar flow, 239
   for thermal electrons near a surface, 228
   high-current beam in linear focusing system, 252
   in foil focusing array, 459
   ion extraction from a plasma with hot electrons, 296
   narrow perturbed beam in pipe, 690
   neutralization of electron beam by plasma, 538 
   parapotential flow, 340
   potential of cylindrical relativistic electron  beam, 
      208
   reflex triode with electron energy spectrum, 374
   relativistic electrons in acceleration gap, 243 
   shielding of test charge in plasma, 540
   solution by separation of variables and series  
      expansions, 460
   solution in ray tracing codes, 281
   space-charge-limited for in spherical geometry,  
      233
   thermal electrons in neutralized ion beam, 524 
   transverse ion beam neutralization, 512
Ponderomotive force, 807
Potential, electrostatic, 57
Potential well, 246
Potential:
   confining, 246
   absolute, 225
   cylindrical relativistic beam, 207
   graph for cylindrical beams, 207
   in acceleration gap with space-charge- limited flow, 
      199, 225
   long elliptical beam, 409
   electrostatic , narrow beam in a pipe, 691
   neutralized beam, 507, 513, 517
   of an annular beam, 210
   of beams, 191, 193, 195
   separated charge cylinders, 549

Potential, vector:
   beam in a cylindrical pipe, 474
   in canonical angular momentum, 256, 436
   in cylindrical system, 436, 710
   in magnetically insulated gap, 333
   of beams, 191, 193, 195
PPM, periodic permanent magnet array, 403, 491
Pressure force, 70, 71
   collisionless distributions, 71
   expressions, 73
   macroscopic and microscopic interpretations, 75
   relationship to temperature, 74
   stabilization of filamentation instability, 669,  672
Propagation:
   Brillouin flow, 447
   cylindrical electron beam from immersed cathode, 
      439, 441
   drifting beam through a tube, 111
   drifting beam with emittance, 109
   electron beam in circular accelerator with 
      solenoidal field focusing, 489
   electron beam in ion column, 587, 645
   electron beam in low-density plasma, 587
   electron beam in magnetic cusp array, 490
   electron beam in plasma, hose instability, 656
   electrons in foil focusing array, 458, 470
   electrons in transitions between solenoidal fields,  
      436
   focused neutralized ion beam, 526
   infinite width beam in vacuum, 201
   laminar beam in drift region with beam-generated 
      fields, 211, 275
   magnetically confined electron beam, 204
   maximum current to a focal spot, 215
   maximum propagation distance with 
      beam-generated forces, 215
   neutralized ion beam by electron control, 528
   partially neutralized electron beam, 220
   particle orbit in a periodic focusing system, 406
   pinched electron beam in plasma, 582, 586
   plasmoid, 220
   pulsed electron beam in plasma, 552
   sheet beam in drift region, 400
   sheet electron beam from immersed cathode, 441
   space-charge neutralized electron beam, 578
   weakly ionized plasma, 588
Proton, properties, 3, 4
Pulsed power:
   flow, 351
   switching, 356, 363
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Quadrupole lenses, 137
   array, envelope equation, 407
   arrays of multiple electrostatic, 419 
   choice of phase advance, 418
   current limit in, 417
   current limit, correction for FODO system, 417 
   FD and FODO arrays, 137
   in circular accelerator lattice, 595
   in electrostatic acceleration column, 327 
   matched beam in FODO array, 153
   problems of modeling beam transport in, 256
   representation by thin lens and drift region,  153
   strength parameters, 410, 595
   twisted electrostatic, 150
Quality factor, Q:
   TM010 mode, pillbox cavity, 741
   transverse resonant mode, 629, 636
   with beam and cavity contributions, 749

Range, electrons in matter, 455
Ray tracing computer codes, 279
   calculation of plasma meniscus, 296,  324
Rays, definition, 279
Reflex klystron, 768
Reflex triode, 364
   effect of electron scattering, 370
   efficiency of, 367, 369, 375, 377
   enhanced ion current density, 375
   geometry, 365
   ion extraction with virtual cathode, 368
   low impedance, characteristics, 375
   low-impedance with scattered electrons, 370
   low-impedance, electron density, 374
   model for monoenergetic electrons, 366
   modeling low-impedance mode, 371
Relativistic beams, balance of electric and magnetic    
forces, 192 
Relativistic feedback oscillator, 732
Resistive hose instability, 655
   growth rate, 662
   mechanism, 657, 660
Resistive wall instability, longitudinal, 704
   equations for non-relativistic beam, 705
   equations for relativistic beams, 709
   growth for hot relativistic beams, 718
   growth rate for non-relativistic beam, 707
   growth time for cold relativistic beam, 716
   stabilization for relativistic beam by axial 
      momentum spread, 718
Resistive wall instability, transverse, 640
   equations for, 641

