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In the literature one finds several conflicting accounts of the phase difference of stimulated and spontaneous emission,
as well as absorption, with respect to an existing (triggering) electromagnetic field. One of these approaches proposes
that stimulated emission and absorption occur in phase and out of phase with their driving field, respectively, whereas
spontaneous emission occurs under an arbitrary phase difference with respect to an existing field. It has served as a
basis for explaining quantum-mechanically the laser linewidth, its narrowing by a factor of 2 around the laser thresh-
old, as well as its broadening due to amplitude–phase coupling, resulting in Henry’s α-factor. Assuming the validity of
Maxwell’s equations, all three processes would, thus, violate the law of energy conservation. In semi-classical ap-
proaches, we investigate stimulated emission in a Fabry–Perot resonator, analyze the Lorentz oscillator model, apply
the Kramers–Kronig relations to the complex susceptibility, understand the summation of quantized electric fields,
and quantitatively interpret emission and absorption in the amplitude–phase diagram. In all cases, we derive that the
phase of stimulated emission is 90° in lead of the driving field, and the phase of absorption lags 90° behind the
transmitted field. Also spontaneous emission must obey energy conservation, hence it occurs with 90° phase in lead
of an existing field. These semi-classical findings agree with recent experimental investigations regarding the inter-
action of attosecond pulses with an atom, thereby questioning the physical explanation of the laser linewidth and its
narrowing or broadening. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (300.2140) Emission; (260.3160) Interference; (260.5740) Resonance; (140.3460) Lasers; (140.3410) Laser resonators;
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1. INTRODUCTION

In his centennial paper [1], Einstein exploited a semi-classical
rate-equation approach including the rates of stimulated and
spontaneous emission and absorption to provide the physical
foundation of Planck’s law of blackbody radiation [2], thereby
predicting the existence of stimulated emission, which was con-
firmed experimentally in 1928 [3]. By assuming conservation of
energy and momentum, Einstein showed that an incident electro-
magnetic field at frequency ν triggers a two-level atom in its ex-
cited state to emit an additional electromagnetic field with an
energy hν that equals the energy gap between the two levels, such
that the energy of the incident field increases by this energy dur-
ing the interaction. Only a very small energy mismatch occurs due
to recoil of the atom. The emitted field has the same frequency,
the same direction, and the same polarization as the incident field,
hence it is emitted into the same optical mode. In addition, spon-
taneous emission into the same optical mode occurs. In his origi-
nal work, Einstein did not specify the phase difference between
the incident and emitted electromagnetic field.

In the literature, three different accounts of this phase differ-
ence can be found. (i) The semi-classical Lorentz oscillator model
[4] predicts that stimulated emission is in quadrature, i.e., 90° out
of phase with the incident field [5–8]. (ii) The amplitude–phase

diagram of Fig. 1(a) proposes that stimulated emission is in phase
with the incident field (red solid arrows), whereas according to
Lax [9], Haken [10], Henry [11], and others spontaneous
emission occurs at an arbitrary phase angle θ with the incident
field (red dashed-dotted arrow). (iii) Quantum-optically stimu-
lated and spontaneous emission are both described by the
same creation operator [16], hence either both processes must
occur with the same phase difference, or the phase difference
is not explicitly considered when applying the creation operator.

Despite their obvious incompatibility concerning the phase as-
pect, all three models have been applied to understand important
optical phenomena. Model (i) has been exploited to derive the
Kramers–Kronig relations [17,18] between susceptibility and
absorption. In a simple rate-equation approach equivalent to
Einstein’s [1] without phase considerations, i.e., in line with
model (iii), the power behavior of semiconductor lasers around
the laser threshold has been described [19–22]. A combination
of models (iii) and (ii) has been applied to calculate quantum–
mechanically the fundamental laser linewidth and its reduction
compared to the Schawlow–Townes linewidth [12] by an addi-
tional factor of 2 around laser threshold [9,10,13–15]. Model (ii)
has served to justify this reduction of laser linewidth around
the laser threshold [9–11]. According to Fig. 1(a), spontaneous
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emission induces amplitude and phase fluctuations (projection
onto the axes with θa � 0–180° and θp � �90°, respectively),
of which the latter constitute the quantum noise that determines
the fundamental laser linewidth, whereas the former are damped
out in a laser, thereby reducing the laser linewidth by a factor of 2.
It has also served to derive Henry’s α-factor, which quantifies
broadening of the laser linewidth due to amplitude–phase
coupling via the refractive index [11].

Since these three incompatible versions seem to describe vari-
ous optical phenomena, does then the phase aspect matter at all?

The arguments presented in this paper suggest that the phase is of
fundamental importance, and, consequently, there must not
occur an ambiguity concerning the phase difference. By exploiting
Maxwell’s equations and the law of energy conservation, investi-
gating stimulated emission in a Fabry–Perot resonator, analyzing
the Lorentz oscillator model, applying the Kramers–Kronig rela-
tions to the complex susceptibility, understanding the summation
of quantized electric fields, and quantitatively interpreting emis-
sion and absorption in the amplitude–phase diagram, we derive a
consistent semi-classical picture of the phase aspect in stimulated
and spontaneous emission, as well as absorption. How far a quan-
tum-optical treatment can confirm or conflicts with this picture is
not a subject of this paper, but is currently under investigation.

