How Old?

Massless Speakers Part 1


Duddell et. al. 1777-1931
The history of massless speakers
While others were wasting their time trying to make sound from electrical signals using solid, heavy, slow diaphragms there were a few pioneers who had the foresight to lay the foundations for the massless loudspeaker.

In 1777 Dr. Byron Higgins discovered and demonstrated that organ pipe-like tubes and glass jars could be used with hydrogen flame to produce sound and musical notes, tuned by the length of the pipe.  This work on pyrophones or plasmaphones could be the first that would influence the later development of the massless speaker.  A number of  others experimented with similar technology.  Michael Faraday in 1818 added further research and suggested the sound was created from very rapid explosions.  In 1858 the American scientist John LeConte had noticed how the flame of gas lights could be influenced by musical sounds.  John Tyndall, 1867, demonstrated a singing flame to the Royal Institution as part of 8 lectures.  Henri De Parville included a large section in the book Les Causeries Scientifiques, 1862.

The idea that flame could be used to produce sound was first successfully exploited by Frederic Eugene Kastner, patented in 1873, with his Pyrophone.  Using the natural resonance of small gas flames in varying lengths of glass pipe, an organ with one octave of notes was made.  Kastner died before being able to make the most of his work. 

William Du Bois Duddell
William Duddell
With this early work providing a good grounding that linked sound with fire, the first devices that created sound from electric arcs were made.  From earlier work by Hertha Ayrton on the electric arc (published later in 1902), it seems that independently but at similar times Hermann Theodor Simon (1898) in Germany and William Du Bois Duddell (1899) in Britain created sound oscillations using DC electric arcs that would resonate given the right circumstances.  Duddell patented this in 1900. This technology started to gain some public attention, there was even an article in the New York Times in 1901.

Valdemar Poulsen (1903) with his Poulsen Arc and Thaddeus Cahill (1906) with the Telharmonium both independently used designs based on Duddell's work to create larger musical devices.  Forest patented some improvements to Duddell's work in 1907 and Max Kohl also demonstrated the Singing Arc in 1911.  It's difficult to class the Auxetophone that was also created around this time (1898) as truly massless.  It was based on modulated compressed air, the modulation of which was achieved with a small diaphragm (of mass).  However all of these designs and experiments up to this point had been creating sound with massless methods but not reproducing sound, live or recorded, from electronic signals.  So not quite what we would think of as a loudspeaker today.

The first documented example of a massless loudspeaker would be with a patent from General Electric in 1927, "Improvements relating to electric sound-emitting devices or loud speakers". This really does well to explain what problems a massless speaker is addressing and describes one of the more basic mechanisms in clear and simple terms.  Very unusual for a patent, especially in this field.  It describes a simple point to plane corona wind or ion loudspeaker, followed up a year later by a version based on a disc. 

Shortly after this in the three years that followed a number of patents show up with Lindenblad (RCA) in 1928 point to air speaker, Ramsey in 1928 having a horn loaded RF plasma loudspeaker, Lilienfeld 1929 with a charged disc controlling the air, Ruben in 1929 and 1930 with a horn loaded plasma and heated cathode ion speaker, Loewe in 1930 with a grid modulated ion speaker, Wolffe in 1930 with a multi-point ion speaker and De Forest in 1931 with a modulated gas flow speaker.  These few with the GE patents describe almost all of the basic methods of "common" modern massless loudspeaker design.

There's no evidence that any of the GE patents onwards came to anything commercial, that was soon to change.

Part 2 - Actual Plasma

How Old?
Actual Plasma
A Stiff Breeze
Popular Plasma
Don't Breathe
Future Thinking
 
 
Home
 
History
 
Design
 
References
 

Info about plasma tweeters

and ionic loudspeakers

with high voltage ion cloud

and corona wind speakers
and more plasma and ion info.



©Copyright Adam Chambers 2022

Contact the Author

Cookie Policy


plasma tweeter plasma speakers corona plasma diy plasma acapella ion tweeter tweeters speaker lansche audio sound audio mart tesla coil loudspeaker plasma arc magnat plasma audio speaker ion system frequency speakers available plasma mp ion plasma electrical discharge plasma quality tweeters kits hf air pressure power mosfet pair massless air high quality corona