   growth rate in resistive  pipe, 644 
   growth with resonant  structures, 644
   mechanism, 643
   relation to BBU instability, 645
Resistivity:
   anomalous, of plasma, 576
   of plasma, 570
Resonance instability, integer, 410, 595
   with and without beam-generated  forces, 411
Resonant cavities:
   coupled arrays, 787
   energy extraction by coupling loop, 746
   fill time, 746
   functions for radiation generation, 737
   reentrant, 762
   transit time factor in, 738
Resonant electromagnetic modes:
   coupled in magnetron, 787
   electric and magnetic fields in  square cavity, 625
   energy interchange with modulated  beam, 739
   in BBU instability, 632, 635
   nomenclature, 623, 625
   phase of particle with respect to, 738
   Q factor, 629
   TM010
      as an AC impedance transformer, 746
      driven by a modulated beam, 745
      electric and magnetic fields of, 740
      lumped circuit element model, 742
      pillbox cavity, 739
      stored energy and Q factor, 741
      electric and magnetic fields of, 625
      lumped circuit element model, 624
      pillbox cavity, 623
   TM120
      electric and magnetic fields of, 625
      square cavity, 625
   transverse impedance, 630
   transverse mode, continuous transverse force, 627
   transverse, definition, 622
Rest energy, 3
Return current:
   diffusion in a plasma, 573
   distribution in a plasma, 566, 572
   distribution, effect of resistivity, 475, 656
   generation of axial electric fields in resistive  pipe, 
     696
    in a resistive plasma, 569
   induced by a beam in a cylindrical pipe, 470
   pulsed electron beam in a plasma, 563
   resistive plasma in a conducting pipe, 576
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Return current (continued)
   resistive wall instability, 705
Reversible processes, 87
RF accelerator:
   beam bunching for injection, 85, 751
   beam-generated fields of microbunch, 257
   longitudinal current limit, 428
   phase dynamics, 16
   phase dynamics with space-charge, 424
   relativistic particle motion, 76
RF bucket, 174, 426
Richardson-Dushman equation, 283, 285
Rigid rotor equilibrium, 446
RMS emittance, 93, 98

Scanned beam:
   oscillator, 732
   switch, 732
Scanned wire, for emittance measurement, 97
Scattering, electron:
   emittance growth in foil transport system,  468
   in matter, 457
   in reflex triode, 370
   mean squared inclination angle, 457, 589
Schottky equation, 283
Schottky noise:
   in electron beam cooling by synchrotron radiation,   
    176
   in stochastic beam cooling, 183
Sheath, electrostatic
   in plasma, 318, 357
   neutralized ion beam, 528
Sheath, magnetic, neutralized ion beam, 529
Sheet beam:
   electric and magnetic fields of, 188, 193
   envelope equation for, 396
   focusing forces on, 397
   geometry, 189
Skin depth, resistive metal wall, 617, 694
Slow waves, 610
   betatron, properties of, 612
   growth with a dissipative force, 613
   role in resistive wall instability, 643, 704
   slow wave structures, 772, 781
   space-charge wave, 693
Solenoid:
   beam current limit in, 413
   electron beam drifts, 477
   electron beam propagation from immersed cathode, 
      439
   electron beam steering in, 482

   electron orbits in and out of, 436
   lens, 402
   lens array, 490
   on-axis magnetic field, 403
Sources, electron, 283
   immersed versus nonimmersed, 437
   laser-driven photocathode, 287
   surface plasma, 288
   thermionic cathode, 283
Sources, ion:
   Bohm current densit y, 299
   characteristics of free plasma boundary, 292, 293
   conversion efficiency, 300
   duopigatron, 309
   duoplasmatron, 309
   extraction optics influenced by plasma properties,  
      293
   for intense pulsed beams, 313, 567
   gas loading from, 300
   ionization efficiency, 300
   large-area, 303 
   magnetic bucket, 305
   metal-vapor vacuum arc, 309
   PIG, 305
   plasma prefill for intense beams, 356
   properties of, 300
Space charge, 57
Space charge lens, 530
   limitations, 532
Space-charge limited flow, 199, 227
   across a plasma sheath, 359
   beam bunching, 760
   beam propagation in drift region, 201 
   bipolar, 239
   enhancement factor, 241, 382
   enhancement in magnetically insulated  diode, 388
   expressions for current density, 199
   for electrons and ions, 200
   from a plasma boundary, 294
   from a rod cathode, 239, 279
   from an array of needles, 238
   from electrostatically confined plasma, 321
   in reflex triode with monoenergetic electrons, 367
   in spherical geometry, 232, 274
   increase with multiple extraction gaps, 324
   inverse diode, 725
   limited by electric field, 201 
   magnetically confined electron beam,  204
   magnetically-insulated ion diode, 379 
   maximum current to a focal spot, 215
   parapotential model for pinched electron beam, 338
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Space-charge limited flow (continued)
   peak current for annular beam, 211
   peak current of relativistic beam, 209 
   relativistic electrons, 242, 367
   sheet beam in drift region, 400
   with initial injection energy, 225
   with secondary emission of electrons  from a grid, 
      241
   with thermal electrons, 228 
Space-charge waves, narrow beam in pipe, 692
Spherical aberration, 158
   coefficient, definition, 159
   effects in beam focusing, 159
   impossibility of correcting in charged particle 
      lenses, 159
Steering, beam:
   by wall return current in foil focusing system,  468
   electron beam in circular accelerator with 
      solenoidal field focusing, 489
   in cusp array, 499
   in solenoidal field, 482
Stefan-Boltzmann constant, 456
Stochastic beam cooling, 177
   equation of, 183
   rate of, 184
Schottky noise, 183
Stopping power:
   electrons collisional, 452
   electrons, radiative, 453
   foil heating, 456
   in collisional plasma, 589
   normalized, 453
   radiative versus collisional, 455
Storage rings, 167
Strong focusing, 699
Synchronous particle, 16
Synchronous phase, 16, 804
   in free-electron laser, 804
   RF bucket depth, 426
Synchrotron:
   focusing lattice of, 150
   transport theory in, 145
Synchrotron radiation, 175
   beam cooling by, 175
   power loss from a single electron, 175