2. SEMI-CLASSICAL VERSUS QUANTUM-
OPTICAL DESCRIPTION

Emission and absorption of a photon are quantized processes.
When judging the present work from a quantum-optical point
of view, one should keep in mind the following points.
(i) Only on a sufficiently short time scale can a process violate
the law of energy conservation according to the uncertainty prin-
ciple [23,24]. At longer time scales, the law of energy conservation
applies in quantum mechanics. (ii) The classical Maxwell
equations [25] maintain their full validity in quantum optics,
but with the additional requirement of a quantization of optical
energy, as was demonstrated by Dirac [26]. (iii) The amplitude–
phase diagram is not a sloppy way of sketching some processes,
but can—and should—be understood as a quantitative vectorial
description. (iv) Einstein’s semi-classical rate-equation approach
[1] not only confirmed Planck’s law [2], but also delivered the
Einstein A and B coefficients of spontaneous and stimulated
emission, which were found entirely consistent with a full
quantum-mechanical treatment; see, e.g., Schiff [27]. (v) The
Kramers–Kronig relations [17,18] are bidirectional mathematical
relations between the real and the imaginary part of any complex
function that is analytic in the upper half of the complex plane.
The analyticity condition is a consequence of causality in physical
systems. Consequently, the Kramers–Kronig relations apply to
the complex susceptibility, semi-classically as well as quantum-
optically. (vi) The Lorentz oscillator model [4] is an approxima-
tion to the quantum theory that is equivalent to the standard
perturbation-theoretical approach to absorption and stimulated
emission; see, e.g., Schiff [28], in which a weak oscillator strength
is assumed, such that the transition rate is essentially constant and
the atom is still in its initial state (upper or lower state of the
transition) after some time interval that is long compared to
the oscillation period (Fermi’s golden rule [29], originally formu-
lated by Dirac [26]). (vii) Despite its obvious crudeness, the
Lorentz oscillator model has enormous prediction power in op-
tics, as was pointed out by Feynman et al. [30] and Weisskopf
[31]. (viii) Based upon the Lorentz oscillator model, stimulated
emission and absorption may be understood in the semi-classical
approach of treating the atom, which in the simplest case is
considered a two-level system, quantum-mechanically and the
electromagnetic field, which is in near resonance with the
transition between the two atomic levels, classically, as was em-
phasized by Milonni et al. [6,7]. Therefore, it is not a priori clear
that semi-classical models insufficiently describe quantized
emission and absorption processes.

Fig. 1. (a) Amplitude–phase diagram visualizing the interpretation of
quantum noise and laser linewidth by Lax [9], Haken [10], and Henry
[11]. Quantum noise in a laser is said to be induced by adding with an
arbitrary phase difference θ a spontaneously emitted photon (red dashed–
dotted arrow) of intensity 1 to the intra-cavity laser field (red solid ar-
rows) of intensity I and phase ϕ, resulting in an intra-cavity laser field of
intensity I � ΔI (orange solid arrow) and inducing a phase shift Δϕ.
Below laser threshold, all phase differences θ are proposed to generate
noise, whereas, above laser threshold, amplitude fluctuations a (θ � 0
or π, i.e., the projection of noise onto the direction of the green dashed
arrow) are rapidly damped out by relaxation oscillations, and only phase
fluctuations p (θ � �π∕2, i.e., the projection of noise onto the direction
of the blue dotted arrow) contribute to noise, thereby reducing the laser
linewidth compared to the Schawlow–Townes linewidth [12] by a factor
of 2 [9–11,13–15]. (b) Number φ of photons resulting from the inter-
ference according to Eq. (1) between one photon and 100 photons (red
solid curve) versus phase difference θ and medium of 101 photons
averaged over all θ (green dashed line).
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3. MAXWELL’S EQUATIONS, INTERFERENCE,
AND CONSERVATION OF ENERGY

In the following, by use of the term “photon” we will solely refer
to the fundamental energy unit hν that corresponds to the
quantized energy of one photon, but we will not associate any
quantum-statistical properties with it. The parameter φ represents
the number of these energy units called photons that is present in
a classical electromagnetic field (or the expectation value of a
quantum-optical coherent state, if you will). In principle, φ
may assume any non-integer value. However, it is probably easy
to agree upon the fact that the conservation of energy requires that
an emission or absorption process by a two-level atom changes the
value of φ by �1 energy unit hν.

Based upon Maxwell’s equations [25], superposition of two
co-propagating electromagnetic waves at the same frequency ν,
with electric-field amplitudes E1 and E2 and a phase difference
θ, yields the intensity:

φ ∝ I 1�2 �
cε0
2

j~E1 � ~E2j2

� cε0
2

�jE1j2 � 2jE1E2j cos�θ� � jE2j2�: (1)

ε0 is the vacuum permittivity and c is the speed of light in the
medium of refractive index n. For cos�θ� ≠ 0, the interference
term does not vanish and the law of energy conservation is
obviously violated. Two fields with E1 � E2 constructively
(destructively) interfere to produce four (zero) times the intensity
of each field alone. When adding a field representing one
photon (E2 ∝ 11∕2 � 1) to a field representing 100 photons
(E1 ∝ 1001∕2 � 10), then averaged over all phase angles,
cos�θ� � 0, the expected energy of 101 photons emerges,
whereas constructive (destructive) interference yields the energy
of 121 (81) photons; see Fig. 1(b). Nevertheless, energy can
be conserved, if there is a concrete source or drain of energy
in the system, for example, enhanced scattering of a perpendicular
external light source into a resonant cavity [32]. In the absence of
such a source or drain, energy can be conserved only if the
opposite interference occurs in another location of the optical
system, i.e., constructive or destructive interference never occurs
alone!

Let us analyze the processes in Fig. 1(a) with respect to energy
conservation. If stimulated emission occurred in phase with the
incident field, cos�θ� � 1, then according to Eq. (1) each stimu-
lated-emission event would generate an excess of photons, thereby
violating the law of energy conservation. If spontaneous emission
occurred at an arbitrary phase angle, then, according to Eq. (1),
each spontaneous-emission event would either generate or anni-
hilate extra photons [Fig. 1(b)], and in the amplitude–phase dia-
gram [Fig. 1(a)] the added intensity ΔI would not correspond to
the intensity generated by one photon. As pointed out by Henry
[11], only when averaging over many spontaneous-emission
events, cos�θ� � 0, would energy be conserved [Fig. 1(b)]. In
a lasing resonator, such a violation of energy conservation by
stimulated and spontaneous emission could be experimentally
manifested by cavity dumping of the stored optical energy within
a single resonator round trip. Since energy must be conserved, this
interpretation of stimulated and spontaneous emission is obvi-
ously questionable. The assumptions by quite many scientists that
the electric field magically adjusts its magnitude such that the

energy is conserved or that the energy difference magically comes
out of or dissipates into the universe can safely be discarded.

4. STIMULATED EMISSION IN A FABRY–PEROT
RESONATOR

The problem of energy conservation manifests itself in a funda-
mentally important optical system, the Fabry–Perot resonator. In
Fig. 2(a), a monochromatic external light source continuously
launches light into a resonator whose only losses are the outcou-
pling losses through its two mirrors. A steady state of light
launched into, circulating inside, and emitted from the resonator
is established, described by the Airy distributions [33]

Acirc � I circ∕I laun �
1�

1 −
ffiffiffiffiffiffiffiffiffiffi
R1R2

p �
2 � 4

ffiffiffiffiffiffiffiffiffiffi
R1R2

p
sin2�ΔϕRT∕2�

,

A 0
trans � I trans∕I inc � �1 − R1��1 − R2�Acirc,

A 0
back � I back∕I inc � �1 − R1�2R2Acirc,

A 0
refl � I refl∕I inc

�
h� ffiffiffiffiffi

R1

p
−

ffiffiffiffiffi
R2

p �
2 � 4

ffiffiffiffiffiffiffiffiffiffi
R1R2

p
sin2�ΔϕRT∕2�

i
Acirc,

A 0
trans � A 0

refl � �I trans � I refl�∕I inc � 1, (2)

where ri and Ri � jrij2 are the amplitude and intensity reflectivity
of mirror i, respectively. ΔϕRT is the phase shift accumulated over
one round trip. The different electric fields are displayed in
Fig. 2(a); their intensities are I ∝ jE j2, and their spectral
dependencies are given by the Airy distributions A with respect
to the launched intensity or A 0 with respect to the incident
intensity [33]. For arbitrary ΔϕRT, the energy is conserved,
A 0
trans � A 0

refl � 1, because the interference between ERT and
E laun is compensated by the opposite interference between
E refl,1 and Eback.

Now we move the light source into the resonator [Fig. 2(b)].
A light source inside the mode must be transparent in order not to
block the propagating light; consequently, the propagating light
will interact with the light source. Let us assume that the light
source is a pumped inverted medium (an atomically thin gain
sheet placed close to mirror 1, oriented perpendicular to the
resonator axis) that continuously generates Egen via stimulated
emission triggered by ERT, resulting in the combined field
E circ. For simplicity, we neglect spontaneous emission and
assume that several stimulated-emission processes can occur

Fig. 2. Schematic of a Fabry–Perot resonator and the relevant electric
fields E for (a) light launched from outside [33] and (b) light generated
inside the resonator.
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simultaneously in different lateral regions of the gain sheet
without influencing each other. Furthermore, for comparison
with Fig. 2(a), we assume a race-track resonator with unidirec-
tional light propagation, such that the backward-circulating field
Eb-circ does not penetrate the active medium and the stimulated-
emission process is uni-directional. If stimulated emission
occurred “in phase” and we pumped the medium to a desired
inversion, such that in Figs. 2(a) and 2(b) the same field
E gen � E laun interfered constructively with ERT at the resonance
frequency νq, then the same steady state of light generated,
circulating inside, and emitted from the resonator would be es-
tablished and the same fields E trans and Eback would be emitted in
both situations. However, since in Fig. 2(b) Eback cannot destruc-
tively interfere, because there is no E refl,1, the constructive inter-
ference is not compensated for. Therefore, if the phase shift Δϕem