Telescope, beam, 115
TEM wave, fields of, 797
Temperature, beam, 128
   changes with beam volume, 129
   electrons in neutralized ion beam, 525

   in Bennett equilibrium, 583
Thermal equilibrium, 49
Thermionic cathode, 51, 227, 283
   characteristics, 286
   dispenser, 284
   lanthanum hexaboride, 286, 287 
   Richardson-Dushman law, 283
   Schottky equation, 283
   work function of, 283
   zero field current density, 284
Trace equation, for beam envelope, 211
Trace space:
   definition, 90
   distributions in, 90
   properties of elliptical distributions, 114
Trace space trajectories:
   axial beam bunching, 759
   drifting beam, 112 
   focusing by a nonlinear lens, 158
   high-current sheet beam in thin lens array, 600
   in a beam telescope, 117 
   mismatched beam in a continuous linear  force, 118
Transformations:
   coordinate, 13
   distributions between focusing systems, 150
   Doppler shift of betatron waves, 610
   electromagnetic fields, 14, 217, 331
   electromagnetic fields of space-charge ellipse,  258
   linear, of ellipses, 139
   Lorentz, 13
   of beam distributions, 142
   to particle drift frame, 479
Transit-time factor, 738, 764
Transition gamma factor, 186, 698
   in strong focusing system, 699
   in weak focusing system, 699
   significance of, 699
Transmission line:
   helical, 772
   power flow limitations in, 736
   strip, 736
   magnetically insulated, 343, 351
     energy flux limit in  vacuum, 352
     impedance of, 353
     limitations of, 355
     power flow in, 354
TRANSPORT code, 134
Transport parameters, 134, 139, 145
   beam transport in quadrupole lens array, 408
   relation to distribution ellipse geometry,  140
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Transport theory:
   distribution, 134
   for beam matching, 150
Transverse impedance:
   related to frictional force, 618, 619
   resistive wall, 618
   resistive wall instability, 645
   transverse resonant modes, 630
Transverse instability, 631
Transverse limit, on beam current, 187, 412, 414, 417
Transverse resonant mode, 622
Traveling wave tube, 772
   beam and wave equations, 777
   coupled cavity structure, 781
   gain parameter, 780
   geometry, 772
   helical transmission line, 773
Tune:
   role in resonance instabilities, 596
   shift, in circular accelerator, 596
   space-charge depression, 411, 415
   space-charge shift, 411 o7�3 tune, vacuum, 411
Turning point, oscillating particles, 250
Two-stream instability, 675
   effect of collisions, 687
   electron beam in plasma, 680
   equal and opposite electron streams in a  plasma, 
      676
   equations, electron beam in plasma, 682
   equations, electron streams in a plasma,  677
   growth rate
      electron beam in plasma, 682 
      electron streams in a plasma, 678
      hot beam in plasma, 687
   mechanism
      electron beam in plasma, 683
      electron streams in a plasma,  676
   relativistic electron beam in plasma, 684 
   saturation, electron streams in a plasma,  680
   stabilization by longitudinal velocity spread, 686

Vacuum, electron transport, 432
Vacuum arc, 309
   cathode spot, 311
   multiply-charged ions, 312
Vector, particle orbit, 15
Virtual cathode, 201, 203
   in magnetically-insulated diode, 384
   in reflex triode, 368
Vlasov equation, 53, 56
   linearized solution, 711

   longitudinal resistive wall instability, 708
   relativistic, 78

Waist, beam:
   at focal point, 144
   definition, 109
   of laminar sheet beam, 400
   upright ellipse, 114
   with space-charge forces, 214
Wake fields, in a resistive plasma, 577
Wall charge, induced by a beam in a cylindrical pipe, 
    470, 691,  696
Wall forces:
   expressions for beam in pipe, 475
   stability, electron beam in a solenoidal field, 486 
Weak focusing, 699
WOLF code, 324
Work function, 283
   cathode, effect on current density, 227