potentially induced by stimulated emission between ERT and E circ

equals zero, energy is not conserved:
Acirc � I circ∕I gen

� 1

�1− ffiffiffiffiffiffiffiffiffiffi
R1R2

p �2�4
ffiffiffiffiffiffiffiffiffiffi
R1R2

p
sin2��ΔϕRT�Δϕem�∕2�

,

Atrans � I trans∕I gen ��1−R2�Acirc,

Aback � Iback∕I gen ��1−R1�R2Acirc,

Aemit �Atrans�Aback ��I trans� Iback�∕I gen ��1−R1R2�Acirc,

Aemit > 1 forΔϕRT �Δϕem � 0: (3)

Atrans and Aback are the Airy distributions of I trans and I back,
respectively, with respect to I gen. Their sum Aemit is displayed
in Fig. 3(a) as a function of �R1R2�1∕2. Since light builds up inside
the resonator and stimulates emission around the resonance fre-
quency νq (either in a broadband gain medium or by tuning the
resonator length, such that the resonance frequency νq coincides
with the emission frequency), ΔϕRT becomes a multiple of 2π.
Consequently, the phase shift indicated in the legend of Fig. 3(a)
is solely due to Δϕem. Energy conservation requires Aemit � 1
(black line).

If stimulated emission occurred in phase, Δϕem � 0 [solid
gray curve in Fig. 3(a)], the law of energy conservation would
be violated; e.g., for R1 � R2 � 0.7, Aemit � 5.7 times the light
generated by stimulated emission would be emitted through both
mirrors. Also, for all phase shifts Δϕem ≠ 0 energy is not
conserved, except for one specific value of Δϕem for each value
of �R1R2�1∕2; see Fig. 3(a).

Assuming resonance, i.e., ΔϕRT is a multiple of 2π, to ensure
energy conservation, i.e., Aemit � 1, the condition
�1 − R1R2�Acirc � 1

⇒ 2 sin2�Δϕem∕2� � 1 −
ffiffiffiffiffiffiffiffiffiffi
R1R2

p
⇒ cos�Δϕem� �

ffiffiffiffiffiffiffiffiffiffi
R1R2

p
⇒ tan�Δϕem� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2�Δϕem�
cos2�Δϕem�

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R1R2

R1R2

s
(4)

must be fulfilled; see Fig. 3(b). The phase shift Δϕem induced by
stimulated emission differs from zero and depends on R1 and R2.
We convert this reflectivity dependence to a photon dependence.
Since each intensity is proportional to the corresponding photon
number, the ratio between the numbers φRT of photons triggering
stimulated emission and φgen of photons generated by stimulated
emission equals the Airy distribution ART, from which we derive
the phase shift:

φRT∕φgen � IRT∕I gen � ART � R1R2Acirc

� R1R2

�1 − ffiffiffiffiffiffiffiffiffiffi
R1R2

p �2 � 4
ffiffiffiffiffiffiffiffiffiffi
R1R2

p
sin2��ΔϕRT � Δϕem�∕2�

� R1R2

1 − R1R2

⇒ tan�Δϕem� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φgen∕φRT

q
, (5)

where we used ΔϕRT � 0 and Eq. (4). The ratio φRT∕φgen is
displayed in Fig. 3(c) and the final result of Eq. (5) is shown
in Fig. 3(d). Only for an infinite ratio φRT∕φgen is the induced
phase shift Δϕem zero. The smaller the number of photons
triggering stimulated emission and the larger the number of pho-
tons generated, the further the induced phase shiftΔϕem increases
to π∕2. If one photon triggers stimulated emission of one photon,

Fig. 3. (a) Requirement of energy conservation, Aemit � 1 (black line),
and violation of energy conservation for different potential phase shifts
Δϕem � 0, π∕50, π∕30, π∕18, π∕10, π∕6, π∕4, and π∕2 (see legend)
from the field ERT to the field E circ induced by interference of ERT with
the field E gen generated by stimulated emission, (b) the phase shift Δϕem

that is required to obtain energy conservation, and (c) the ratio φRT∕φgen

of triggering photon number φRT over generated photon number φgen as
a function of �R1R2�1∕2. (d) Phase shift Δϕem induced by stimulated
emission as a function of the ratio φRT∕φgen. For φRT∕φgen � 1 one
obtains Δϕem � π∕4 (dashed lines).
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then Δϕem � π∕4. Since the second angle in the vector diagram
comprising the fields ERT, E gen, and E circ is also known, the phase
difference between triggering and stimulated field equals

θ � π − arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φgen∕φRT

q
− arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φRT∕φgen

q
� π∕2: (6)

In resonance, stimulated emission occurs with a 90° phase
difference between driving and generated field, its direct conse-
quence being the phase shift Δϕem of Eq. (5) between driving and
transmitted field.

For this derivation we have only assumed the validity of
Maxwell’s equations and the law of energy conservation.
Although the curve in Fig. 3(d) is continuous, one can easily
impose a quantization of energy by allowing only integer values
of φRT and φgen in the ratio φRT∕φgen.

5. LORENTZ OSCILLATOR MODEL AND
KRAMERS–KRONIG RELATIONS

The Lorentz oscillator model describes the motion of electrons
with electric charge e and mass me , bound as a cloud with electron
density Ne within an atom, as a damped harmonic oscillation
with an angular resonance frequency ω0 and gain/damping rate
constant γe (positive for stimulated emission, negative for absorp-
tion) displaced by a distance x from its rest position by an external
driving electric field E ext oscillating with angular frequency ωext.
The magnetic force is neglected. Its mathematical treatment is
equivalent to that of a mechanical spring oscillator. The linear
second-order ordinary differential equation of motion is solved,
yielding the atomic polarization Pe and phase difference θ
between the driving electric field and the polarization:

meẍ�t��2γeme _x�t��ω2
0mex�t�� −eE ext exp�−iωextt�,

Pe � −Neex�t��
Nee2∕me

ω2
0 −ω

2
ext − i2γeωext

E ext exp�−iωextt�θ�,

tan�θ�� 2γeωext

ω2
0 −ω

2
ext

: (7)

The same phase difference θ as from the Lorentz oscillator
model in Eq. (7) obtains from the Kramers–Kronig relations
[17,18] between the real part (susceptibility) χ 0

e and the imaginary
part (gain or absorption) χ 0 0

e of the complex susceptibility χe
[Figs. 4(a)–4(d)]:

Pe � ε0χeE ext exp�−iωext t � θ�,

χe � χ0
ω2
0

ω2
0 − ω

2
ext − i2γeωext

,

χ0 �
Nee2

ε0meω
2
0

,

χ 0
e � χ0

−�ω2
0 − ω

2
ext�ω2

0

�ω2
0 − ω

2
ext�2 � �2γeωext�2

,

χ 0 0
e � χ0

2γeωextω
2
0

�ω2
0 − ω

2
ext�2 � �2γeωext�2

,

tan�θ� � χ 0 0
e

χ 0
e
� 2γeωext

ω2
0 − ω

2
ext

: (8)

As is well known frommechanical oscillators, when the driving
frequency ωext is significantly lower (higher) than the resonance
frequency ω0, the oscillation is in (out of ) phase with the driving

Fig. 4. Real part χ 0
e (solid lines) and imaginary part χ 0 0

e (dashed lines)
of the susceptibility, calibrated to χ0, for γe � �0.00333ω0 (blue curves)
and γe � �0.01ω0 (red curves) in (a) stimulated emission and (b) ab-
sorption. (c) Phase difference θ between the amplitudes of a driven
atomic oscillator and its driving electric field as a function of driving
frequency. (d) Complex susceptibility χe, calibrated to χ0, as a func-
tion of ωext, for the four examples displayed in (a) and (b). For the
examples of γe � �0.00333ω0, the arrows indicate the situations of
(ωext − ω0�∕ω0 � −1.38 × 10−3, 0 (resonance), and 3.34 × 10−3, result-
ing in θ � 3∕8π (dotted arrow), π∕2 (resonance, dashed arrow), and
3∕4π (dashed–dotted arrow), respectively. The phase difference in reso-
nance of θ � π∕2 is indicated by the black curved arrow, which points in
the direction of increasing ωext.
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field. In resonance, the phase difference θ crosses the value of π∕2;
see Fig. 4(c). Since the electric field scales with the distance
between the two charges of the oscillating dipole, it is generated
in phase with the dipole oscillation, and stimulated emission is
90° in lead of the triggering field. Likewise, in resonant absorption
the phase difference between the atomic oscillation and the trans-
mitted field is θ � −π∕2, i.e., the atomic oscillation lags 90° be-
hind. This simple derivation confirms that in stimulated emission
the emissive part of the generated dipole field is in quadrature
with the driving electromagnetic field [5–8].

Consequently, in a resonant stimulated-emission process, the
interference term in Eq. (1) vanishes, the two individual inten-
sities add up, and the energy is conserved. For exactly this reason,
(i) Einstein was allowed to neglect interference in his semi-
classical rate-equation derivation [1] of Planck’s law [2] and (ii)
laser performance can be described—and important laser param-
eters, such as threshold and slope efficiency, can be obtained—
with a distributed-intensity-gain coefficient g by a differential rate
equation that calculates the photon number φ but neglects
interference:

d
d t

φ � Rst − Rdecay � cgφ −
1

τc
φ: (9)

Rst and Rdecay are the stimulated-emission and photon-decay
rates, respectively, and τc is the photon-decay time. Also, the
quantum-optical laser master equation neglects interference [34].

6. AMPLITUDE–PHASE DIAGRAM AND
QUANTIZED ELECTRIC FIELDS

For φext photons triggering the emission of φgen � 1 photon, the
situation of θ � π∕2 is illustrated in the amplitude–phase
diagram of Fig. 5(a). The resulting phase shift Δϕem between
the incident and transmitted electric field is

tan�Δϕem� �
ffiffiffiffiffiffiffiffiffiffiffiffi
1∕φext

p
: (10)

Assuming an incident electromagnetic field containing the energy
of φext � 1 photon, the build-up of a larger electromagnetic field
by consecutive stimulated emission of electromagnetic fields,
each containing the energy of φgen � 1 photon, is displayed in
Fig. 5(b). The total phase shift accumulated by the consecutive
stimulated emission of n − 1 photons by one initial photon with
an arbitrary phase, resulting in an electromagnetic wave
containing n photons, amounts to

Δϕn �
Xn−1
i�1

Δϕem,i �
Xn−1
i�1

arctan
�
1∕

ffiffi
i

p �
for n ≥ 1: (11)

The total phase shift of Eq. (11) establishes a relation among all
these states.

Simultaneous independent stimulated emission of several
photons, φgen > 1, induces a phase shift Δϕem in Eq. (5) that
is smaller than the phase shift Δϕn of Eq. (11) accumulated by
consecutive stimulated emission of single photons (Fig. 6):

Δϕem�φem > 1� < Δϕn�n � φem > 1�: (12)

For investigating the Fabry–Perot resonator above, we chose an
atomically thin gain sheet and assumed a simultaneous indepen-
dent stimulated emission of several photons into the same mode.
It is an interesting question whether this assumption is physically
justified. If true, the total phase shift induced when building up a
light beam depends on the way the photons are generated,

consecutively or simultaneously. If not true, i.e., the simultaneous
emission of several photons within the same mode is correlated,
such that these photons must obey the law of energy conservation
also with respect to each other, then the total phase shift of
Eq. (11) establishes a unique relation among all photon numbers
φ. Such a correlation could lead to the phenomenon of superra-
diance [35–37].

Fig. 5. (a) Quadrant of the amplitude–phase diagram illustrating the
process of stimulated emission (with the dark-red arrows of the emitted
field pointing toward the upper left): a field of φext photons triggers an
atom in its excited state to emit φem � 1 photon, in the two situations of
(i) φext � 1 and (ii) φext � 7. In both situations, the indicated right angle
is 90° � 180° − θ, hence θ � 90°. The color code denotes the amplitude
in units of φ1∕2, from φ � 1 photon (dark red) to φ � 9 photons
(violet). The same diagram holds true for absorption (with the dark-
red arrows of the absorbed field pointing toward the lower right).
(b) Build-up of a light beam by the consecutive addition of single
photons in the amplitude–phase diagram.
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One should not fall into the trap of believing that this relative
phase shift might be arbitrary. Of course, there is an arbitrary
starting phase. By rotating the coordinate system by an appropri-
ate fixed amount, the starting phase is set to zero in Fig. 5(b),

whereas, in the examples of Fig. 5(a), it is assumed different from
zero. In addition, the coordinate system can be rotated time-
dependently. In fact, in Fig. 5 the real and imaginary axes are
rotated by the oscillatory term eiωt , so that the displayed arrows
that rotate with this angular speed stand still in the graph. Beyond
that, no further freedom exists in this semi-classical treatment.

When an electromagnetic field that was generated by individ-
ual atomic emission processes triggers stimulated emission of an-
other electromagnetic field by an atom, it requires only two
ingredients for a correct quantization, namely, (i) each individual
amplitude must be proportional to the square root

ffiffiffi
φ

p
of an in-

teger photon number φ, and (ii) the phase difference must be
θ � 90°, the automatic consequence being the phase shift Δϕem

of Eq. (5) between driving and transmitted field. An example of
φext � 16 photons triggering the emission of φgen � 1 photon is
illustrated in Fig. 7(a), its result being quantitatively equivalent to
the same process when displayed in the amplitude–phase dia-
gram, as shown for other photon numbers in Fig. 5(a). The
build-up of an electromagnetic field containing φ photons by
consecutive stimulated emission of electromagnetic fields contain-
ing the energy of single photons is displayed in Fig. 7(b), its result
being quantitatively equivalent to Fig. 5(b).

7. EXPERIMENTAL VERIFICATION

Very recently, the group of Ferenc Krausz found experimentally in
the interaction of an attosecond pulse with an atom the following
signatures [38]. When the relative phase of an atomic polarization
is in lead of the electromagnetic field, energy is transferred from
the atom to the field (stimulated emission), whereas when the
phase of the atomic polarization lags behind the electromagnetic
field, energy is transferred from the field to the atom (absorption).
Considering that the emitted field occurs in phase with the
atomic polarization, this experimental finding coincides with
the semi-classical result that resonant stimulated emission is
90° in lead of the incident field, whereas absorption lags 90° be-
hind the transmitted field. In a book review [39], Kastler also
emphasized the necessity of a 90° phase difference in stimulated
emission in order for the energy to be conserved and pointed to-
ward an experimental verification of this phase difference by
Meslin [40].

Very recent progress in another field dealing with resonant
photonic systems, namely, plasmonic nanostructures, also clearly
indicates that in resonance a 90° phase difference occurs, and that
considering this phase shift is essential for the interpretation and
understanding of experimental results [41]. Besides, a similar 90°
phase difference is found in optical parametric amplification and
oscillation [42,43], when energy is to be conserved. When the
idler is generated by the signal (equivalent to stimulated emission
of idler light or absorption of signal light), a 90° phase difference
occurs between signal and idler. When the energy returns from
the idler to the signal (equivalent to absorption of idler light or
stimulated emission of signal light), the opposite 90° phase differ-
ence occurs, leaving the resulting idler and signal phases un-
changed, nevertheless at a 90° phase difference with respect to
each other. It is similar to the situation in Fig. 5(a), where the
dark-red double arrows resembling stimulated emission and
absorption occur at opposite 90° phase difference, leaving the
phase of the electric field resulting from the two subsequent
processes unchanged, nevertheless at a 90° phase difference with
respect to the atomic polarization.

Fig. 6. Quadrant of the amplitude–phase diagram comparing the si-
multaneous, independent addition of several photons (dashed arrows;
here, a field of φext � 5 photons triggers atoms in their excited state
to simultaneously emit φem � 2 photons), resulting in a phase shift
Δϕem, with the consecutive addition of two single photons (solid arrows),
resulting in an accumulated phase shift Δϕn > Δϕem.

Fig. 7. (a) Example of the summation according to Eq. (1) of two
electric fields of amplitudes equivalent to φ1∕2 � 4 and 1, with a phase
difference of θ � π∕2. The phase shift Δϕem � 0.1476π is equal to
Eq. (10), and the energy is conserved, as 16� 1 � 17 photons emerge.
(b) Consecutive addition of single photons to an existing electromagnetic
field. Intensity of the light beam in units of φ. The black dashed line
calculated from Eq. (11) indicates the phase shift Δϕn � Σ�Δϕem� ac-
cumulated with increasing number φ of photons.
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8. OPTICAL MODES

A mode is defined by its resonance frequency and spectral mode
shape (which can be Lorentzian, but also highly distorted [33]),
its transverse spatial mode shape (in an open two-mirror resonator
these are the Hermite–Gaussian TEMxy modes), and its polari-
zation (in the simplest case, two linear polarizations). If all modes
are orthogonal with each other in these three properties (which is
not necessarily the case [44–47]), photons in the same mode share
these three properties and trigger stimulated emission into this
mode. In contrast, a mode is not distinguished from other modes
by a unique phase, and light propagating in this mode can assume
any phase value. Consequently, there is no need for an electro-
magnetic field triggered by stimulated emission to have the same
phase as the triggering electric field. As we have reconfirmed
above in multiple ways, semi-classically it must be in quadrature
with the triggering field.

9. VACUUM FLUCTUATIONS AND SPONTANEOUS
EMISSION

A vacuum fluctuation that occurs during a very short time scale
can violate the law of energy conservation according to the un-
certainty principle [23,24]. If vacuum fluctuations appear in an
empty mode, they generate a time-averaged zero-point energy
corresponding to half a photon. If an electromagnetic field exists
in the mode, the vacuum field adds onto that field with an
arbitrary phase difference θ.

Spontaneous emission is the consequence of vacuum
fluctuations in the presence of optically active, excited species.
In contrast to vacuum fluctuations, each individual spontaneous-
emission event must increase the field amplitude and obey the law
of energy conservation in the same manner as stimulated emis-
sion, because one atomic excitation is converted to an electromag-
netic energy equivalent to one photon that survives at a
macroscopic time scale. This statement agrees with the quan-
tum-optical description of spontaneous emission, in which the
creation operator â† increases the photon number by one. If
in a spontaneous-emission event the photon is emitted into an
unoccupied mode, it enters this mode under a phase that is de-
termined solely by the triggering vacuum fluctuations. However,
if the mode is occupied by an electromagnetic field, emission
under an arbitrary phase difference θ with respect to the existing
field would violate the law of energy conservation; see Fig. 1(b).
Consequently, spontaneous emission must occur with the same
phase difference of θ � π∕2 relative to the total field as
stimulated emission.

Only under this condition was it possible for Einstein, by use
of a semi-classical rate-equation approach [1] that neglects inter-
ference, to confirm Planck’s law [2] and derive the Einstein A and
B coefficients of spontaneous and stimulated emission. If sponta-
neous emission occurred with an arbitrary phase difference with
respect to an existing electromagnetic field, his derivation would
have had to take interference into account.

Here we present a physical picture of spontaneous and stimu-
lated emission (Fig. 8) that is consistent with all aspects discussed
above. Emission of a photon into a resonator mode takes longer
than the resonator round-trip time [48]. At this time scale, the
energy and phase fluctuations of the many extremely fast vacuum
fluctuations average out to half a vacuum photon added to
the existing field of φext photons. This averaged total field of

φext �½ photons triggers atoms in their excited state to emit
a photon, leading, according to Eq. (10), to a phase shift between
triggering and transmitted field of

Fig. 8. Relation between vacuum fluctuations, violating the conserva-
tion of energy, and spontaneous emission, obeying the conservation of
energy. (a) Quadrant of the amplitude-phase diagram illustrating the
process of (stimulated and spontaneous) emission in the presence of vac-
uum fluctuations. In the example, an existing field representing 4 pho-
tons (solid yellow line and arrow) plus the vacuum fluctuation, i.e., in
average 4.5 photons (dashed yellow line and arrow), is increased by the
emission of a photon to a field representing 5 photons (solid light-green
line and arrow) plus the vacuum fluctuation, i.e., in average 5.5 photons
(dashed light-green line and arrow). The dashed black arrows indicate the
addition of half a vacuum photon to the field of real photons, which can
occur under any phase difference θ with the existing field, resulting in a
state on the (yellow or green) circle, but averaging out over many such
extremely short-lived events to a state on the (yellow or green) dashed
line. Although occurring under all phase differences θ, the dashed black
arrows are shown only for the two specific cases of�90° phase difference,
where energy conservation happens not to be violated, equivalently to the
intensity resulting from averaging over all phase angles. The dark-red ar-
row represents the field of the one emitted photon. The phase shift Δϕem

is calculated from Eq. (13). (b) Number φ of photons resulting from the
interference according to Eq. (1) between ½ vacuum photon and 4 pho-
tons (yellow solid curve) or 5 photons (green solid curve) versus phase
difference θ. Medium of 4.5 photons (yellow dashed line) or 5.5 photons
(green dashed line) averaged over all θ. The deviations in amplitude from
the average are consistent with the deviations predicted by the yellow and
green rings in part (a).
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tan�Δϕem� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∕�φext � 1∕2�

p
: (13)

Spontaneous and stimulated emission are undistinguishable, be-
cause the total field interacts with each atom. Nevertheless, the
increase in emission rate due to the additional half vacuum pho-
ton is quantified and measurable.

10. AMPLITUDE VERSUS PHASE FLUCTUATIONS,
LASER LINEWIDTH, AND HENRY’S α-FACTOR

The assumptions that stimulated emission (absorption) occurs in
(out of ) phase with its driving field, whereas spontaneous emis-
sion occurs with an arbitrary phase difference, and their corre-
sponding interpretation in the amplitude phase diagram of
Fig. 1(a), have served as the foundation for the quantum-optical
derivation of the laser linewidth in the 1960s. From the semi-
classical point of view established above, one comes to the follow-
ing judgement. The interpretation proposed by Lax [9], Haken
[10], Henry [11], and others that spontaneous emission occurs
with an arbitrary phase difference θ relative to an existing electro-
magnetic field, thereby introducing amplitude and phase fluctu-
ations [projection onto the axes with θ � 0–180° and θ � �90°,
respectively, in Fig. 1(a)], is not supported semi-classically, be-
cause it violates the law of energy conservation. Ironically, the θ �
90° phase difference of the spontaneously emitted photon that
these authors considered to be a “pure phase fluctuation” mani-
fests semi-classically exactly the amplitude addition by one
photon [Fig. 5(a) or Fig. 8(a)] required to conserve the energy.
From a semi-classical point of view, these authors have confused
vacuum fluctuations with spontaneous emission.

If—in contrast to vacuum fluctuations—spontaneous
emission induces neither phase nor amplitude fluctuations, these
cannot explain any of the following phenomena. (i) The laser line-
width, i.e., the Schawlow–Townes linewidth [12] or any of its
extended versions, is not a result of phase fluctuations. Without
the existence of amplitude fluctuations, these cannot be damped
out. Consequently, such a mechanism cannot explain (ii) the pre-
dicted [9,10,13–15] and experimentally observed [49,50] reduc-
tion of laser linewidth by a factor of 2 around threshold, nor will
they (iii) induce the refractive-index changes and resulting ampli-
tude–phase coupling and linewidth broadening originally
proposed by Lax [9] and later quantified by Henry via his α-factor
[11]. This finding does not exclude, however, that technical or
other amplitude “fluctuations” occur, with all the described
consequences.

11. CONCLUSIONS

Whatever aspect we have discussed semi-classically, (i) Maxwell’s
equations and the resulting interference term in the superposition
of electromagnetic waves, (ii) energy conservation in a Fabry–
Perot resonator, (iii) the Lorentz oscillator model, (iv) the
Kramers–Kronig relations applied to the complex susceptibility,
(v) the amplitude-phase diagram, or (vi) simply adding up sine
waves in a quantized electric-wave picture, we have arrived at
the conclusion that stimulated and spontaneous emission both
occur under a 90° phase difference with the incident field.
This semi-classical result also holds true as a standard perturba-
tion-theoretical approach to absorption and stimulated emission
in quantum optics [5–8,28] and, importantly, is supported by
recent experimental evidence [38].

Naturally, the following questions arise: Can we find this 90°
phase difference when applying the creation operator in quantum
optics? If not, can we introduce it to the quantum-optical descrip-
tion, do we even have to rethink the quantum-optical description?
Or is there a possibility that the semi-classical limit of quantum
mechanics produces a 90° phase difference, whereas the more we
enter the quantized world, the angle changes to 0°? It is hard to
imagine a physical mechanism that allows us to derive a positive
answer to the latter question.

The current explanation of the laser linewidth, as well as its
narrowing and broadening, is in fundamental contradiction with
the obtained and experimentally supported semi-classical picture.
Recently, we have made significant progress toward establishing
an explanation of the laser linewidth that coincides with the semi-
classical picture of stimulated and spontaneous emission [51,52].
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